
Received 24 January 2024, accepted 31 March 2024, date of publication 4 April 2024, date of current version 11 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3384986

Open-Access Platform for the Simulation
of Aerial Robotic Manipulators
JOSÉ VARELA-ALDÁS 1, (Member, IEEE), LUIS F. RECALDE 1, BRYAN S. GUEVARA2,
VICTOR H. ANDALUZ 3, AND DANIEL C. GANDOLFO 2
1Centro de Investigaciones de Ciencias Humanas y de la Educación (CICHE), Universidad Indoamérica, Ambato 180103, Ecuador
2Instituto de Automática, Universidad Nacional de San Juan—CONICET, San Juan 5400, Argentina
3Departamento de Elóctrica y Electrónica, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador

Corresponding author: José Varela-Aldás (josevarela@uti.edu.ec)

This work was supported by Universidad Indoamérica, Ecuador, under Grant INV-0019-011.

ABSTRACT Recent technological advances have brought increased attention to aerial robotic manipulators
(ARMs), particularly in applications that involve physical interactions using tools such as welding and
drilling, as well as in the autonomous pickup and transport of objects. However, translating control algorithms
into real-world applications for aerial robotic manipulators may prove challenging, given the potential for
accidents and the time-consuming nature of experiments; furthermore, the acquisition of aerial robotic
manipulators could impose a substantial financial burden on universities, research centers, and companies.
Therefore, this work addresses these issues by developing an open access platform to simulate aerial robotic
manipulators and test control strategies. The presented simulator is based on the kinematics and dynamics of
theMatrice-100 aerial platform equippedwith a 3DOF robotic arm, where themathematical formulationwas
developed using the Euler-Lagrange formalism. In addition, optimization techniques were used to perform
the parameter identification procedure, ensuring the development of an accurate model for the open-access
platform. The simulator platform is built upon the integration of Python, the Robot Operating System (ROS),
and Unity 3D. These components collaborate to describe and demonstrate the behavior of the aerial robotic
manipulator during the test process of control system algorithms. Simple tests were conducted to validate the
open-access simulator platform. The proposed approach ensures the evaluation, testing of control strategies,
and the ability to conduct experiments before hardware implementations. Finally, the proposal was published
as an open source platform available in the following Code.

INDEX TERMS Robotic simulation, aerial robotic manipulator dynamics, open source, dynamic parameters
identification, control algorithms.

I. INTRODUCTION
A. MOTIVATION
In recent decades, unmanned aerial vehicles (UAVs) have
received significant attention, especially from research com-
munities and industrial companies. Many applications have
been proposed under the conceptualization of passive tasks
that avoid interaction with the environment, presenting poten-
tial applications such as surveillance and monitoring [1], [2],
[3]; remote sensing and data collection of agricultural sectors

The associate editor coordinating the review of this manuscript and

approving it for publication was Cheng Qian .

or inaccessible areas [4], [5]; either infrastructure inspection
or inspection during disasters and crises [6], [7] and for
transportation and navigation purposes [8].

However, applications that involve physical interaction
with the environment face restrictions and cannot be devel-
oped solely using UAVs. Consequently, research activities
are increasingly focusing on interactions with aerial robotic
manipulators, a trend that is gaining popularity, as noted
in [9]. ARMs are integrated into aerial vehicles equipped
with one or more robotic arms, enabling robust and precise
manipulation tasks while enhancing manipulability capabili-
ties. Aerial robotic manipulators have received considerable

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 49735

https://orcid.org/0000-0002-4084-1424
https://orcid.org/0009-0008-4094-2533
https://orcid.org/0000-0002-8127-1595
https://orcid.org/0000-0002-4938-2105
https://orcid.org/0000-0002-5413-8908

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

attention, andmany prototypes have been developed and eval-
uated in outdoor and indoor conditions, such as inspection
of infrastructure, railways, refineries, roads and electrical
lines [10], [11]; physical interaction using tools for welding
and drilling [12]; and autonomous pickup and transport of
objects [13], [14]. Finally, an overview of aerial manipulation
applications can be found in [15].

