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ABSTRACT Traditional inspection of curtain wall metal hangings usually relies onmanual visual inspection,
which is costly, slow, and limited in coverage. To reduce cost and improve efficiency and accuracy, a non-
destructive automatic inspection system for architectural curtain walls based onmillimeter wave imagingwas
designed. The system is designed as a single-side reflective point-frequency imaging, which can effectively
solve the problem of reflective waves generated on the upper and lower surfaces of the curtain wall during
millimeter-wave penetration affecting the echo signal. To address the fine-grained classification problem
of metal hangings, we propose an efficient channel attention Vision Transformer (ECA-ViT) lightweight
classification network based on a hybrid architecture of convolutional neural network and Transformer.
Among them, the inverted residual attention module (IRAM) improves the network’s attention weight on
the image foreground, and the low-rank MobileViT module (LR-ViT) can provide global modeling for the
network andmaking thewholemodelmore lightweight by reducing the computational complexity of the self-
attention mechanism. The experimental results demonstrate that the proposed method achieves an accuracy
of 95.66% with fewer model parameters and computational complexity, demonstrating good performance
advantages.

INDEX TERMS Curtain wall metal pendant, deep learning, ECA-ViT, IRAM.

I. INTRODUCTION
Curtain wall metal hangings are common components in
modern architectural design, which play an important role
in building appearance decoration and structural support.
In recent years, with the wide application of curtain walls [1],
the maintenance of curtain walls has become more and more
important. Lin et al. [2] proposed an infrared thermography
method based on scanning laser depth heating, which
can effectively detect the defective problems of structural
adhesive in glass curtain walls; Xu et al. [3] proposed a
deformation monitoring method for glass curtain walls based
on fiber optic sensing technology. Traditional metal pendant
detection methods are mainly based on visual inspection and
external equipment detection technology, but these methods
have many shortcomings. Visual inspection is affected by the
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environmental light, and there are problems of leakage and
misdetection. The external equipment detection technology
requires specialized equipment and technicians, which is
costly and complicated to operate. Therefore, it is imperative
to develop a convenient, efficient and accurate metal pendant
detection technology.

Millimeter-wave imaging technology, as an emerging
nondestructive testing method, has many advantages. Among
them, millimeter-wave has the property of penetrating non-
metallic materials [4], [5], such as stone, which can be
detected without destroying the curtain wall structure, and the
non-diffraction millimeter beam can improve the inspection
depth [6]. In addition, millimeter-wave imaging technology
has high resolution and high sensitivity, which can detect
tiny defects on the surface of metal hangings [7]. Combined
with computer vision technology, automated, efficient, and
highly accurate nondestructive inspection can be achieved by
analyzing and recognizing millimeter-wave images [8], [9].
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Wu and Dahnoun [10] presented a millimeter-wave radar-
based health monitoring system that is capable of posture
estimation and heart rate detection. With millimeter-wave
radar, this study demonstrated the potential of non-contact
health monitoring, providing a convenient and interference-
free means of monitoring elderly people or patients who
require continuous monitoring. Wagner et al. [11] explored
how non-contact millimeter-wave radar can be used to detect
intrusive drilling in secure transportation containers. This
technology is expected to be widely used in the security
field to ensure the integrity of transportation containers
and reduce potential threats. In addition, millimeter wave
technology has important applications in medical imaging.
Iliopoulos et al. [12] used field-focusing techniques to
enhance millimeter wave penetration in breast tissue to
improve the accuracy of breast cancer detection. This study
provides a new tool for early cancer detection that can
improve patient survival. Yang et al. [13] introduced the
Transformer technique for anchorless detection of passive
millimeter wave images. Their work is potentially valuable
for occluded object detection.