ARMs show an exciting challenge in the control field due
to the coupling dynamics and the instability generated by the
UAV and the movements of the robotic arm, where many
algorithms have been presented in the literature [16], [17],
and [15]; nevertheless, they have revealed challenging imple-
mentations associatedwith high nonlinearities, underactuated
properties, and expensive implementation requirements.
Therefore, there is a demand for tools capable of simulating
the dynamics of aerial robotic manipulator systems and
facilitating the rapid implementation of control algorithms.
Precise dynamics and effective communication channels are
critical features in aerial robotic manipulator simulations.
Primarily, an accurate mathematical representation of the
system is employed to construct a sophisticated physics
model, ensuring that the results obtained in the simulation
platform can be applied in the physical world, thus reducing
experimentation time and cost.

Simulation platforms have made crucial contributions
in the robotics field [18], [19], mainly by generating
benefits related to the cost of experiments, time savings,
and implementing a wide variety of control algorithms in
different scenarios. Furthermore, errors and bugs in control
algorithms cost practically nothing on simulation platforms
and allow the user to understand the system and identify
possible complications under different conditions. Although
there are limitations associated with the lack of a perfect
representation of the physical model, simulation platforms
have generated crucial advantages, especially in activities
related to the robotic field [20].

B. RELATED WORKS
Nowadays, simulation platforms have developed notorious
applications that mimic the behavior of complex systems.
The purpose of simulations is to help and support the
user during the design phase of the control algorithms
and to evaluate the system’s functionality. Furthermore,
technological advances in the last decade have expanded
the use of simulators in several areas, e.g. engineering and
robotics, among others [21], [22].

A literature review shows that simulators are oriented to
robotic applications, and many solutions have been presented
based on external simulators and physics engines such as
CoppeliaSim (previously V-REP) [23], Gazebo [24] and
Mujoco [25], which provide simulation results of an extensive
range of situations, where the users can develop control
algorithms in a variety of environments.

However, simulation platforms presented above require
either high computational capabilities or significant

additional effort to learn and develop a specific project
simulation. Furthermore, control algorithms for any aerial
robotic manipulator developed must be evaluated through
different experimental tests to verify their efficiency, stability,
and robustness. Therefore, a platform for the simulation of
aerial robotic manipulators that enables the test of different
control algorithms without additional effort is increasingly
important during the design phase in robotics applications.

C. MAIN CONTRIBUTIONS
This article presents the design and implementation of a
simulation platform for aerial robotic manipulators, which
provides a valuable tool to design and evaluate control
algorithms and reduces time during the design stage. The
platform allows researchers and developers to simulate
the behavior of aerial robotic manipulators and modify
system control parameters to evaluate performance in various
situations. The developed platform under the Model-in-
Loop (MIL) architecture can satisfy essential requirements,
including system dynamics, modularity, and accessible code
reuse, without additional effort associated with the simulation
experiments.

The credibility of the simulator is based on the accuracy
of the mathematical model used to mimic the dynamics in
the system. These formulations are developed on the basis
of two main principles: understanding the system behavior
commonly using physics laws and the data obtained through
real-world experiments, which are usually used to validate the
mathematical formulations. Therefore, this work developed a
kinematic and dynamic model of the aerial robotic manipu-
lator considering a commercial aerial vehicle (Matrice-100)
equippedwith a 3DOF robotic arm. Additionally, commercial
aerial vehicles are usually controlled through high-level
reference signals such as desired angles or velocities; thus,
this work formulated a reduced dynamicmodel in the velocity
space instead of thrust and torque as a control input. The
proposed mathematical formulation uses the concepts of
Euler-Lagrange, parameter identification, and optimization
techniques to ensure the proper behavior of the system and the
perfect representation of the real aerial robotic manipulator.

The simulator platform can be easily used in other
software such as Matlab [26] and Julia [27] since our
simulation framework is based on Python, ROS, and Unity,
which guarantees the modularity of the entire system.
The widespread adoption of Python and ROS within the
robotic community played a crucial role in the selection of
language and middleware criteria. The simulation platform
for the aerial robotic manipulator can be divided into
three components: (i) System Model: The reduced dynamic
model, developed in velocity space, was implemented using
the Python language. Python is popular in the robotic
community, enabling users to quickly onboard and easily
reuse the model [28]. (ii) Graphical Representation: This
aspect illustrates the behavior and evolution over time. Unity
3D graphics engine, a widely used software for developing

49736 VOLUME 12, 2024

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

robotic simulators, was employed for this purpose [29], [30].
(iii) Interface andMiddleware: For interface andmiddleware,
ROS (Robot Operating System) was utilized. ROS is a
standard in robotics software development, applicable to
both real-world and simulated robots. It excels in handling
communication between programs in a distributed system,
ensuring modularity [31].