As an important part of the building curtain wall system,
the quality of the curtain wall metal pendant directly
affects the service life and safety of the building. In recent
years, accidents caused by curtain wall detachment have
occurred frequently, especially in high-rise buildings where
curtain wall detachment causes significant damage to ground
personnel and other facilities. Therefore, how to detect the
components inside the curtain has become a hot research
topic. Millimeter-wave imaging technology uses microwave
radiation to capture signals reflected from target objects
to produce high-resolution images. These images provide
information about the metal hangings of the stone curtain
wall, including their shape, location and structural charac-
teristics. By combining computer vision and deep learning
techniques [14], [15], [16], [17], the ability to analyze
and interpret millimeter-wave images of stone curtain wall
metal pendants can be further improved, thereby automating
the pendant classification process and increasing efficiency
and accuracy. However, the millimeter-wave images of a
wide variety of metal pendants are extremely similar, which
poses a great challenge to the judgment of pendant types.
Classification is a critical step in processing millimeter-
wave images of curtain wall metal hangings, which can
help identify the condition and problems of the hangings,
thus ensuring the safety and maintainability of the building
structure.

In this paper, we study the classification of curtain wall
metal hangings based on millimeter wave imaging data
of curtain wall metal hangings. We designed a unilateral
reflective millimeter-wave point-frequency imaging device,
which has a simple structure and can effectively solve the
problem of reflective waves generated on the upper and
lower surfaces of the curtain wall during millimeter-wave
penetration affecting the echo signal. It greatly improves
the accuracy of the echo signal and improves the imaging

quality. Aiming at the problem of similar imaging of metal
hangings, a method of fine-grained image classification
based on efficient channel attention Vision Transformer
(ECA-ViT) is proposed. The method can effectively improve
the classification accuracy and the whole neural network
more lightweight. Deep learning algorithms and millimeter
wave imaging technology are combined to complete the
visual inspection of curtain wall metal components without
damaging the curtain wall.

FIGURE 1. Single side reflection millimeter wave point frequency imaging
device.

II. IMAGING DEVICE
The single side reflective millimeter-wave wave point
frequency imaging system can be loaded on the high-altitude
wall climbing robot, and adopts the point-to-point scanning
method with strong penetration ability to irradiate and image
each point on the curtain wall, to realize the detection of
the metal hangings of the curtain wall. The structure of
the whole device is shown in Figure 1, the resolution of
the device can reach 3mm, and the aperture size of the
mm-wave radiation source is 10cm. The imaging device
consists of a 35Ghz transmitter, receiver, semi-transparent
semi-reflective mirrors, and two off-axis parabolic mirrors
with an off-axis angle of 90 ◦. The sources and detectors
we use are both linearly polarized. The polarization direction
must be consistent, and the two also need to align the
polarization direction. The device changes the emission path
of the transmitter by two off-axis parabolic mirrors and
focuses on the detected object. When the millimeter-wave
penetrates the curtain wall, reflection and transmission will
occur. Transmission makes the light path move a certain
distance laterally. At this time, the incident and exit angles
are the same. After penetration, the wave is focused on the
element and reflected. Due to the multi-angle reflection of the
signal, the whole system only retains one illumination hole,
so that the echo signal with the same path as the transmitted
signal passes through the hole and returns. Other reflected
and transmitted waves are shielded to ensure the accuracy
of the echo signal, which can effectively solve the problem
that the reflected wave generated on the upper and lower
surfaces of the curtain wall affects the echo signal during
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the millimeter-wave penetration process. A semi-transparent
semi-reflective mirror is placed at the transmitting port of the
millimeter-wave transmitter to reflect part of the echo signal
upward by 90◦, which is received by the receiver and used
to detect the hangings. The structure of the whole device is
simple, and by changing the power of the transmitter, it can
penetrate different thicknesses of curtain walls for imaging
metal hangings.

Due to the fact that in actual engineering operations, the
curtain wall is perpendicular to the ground and the metal
pendant is perpendicular to the curtain wall, the imaging
results of the SE type, T type, back bolt, butterfly type
and oblique cantilever hanging metal pendants are shown
in Figure 2. The millimeter wave images of these five
metal pendants were generated by this imaging device, and
data enhancement was performed on the images to obtain
2940 images of the SE type pendant, 2730 images of the
T type pendant, 2730 images of the back bolt pendant,
2870 images of the butterfly type pendant, and 2760 images
of the oblique cantilever pendant, of which 70% were used
for training and 30% were used for testing.