Control algorithms must be evaluated in different envi-
ronments to verify their stability and robustness. However,
this task is not trivial, particularly concerning aerial robotic
manipulators and the acquisition or construction of these
platforms, which can be expensive for research institutes
and universities. Given the considerations related to the
aerial robotic manipulator, this work validates the proposed
simulation platform using a basic control algorithm based on
the system model applied to the trajectory tracking control
problem. Finally, the proposal has been released as an open-
source platform, accessible through the following Code. This
availability makes the project easily accessible and facilitates
code reuse, meeting the essential requirement for simulation
platforms.

II. MATHEMATICAL FORMULATIONS
The accuracy of the simulator is based on the mathematical
model used to represent the dynamics of the aerial robotic
manipulator. This work formulates the mathematical model
using the differential kinematics and dynamics model of the
aerial robotic manipulator complied with the commercial
aerial vehicle (Matrice-100) equipped with a 3DOF robotic
arm. In addition, this work developed a dynamic model in
the reference velocity space. This choice comes from the
fact that most commercial aerial vehicles are controlled using
high-level reference signals, such as the desired angles or
velocities.

A. AERIAL ROBOTIC MANIPULATOR MODELING
This section presents the formal notation and coordinate
frames used in this work. Notations throughout this work,
vectors are represented by bold lowercase letters z ∈ Rn

and the matrices are presented as uppercase letters Z ∈

Rn×m; furthermore, the Euclidean norm can be formulated as
∥z∥ =

√
z⊺ z.

The coordinate frames used in this work are the inertial
frame I : {xi, yi, zi} with the vertical axis zI pointed upward
opposite to gravity, the body frameB : {xb, yb, zb} attached to
the center of mass of the UAV (CoM), the coordinate frame
at the origin and the end effector of the robotic arm can be

expressed as C : {xc, yc, zc} and E : {xe, ye, ze} respectively,
which are introduced to describe the motion of the aerial
robotic manipulator (for more details, refer to Figure 1).

FIGURE 1. Unmanned aerial manipulators system.

1) DIFFERENTIAL KINEMATIC MODELING
This section presents the development of the differential
forward kinematics of the aerial robotic manipulator, which
can be formulated using the links geometry and internal states
of the entire system (see Table 1), described as follows:

ire = K(qu(t),qa(t)) (2)

where the non-linear mapping K(·) can be defined as the
product of M elementary transformations K(·) =

∏M
i=1Ei

from the inertial frame < I > to the end effector
position < E >.
As a consequence of the low-level flight controller (attitude

PID) of commercial aerial vehicles, this work assumes
restricted movements of the aerial platform, taking into
account the pitch (θ) and roll (φ) angles take values close to
zero φ ≈ 0 and θ ≈ 0. The vector of generalized coordinates
of the UAV is defined as qu =

[
qx qy qz qψ

]⊺
∈ R4

respect to < B >; the vector of joint coordinates of the
robotic manipulator qa =

[
q1 q2 q3

]⊺
∈ R3 and finally

ire =
[
irx iry irz irψ

]⊺
∈ R4 is some representation of the

end effector pose in the inertial coordinate frame < I >.
Therefore, the position and orientation of the end-effector

attached to the aerial robotic manipulator (see Figure 1) can

iṙx = µlc(qψ) − µms(qψ) − s(qψq1)(l3c(q2q3) + l2c(q2))(ω + q̇1) − c(qψq1)(l3s(q2q3) + l2s(q2))q̇2 − l3c(qψq1)s(q2q3)q̇3
iṙy = µls(qψ) + µmc(qψ) − c(qψq1)(l3c(q2q3) + l2c(q2))(ω + q̇1) − s(qψq1)(l3s(q2q3) + l2s(q2))q̇2 − l3s(qψq1)s(q2q3)q̇3
iṙz = µn − (l3c(q2q3) + l2c(q2))q̇2 − l3c(q2q3)q̇3
iṙψ = q̇1 + ω (1)

VOLUME 12, 2024 49737

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

be defined in detail as follows:
irx = qx + c(qψq1)l3c(q2q3) + c(qψq1)l2c(q2)
iry = qy + s(qψq1)l3c(q2q3) + s(qψq1)l2c(q2)
irz = qz − l1 − l2s(q2) − l3s(q2q3)
irψ = qψ + q1

(3)

where s = sin (·), c = cos (·), c(ab) = cos (a+ b) and
s(ab) = sin (a+ b).