III. METHODS
The millimeter-wave images of curtain wall metal pendants
are mainly grayscale images, and the color characteristics
are not obvious. In practical engineering, metal pendants are
fixed on the keel to undertake the curtain wall, and both the
keel and the pendants belong to steel structures. It is not easy
to distinguish the two in imaging, and the similarity of various
metal pendants in imaging is very high. Hence, there are
limited distinguishing characteristics in the millimeter wave
images of different types of metal hangings on the curtain
wall, and a neural network is needed to capture the fine details
of the images of different types of metal hangings.

A. NETWORK FRAMEWORK
In this paper, a fine-grained classification method based on
the ECA-ViT model is proposed. The network model adopts
a hybrid architecture of convolutional neural network and
Transformer. The efficient convergence and local feature
ability of CNN are combined with the global feature
correlation ability of Transformer to achieve accurate recog-
nition of millimeter-wave images of metal hangings. The
complete end-to-end architecture of the model is shown in
Figure 3. It consists of a linear mapping layer, multiple
inverted residual attention modules (IRAM), multiple low-
rankMobileViTmodules (LR-ViT), and a final classifier. The
proposed IRAM is to modify the small convolutional kernel
in the inverted residual module into a large convolutional
kernel and add the channel attention mechanism to improve
the sensory field of the network and obtain a larger range
of local features. The LR-ViT module mainly reduces the
amount of calculation of the self-attention mechanism in the
Transformer module, and lightens the Transformer module so
that the overall network can reduce hardware requirements.

B. INVERSE RESIDUAL ATTENTION MODULE (LRAM)
Considering that the millimeter-wave images of metal
components have relatively few identifiable features, and the
local differences in the images are not large, a deep network
with stronger expression ability is needed to fit. In theory, the
greater the network depth, the higher the degree of fitting to
the training set. However, in actual training, too deep network
is difficult to train, which often leads to greater errors. The
residual module realizes direct connection by skipping a
certain number of layers, which can effectively solve the
problems of gradient disappearance and gradient explosion,
and the performance of the neural network can be improved
at a deeper level.

The inverted residual attention module (LRAM) is consid-
ered to be proposed for millimeter-wave images. Compared
with the conventional inverted residual module in Fig. 4(a),
this module combines a large-scale convolutional layer and
an efficient channel attention mechanism to enhance the
effective receptive field of feature extraction and the acuity
of details. The large-scale convolutional layer takes reference
from the Swin Transformer [18] model of using a large 7 ×

7 window for the feature map slicing method, replacing the
original 3×3 convolutional kernel with a 7×7 convolutional
kernel, and thus enhancing the sensory field of the network.
Since the use of large-scale convolution kernels will increase
the number of parameters and the amount of calculation, the
amount of calculation is reduced by reducing the activation
function layer and the normalization layer. The proposed
IRAMonly retains one normalization layer and one activation
function layer. The structure is shown in Figure 4(b). After
the 7 × 7 convolution layer, the efficient channel attention
module is connected. The module implements a local cross-
channel interaction strategywithout dimensionality reduction
through one-dimensional convolution, which can improve
the classification accuracy of fine-grained images without
increasing the amount of calculation.

There are two kinds of inverted residual attention modules
in the network, namely inverted residual attention module I
(IRAM-I) and inverted residual attention module II (IRAM-
II). The difference between the two is that the intermediate
large-scale deep convolution layer uses different strides. The
IRAM-I uses a stride of 1, and there is a shortcut connection.
The stride distance used in the IRAM-I is 2, that is, it needs
to be down-sampled, and there is no shortcut connection.

C. LOW-RANK MOBILEVIT MODULE (LR-ViT)
The low-rank MobileViT (LR-ViT) module is the core part
of the ECA-ViT network. The input feature map is locally
modeled and adjusted the number of channels through a
3 × 3 convolution layer and a 1 × 1 convolution layer.
The obtained feature map is converted into the input data
dimensions required by the Transformer module, and the
specific operation is shown in Figure 5. Firstly, the feature
map is divided into patches, and the size of the patch in
Figure 5 is 2 × 2, that is, each patch consists of 4 pixels.
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FIGURE 2. Network structure diagram.

FIGURE 3. Imaging image of curtain wall metal structure. (a) Back bolt; (b) Butterfly type; (c) SE type; (d) T type;
(e) Oblique cantilever.

The pixel of the same color is flattened in a sequence, so that
self-attention can be used directly to compute the attention of
each sequence in parallel. Then, the global feature modeling
is performed through the Transformer module. Finally, the
output feature map and the original input feature map are
spliced by a method similar to the residual structure. The
main amount of computation in the Transformer module

comes from the self-attention layer. The LR-ViT module
we proposed mainly reduces the computation of the self-
attention mechanism by reducing the dimensions of the key
and value matrices in the self-attention layer.

In the original self-attention mechanism, the input feature
sequence is trans-formed to obtain the query matrix Q, the
key matrix K and the numerical matrix V . Each matrix has
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FIGURE 4. Inverted residual block. (a) Original inverted residual block; (b) Large-scale Inverted
residual block.

FIGURE 5. Feature map dimension transformation.

the same dimension N × C, where N = H/2×W/2. The
calculation formula of the self-attention mechanism is as
follows:

Attention(Q,K,V ) = Softmax(
(QKT)
√
d

)V (1)

According to the similarity or correlation between Q and K ,
the original score is normalized, and the value is weighted
and summed according to the weight coefficient to obtain
attention value. Its computational complexity increases
exponentially with the increase of the resolution of the input
image. Therefore, the dimensions of theK andV matrices are
reduced by scaling the coefficient S. Firstly, the dimensions
ofK andV matrices are transformed into H×W×C, and the
deep separable convolution is used to reduce the dimension
of the matrix, taking K matrix as an example.

K ′
= DWConv(K) (2)

The convolution kernel size of the convolution layer is S×S,
and the step size is S. The feature map is divided into
windows. These windows do not overlap with each other,
and the dimension of each window is S. A total of H/S×W/S
windows are obtained, and the dimension of the obtained K ′

matrix is H/S × W/S × C, subsequently transformed into
N/S2 × C. The V matrix goes through the same procedure
to obtain V ′. The formula for the new attention mechanism

obtained is:

Attention(Q,K,V )

= Softmax(
(Q(DWConv(K))T)

√
d

)DWConv(V ) (3)

Therefore, the self-attention mechanism complexity is
reduced from O(N2) to O(N2/S2). The LR-ViT can improve
the classification accuracy while reducing the computational
complexity of the whole model.

D. LOSS FUNCTION
The most commonly used loss function in image classifi-
cation is the cross-entropy loss function, which is used to
measure the difference between the output of the model and
the real label. The expression of the loss function is:

LossCE = −
1
L

∑
l∈L

N∑
i=1

yil log(ŷ
i
l) (4)

where L denotes the number of samples, N denotes the num-
ber of categories, and yil denotes the category corresponding
to the true label of the lth sample, taken as 1 or 0. y′′ denotes
the probability value predicted by the model. Minimizing the
cross-entropy loss function is equivalent to maximizing the
model’s probability of predicting the correct category. During
the training process, the model parameters are adjusted by the
optimization algorithm to reduce the value of the loss function
so that the model predicts the true labels more accurately.

E. IMPLEMENTATION DETAIL
In this paper, the proposed model is implemented in the
Pytorch framework and the network is trained end-to-end
using the Adam optimizer. The initial learning rate of the
model is 1 × 10−4, the minimum learning rate is 1 × 10−6,
and the learning rate is adjusted by cosine annealing. The
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model was trained on NVIDIA GeForce RTX 3090 GPUs for
100 iterations with a batch size of 32.