The differential kinematics that relates the linear and
angular velocities of the end effector to the maneuverability
velocities of the aerial platform and the joint velocities of
the robotic arm can be formulated taking the time derivative
of the (3) resulting as in (1), shown at the bottom of the
previous page, more information about the system parameters
is presented in Table 1.
The differential kinematics of the entire system can be

compactly written in a matrix form defined as follows:

iṙe = J(q(t))v(t) (4)

where, q =
[
q⊺
u q⊺

a
]⊺

∈ R7 and v =
[
v⊺
u v⊺

a
]⊺

∈ R7 are the
generalized vector of the internal states and maneuverability
velocities of the aerial robotic manipulator.

Furthermore, the velocities of the UAV are presented in
vu =

[
µl µm µn ω

]⊺
∈ R4, va =

[
q̇1 q̇2 q̇3

]⊺
∈ R3 is the

vector of joint coordinate velocities associated to the robotic
arm; and iṙe =

[
iṙx iṙy iṙz iṙψ

]⊺
∈ R4 is the end-effector

pose velocity.
Finally, the Jacobianmatrix defined as J(q) = ∂K(q)/∂q ∈

R4×7 allows a linear mapping between the velocities in the
end effector to the generalized velocities. The Jacobianmatrix
is presented in the Appendix of this work.

2) GENERALIZED DYNAMIC MODEL
This section presents the dynamic model of the aerial robotic
manipulator, which guarantees the proper behavior of the
proposed open access platform. The dynamic model of the
entire system was developed considering the Euler-Lagrange
formulation. The Lagrangian of the system can be formulated
as L = T − U , which is defined by the kinetic and potential
energy presented in the aerial robotic manipulator; thus, the
total kinetic energy can be formulated as follows:

T =
1
2
q̇⊺

4∑
n=1

[
mnJkn(q)

⊺Jkn(q)
]
q̇

+ ..q̇⊺
4∑

n=1

[
Jωn (q)

⊺Rn(q) In Rn(q)⊺Jωn (q)
]
q̇ (5)

where the matrices Jkn(q) and Jωn (q) express the energy
considering the translational and rotational velocities;mn and
In represent the mass and the inertial matrix of the
entire system considering the aerial platform and each link
individually; finally, Rn(q) is a rotational matrix. The kinetic
energy can be formulated in a compact form as a function of

the generalized coordinate q̇ =
[
q̇⊺
u q̇⊺

a
]⊺

∈ R7 defined as:

T =
1
2
q̇⊺M(q) q̇ (6)

where M(q) ∈ R7×7 is the mass and inertia matrix which
holds the following properties: (1) strictly symmetric and (2)
positive definite.

On the other hand, the potential energy can be summarize
considering the contribution of the aerial platform and the
internal configuration of each link of the robotic arm, the
formulation can be written as:

U =

4∑
n=1

(mng⊺ irn) (7)

where g =
[
0 0 g

]⊺ is the acceleration vector associated with
the gravity g and irn represents the location of the end effector
considering the aerial platform and the position of the links
presented in the robotic arm.

Therefore, the Lagrangian associated with the aerial
robotic manipulator can be formulated as:

L(q, q̇) =
1
2
q̇⊺M(q)q̇ −

4∑
n=1

(mng⊺ irn) (8)

where this work used the Euler-Lagrange constraint
d
dt

(
∂L
∂q̇

)
−

∂L
∂q = τ in order to obtain the dynamic model.

This work developed the non-linear dynamic model of the
aerial robotic manipulator as follows:

M(q)q̈(t) + C(q, q̇)q̇(t) + g(q) =
if (t)

C(q, q̇) = Ṁ(q) −
1
2
q̇⊺ ∂M(q)

∂q
; g(q) =

∂U
∂q

(9)

where C(q, q̇) ∈ R7×7 is the Coriolis matrix that includes
the centrifugal and centripetal forces presented in the entire
system, g(q) ∈ R7 is the generalized gravity force
vector, if =

[
ifx ify ifz τψ τq1 τq2 τq3

]⊺
∈ R7 represents

generalized forces and torques applied to the aerial robotic
manipulator associated to < I >. Finally, q̈ and q̇
are the acceleration and velocity vector of the generalized
coordinates.