IV. RESULTS
A. EVALUATION METRICS
Test images are used to test the weights obtained from the
network training. The performance parameters of the test
network are mainly precision, recall rate and F1.

precision =
TP

TP+ FP
(5)

where Precision is the precision rate, which is the ratio of
correctly retrieved targets to all actually retrieved targets,
TP is the number of positive classes predicted to be positive,
and FP is the number of negative classes predicted to be
positive.

Recall =
TP

TP+ FN
(6)

where Recall is the recall rate, which is the proportion of
correctly retrieved targets to all targets that should have been
retrieved, FN is the number of positive classes predicted to be
negative.

Accuracy =
TP+ TN

M
(7)

where Accuracy is the accuracy rate, which is the proportion
of correctly retrieved targets to all targets, TN predicts
negative categorization as negative categorization, and S is
the total number of samples.

F1 = 2∗
Precision∗Recall
Precision+ Recall

(8)

F1 is the harmonic mean of Precision and Recall.

B. RESULT ANALYSIS
In the experiment, we compare the proposed model with
the previous state-of-the-art image classification model.
The model is analyzed from the classification accuracy
and computational complexity, and the superiority of our
proposed model is demonstrated. Through ablation experi-
ments, we illustrate the effectiveness of the inverted residual
attention module (IRAM) and the low-rank MobileViT
module (LR-ViT) for model classification.

We performed comparative experiments using
Mobilenetv2, Efficientnet-b0, and MobileViT network
models on the collected dataset. Figure 6 illustrates the
variation in loss values for each network. As depicted
in Figure 6, our proposed efficient channel attention
vision Transformer (ECA-ViT) network model demonstrated
superior convergence and the lowest loss value during the
process of model training.

To compare objectively the classification performance
of various networks, this paper statistics their performance
metrics on the self-constructed dataset, as shown in Table 1.
It is evident from Table 1 that our proposed network model
enhances the F1 value by 2.54% - 3.87% and the accuracy

FIGURE 6. Loss value variation chart.

TABLE 1. Comparison of the performance of each network for image
classification on self-built datasets.

by 2.54% - 3.88% when compared to other models, demon-
strating the model’s capability of detecting fine-grained
image distinctions and its strong feature extraction ability.
The respective amounts of parameters and computational
operations in the network are compared and analyzed.
An evaluation of the computational cost is then carried out
by quantifying the number of parameters and floating-point
operations (FLOPs) used. The parameter quantity denotes the
number of parameters requiring learning during the process
of training, while FLOPs represents the number of floating-
point operations executed during the inference stage. The
models in this study underwent evaluation by single-scale
inference using an input image resolution of 224 × 224.
It can be seen from Table 1 that our model parameters and
calculations are lower than the comparison model, which can
be better deployed on the curtainwall metal hanging detection
system.

To validate the effectiveness of the proposed inverted
residual attention module and the low-rank MobileViT mod-
ule, we conducted ablation experiments on them separately,
all of which were carried out on self-constructed datasets.
Specifically, we use the MobileViT model as a baseline for
comparison. We compare Baseline-I, which contains only
the inverted residual attention module, to the baseline model.
As can be seen in the second row of Table 2, the inverted resid-
ual attention module improves classification accuracy, and
the reduced activation and normalization layers significantly
reduce model parameters. Similarly, we compare Baseline-
II, which contains only the low-rank MobileViT module,
to the baseline model. As can be seen in the third row of
Table 2, the low-rank MobileViT module improves model
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FIGURE 7. Visualization test results for four examples. (a) Test image; (b) The results of Mobilenetv2; (c) The results of Efficientnet-b0;
(d) The results of MobileViT; (e) The results of ECA-ViT.

accuracy while reducing computational effort. Therefore,
both the inverted residual attention module and the low-
rank MobileViT module are effective in improving the model
performance and can make the model more lightweight to
some extent.