3) SIMPLIFIED DYNAMIC MODEL
The simplified dynamic model is presented in this section
considering that commercial aerial platforms include a
low-level flight controller (attitude PID) to maintain the
system close to the equilibrium point with slight variations
in the angles of pitch (θ) and roll (φ). Furthermore, the
robotic manipulator incorporates DC motors with low-level
PID controllers, ensuring precise angular reference tracking
velocities in each joint.

As a result of the attitude controllers, both the aerial
platform and the robotic arm can be controlled using linear
and angular reference velocities vd. Considering this, the
dynamic model of the aerial manipulator should incorporate
these reference velocities as inputs to the system.

49738 VOLUME 12, 2024

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

TABLE 1. Aerial robotic manipulator parameters.

The acceleration of generalized coordinates can be for-
mulated as q̈ = S(q)v̇ + Ṡ(q)v, where v̇ =

[
v̇⊺
u v̇⊺

a
]⊺.

The dynamic model, formulated earlier, can be expressed as
follows:

M(q)S(q)v̇ + M(q)Ṡ(q)v + C(q, q̇)S(q)v + g(q) =
if (t)

(10)

On the other hand, the generalized force and torque of the
dynamic model, denoted as if (t), must be formulated as a
function of the reference velocities vd. Consequently, these
force and torque vectors are expressed in the body frame
< B > attached to the UAV, represented as bf (t), and the
result is as follows:

if (t) =
iRb(q) bf (t) (11)

where iRe(q) is a matrix that includes the rotation from the
frame < I > to < B > and an identity matrix relate to the
torque vector of each motor in the robotic arm.

The force and torque vector bf expressed is the result of
the torque in each motor of the aerial platform and the robotic
arm expressed as τ =

[
τw1 τw2 τw3 τw4 τq1 τq2 τq3

]⊺, which
results in the following formulation:

bf (t) = Aτ (t) (12)

where A is a matrix that allows the transformation of the
internal torque of each motor presented in the entire system
τ (t) to the generalized forces bf (t).
Considering that the motors of the aerial platform and

the robotic manipulator share the same features, the motor
actuator model can be written in a matrix form as follows:

τ = Bvω − Pω (13)

where vω =
[
Vw1 Vw2 Vw3 Vw4 Vq1 Vq2 Vq3

]⊺ is the
vector that includes the voltage presented in each motor
of the aerial platform and robotic arm; additionally, the
angular velocities of each motor can be expressed in
ω =

[
ωu1 ωu2 ωu3 ωu4 ωq1 ωq2 ωq3

]⊺. The mechanical
characteristics of the DC motors within the aerial platform

and the robotic arm can be effectively summarized using
matrices B and P.
The angular velocities of each motor ω should be

formulated as a function of the generalized velocities of the
entire system v, this work assumes a linear mapping that can
be written in a compact form as:

v = Eω (14)

where E includes the values that guarantees the mapping
defined before. Furthermore, this work takes into account a
linear mapping of the voltage required for each motor to the
overall voltage produced for the reference velocities. This
linear mapping can be expressed as follows:

vs = Dvω (15)

where vs =
[
Vµl Vµm Vµn Vω Vq1 Vq2 Vq3

]⊺ represents the
vector of voltages corresponding to the generalized velocities
of the system, and D is a constant matrix that facilitates the
mapping described earlier.

Finally, the low-level controller, which ensures the refer-
ence velocity tracking of the aerial robotic manipulator, can
be formulated in a compact form as follows:

vs = F vd − Fv − Hv̇ (16)

where vd =
[
µld µmd µnd ωd q̇1d q̇2d q̇3d

]⊺ is the
vector of desired maneuverability velocities, v̇ =[
µ̇l µ̇m µ̇n ω̇ q̈1 q̈2 q̈3

]⊺ is the acceleration of the gener-
alized velocities of the entire system and finally F and H
are gain matrices associated with proportional and derivative
error.

Under the formulations presented before, it is possible to
formulate the generalized forces of the dynamic model as
follows:

if (t) =
i ReA(BD−1(F vd − Fv− Hv̇) − PE−1v) (17)

Finally, combining (17) and (10) is possible to formulate
the dynamic model of the entire system in the reference
velocity space, which includes the low-level controller

VOLUME 12, 2024 49739

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

FIGURE 2. Validation procedure of the Aerial Robotic Manipulator,(a) shows the validation signals of the aerial platform and (b) validation signals
associated to the robotic arm.

presented in commercial platforms; taking this into account,
the formulation can be written as follows:

M̄(q)v̇(t) + C̄(q, q̇)v(t) + ḡ(q) = vd(t) (18)

where M̄(q) = (iRbAB(D)−1F)−1(M(q)S +
iRbAH) ∈

R7×7 is the new mass and inertia matrix; C̄(q, q̇) =

(iRbAB(D)−1F)−1(MṠ + CS −
iRbAPE−1) ∈ R7×7 is

the new Coriolis matrix and ḡ(q) = (iRbAB(D)−1g(q) is
the gravitational vector of the entire system. The matrices
mentioned above include the mechanical, electrical and PD
parameters of the aerial robotic manipulator. For further
details regarding the matrices discussed, please refer to
the Appendix at the end of this paper. Additionally, for a
comprehensive explanation of each variable, consult Table 1.

B. AERIAL ROBOTIC MANIPULATOR DYNAMIC MODEL
IDENTIFICATION AND VALIDATION
1) SYSTEM IDENTIFICATION OF THE SIMPLIFIED DYNAMIC
MODEL
While the dynamic model presented earlier (18) could
potentially rely on values provided by companies that develop
robotic platforms, this work employs optimization techniques
in the identification procedure of the dynamic model. This
approach ensures the proper behavior of the proposed open-
access platform.

An essential characteristic of the dynamic model formu-
lated in (18) is its linearity representation with the vector ζ,
expressed as follows:

Y(q, v̇, v)ζ = vd(t) (19)

where ζ =
[
ζ1 ζ2 .. ζ32

]⊺
∈ R32 represents a compact com-

bination of the mechanical, electrical, and PD parameters.

Finally, Y(q, v̇, v) is a regressor matrix that is a function of
the internal states q, general velocities v and the acceleration
of the system v̇.

This work estimates the values of the vector of unknown
parameters ζ under the following formulation:

ℓm(qi, vi, v̇i, vdi, ζ) = (1 − α)∥vdi − Y(qi, v̇i, vi)ζ∥
2
2+α∥ζ∥1

(20)

which represents the identification cost error, where i is the
instant of measurement along the experimental time and
α ∈ [0, 1) is an auxiliary variable that guarantees the
minimum number of parameters ζ during the identification
process.

The cost function to be optimized can be written as:

Vm(qi, vi, v̇i, vdi, ζ) =

tf∑
i=0

ℓm(qi, vi, v̇i, vdi, ζ) (21)

where tf is the total number of experimental snapshots used
during the identification procedure, using the equation (21)
this works formulates the optimization problem as follows:

min
ζ

Vm(qi, vi, v̇i, vdi, ζ) (22)

The formulation presented before can be solved using
a wide range of optimization algorithms. In this work,
we employ the well-known sequential quadratic program-
ming (SQP), a commonly used method in most optimization
solvers. The parameters that minimized the identification
procedure for the aerial robotic manipulator are listed in
Table 3. Further details and a physical representation of these
parameters can be found in Table 2.

49740 VOLUME 12, 2024

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

TABLE 2. Packed system identification parameters.

2) SYSTEM VALIDATION OF THE SIMPLIFIED DYNAMIC
MODEL
This section presents the validation results of the identified
model previously formulated, wherein the mathematical
formulation ensures sufficient accuracy for the open platform
simulator of aerial robotic manipulators. In addition, the
results of the validation procedure are shown in Figure 2,
where vd =

[
µld µmd µnd ωd q̇1d q̇2d q̇3d

]⊺ represents the
desired velocities for the aerial platform and the robotic arm;
the snapshot measurements are represented in the vector v =[
µl µm µn ω q̇1 q̇2 q̇3

]⊺ and finally the formulated dynamic
model and its evolution during the validation is shown in the
vector vm =

[
µlm µmm µnm ωm q̇1m q̇2m q̇3m

]⊺.
TABLE 3. Aerial manipulator identification parameters ζ.

The results of the validation process demonstrate the
precision of the proposed dynamic model and the abil-
ity to simulate the behavior of the real world aerial
robotic manipulator; additionally, the identification cost
error during the validation procedure reflected a value
Vm(qi, vi, v̇i, vdi, ζ) = 10.8023 demonstrating the effective-
ness of the proposal, which will be used in the simulator
platform.