TABLE 2. Comparison of ablation of models.

The ablation experiment was also performed on the
selection of the size of the middle layer convolution kernel
in the inverted residual attention module. We replace the
inverted residual module in MobileViT with the inverted
residual attention module as the baseline model. We use
several different sizes, which are 3 × 3,5 × 5,7 × 7,9 × 9,

TABLE 3. Comparison of ablation with different convolution kernel sizes.

respectively. The experimental results are shown in Table 3.
As the convolution kernel increases, the number of parame-
ters and calculations will also increase, and the accuracy rate
reaches saturation when using a 7 × 7 convolution kernel.
It shows that the large-scale convolution layer can effectively
improve the receptive field of the model, to capture more
subtle differences in the image and improve the accuracy of
the model. However, the cost is that more computation is
required.

To demonstrate the interpretability of the proposedmodels,
we visualize the last feature layer of all models. The attention
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of the neural network for the whole image is determined
by generating a heat map of this feature layer. As shown in
Figure 7, four images are selected for heat map visualization,
with the first column being the tested image and the rest of
the columns corresponding to the results of different detection
models. As seen in Figure 7, the models present darker
marker colors if they have stronger attention weights for the
information in the image. On the contrary, a weaker weight
of attention for the information in the image presents a lighter
marker color. However, the metal pendant regions in the
images are all small and the features are easily ignored. In the
first three rows of Figure 7, the Mobilenetv2, Efficientnet-
b0, and MobileViT models do not focus on the metal pendant
region in the image very accurately, and some of them deviate
from the region of interest. The ECA-VIT is much more
sensitive to capture the details in the image, and the attention
weights of the image are more concentrated on the imaging
region of the metal pendant. In addition, the results in the
last row give a good indication of the robustness of the
proposed method. The image used for detection is spiked
with Gaussian white noise, and there is not much difference
between the foreground and background information in the
whole image, and ECA-VIT can still accurately focus on the
corresponding foreground information. The results show that
the proposed method is able to expand the receptive field and
thus effectively aggregate the contextual information of the
features.

V. DISCUSSION
Traditional detection methods for curtain wall metal pendants
are mainly based on manual visual inspection and external
equipment detection techniques, which have some limitations
that are particularly evident in large building projects. These
limitations include inefficiencies in inspection, significant
time and human resources, limited field of view, and
inadequate coverage of hard-to-reach areas, which can lead
to project delays and increased costs.

Millimeter-wave non-destructive testing technology for
metal pendants offers a more advanced and effective
alternative. The technology is based on millimeter-wave
radiation, which is capable of penetrating non-metallic
materials, thus enabling high-quality inspection of metal
pendants. Millimeter-wave technology is characterized by
high accuracy, wide spectral coverage, the ability to monitor
in real-time and automatic data recording, which have
significant potential to improve construction quality, reduce
safety risks and reduce labor costs.

Further, the combination of millimeter-wave technology
with a specially designed wall-climbing robot provides an
innovative solution for the inspection and maintenance of
metal hangings. This integration enables efficient and highly
accurate inspection while reducing the risk of working at
height, ensuring the efficiency and quality of construction
projects. The promotion and development of this technology
application is of significant value to construction projects.

VI. CONCLUSION
In this paper, a lightweight model of efficient channel
attention Vision Transformer (ECA-ViT) is proposed for
classification of millimeter-wave images of curtain wall
metal hangings, which is able to improve the accuracy of
classification of fine-grained images. The network is a hybrid
architecture model of CNN and Transformer. An inverse
residual attention module (IRAM) and a low-rankMobileViT
module (LR-ViT) are proposed. The IRAM is beneficial
to improve the receptive field of the model and improve
the ability of the model to capture details. The LR-ViT
reduces the computation of the self-attention layer in the
Transformermodule and improves the classification accuracy
to a certain extent. The ablation experiments show that the
proposed IRAM and LR-ViT module can effectively improve
the accuracy.
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