III. SIMULATION PLATFORM
Although aerial robotic manipulator platforms are widely
used in a wide range of applications, they are still considered
expensive systems, even for universities and research insti-
tutes. Due to the high prices of these systems, control
algorithms must be evaluated in simulation to avoid accidents
related to the experimental results. This work proposes a sim-
ulation platform for aerial robotic manipulators that allows
the evaluation of control algorithms offering advantages to
the users, such as evaluation and testing a wide range of
control strategies, reducing time related to the development
stage and the possibility of performing experiments before
the hardware implementation.

The open access simulation platform was developed under
the MIL architecture, which includes the identified system
dynamics, modularity, and reuse of accessible code without
additional effort for the platform users. The proposal was
implemented using Python, ROS framework and Unity 3D
considering the following parts of the entire system: (i)
system model the mathematical formulation of the aerial
robotic manipulator was implemented using the Python
language, allowing users to get on board quickly and easily
reuse; (ii) Graphical interaction and interprocess communi-
cation was implemented using the Unity 3D graphics engine,
which guarantees compatibility with different 3D model
formats, low latency communication, and the versatility to
interact with various software and devices; furthermore,
this work utilized ROS to facilitate communication between
Unity 3D and Python, ensuring exact time synchronization.
The internal information of the open platform simulation
can be easily exchanged between different frameworks and
languages such as Matlab, Julia, and C++ due to the
capabilities that ROS offers to manage communications.

A. SIMULATED DIFFERENTIAL KINEMATICS AND
DYNAMICS
The simulated differential kinematics and dynamics of the
aerial robotic manipulator was developed using the model in

VOLUME 12, 2024 49741

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

the loop (MIL) formulation, where this work build a ROS
node which include the identified dynamic model presented
in Section (II) in order to publish the robot’s states to the ROS
framework. Therefore, this work combines the mathematical
models presented in equations (4) and (18) to generate a
generalized representation of the entire system, resulting:

ẋ(t) = f(x(t), vd(t))

f(x, vd) =

 J(q)v
Ju(q)v

M̄−1(q)
(
vd − C̄(q, q̇)v − ḡ(q)

)
 (23)

where x =
[
ire irb qa v

]
∈ R18 is the generalized vector

of the entire system and vd ∈ R7 is the input vector of
the system which represents the reference velocities for the
aerial platform and the robotic manipulator. Additionally, the
formulation presented before uses the matrix Ju in order to
include the states of the aerial platform irb and the angular
displacement of each joint qa.
This work uses a discrete version of the equation presented

in (23), which was developed using the fourth-order Runge-
Kutta integrator, defined as follows:

xk+1 = fk (xk , vdk) (24)

the formulation presented before guarantee the stable behav-
ior of the simulation through the experiments.

The discrete formulation is available in the following
repository GitHub providing a comprehensive resource for
those interested in developing aerial robotic manipulators.

B. GRAPHICAL INTERACTION AND INTER-PROCESS
COMMUNICATION
This section presents the description of each step in devel-
oping the aerial robotic manipulator visualization interface,
where this work sets the graphical interaction and the
inter-process communication section in multiple steps; more
details are presented in Figure 3. The first step (a) CAD
modeling consists in designing the aerial manipulator using
CAD software, which ensures an accurate representation
of the real-world system in the simulator platform. After
completing the design, the polygon count of the system’s
elements is optimized using Autodesk 3ds Max. The final
model is imported into Unity3D, where it can be used for
simulation and visualization proposals.

The second step, denoted as (b) in Unity3D, involves the
development of the virtual environment within the simulator
platform. This ensures the visualization of the entire system
during the testing of control algorithms. This step also
encompasses the integration of all necessary sub-modules
essential for the visualizer to connect with the MIL scheme,
including the ROSbridge server. Finally, this work generated
the respective binary files for the visualizer to be executed on
a computer under Linux architectures.

Furthermore, this work developed the interface shown
in Figure 4, which allows users to configure the ROS

framework and set the topics for publishing and subscrib-
ing information \aerial_manipulator\odom and
\aerial_manipulator\joints. This user interface
provides an intuitive way to configure the simulator and set
up the communication between ROS and external systems.
Taking this into account, users can establish the data flow
between (d) MIL Scheme and (b) Unity3D.

The implementation of the controller discussed in Sec-
tion IV is incorporated into sub-module (c) named Scientific
Programming Software. In this case, Matlab is employed
to showcase the versatility of the proposed open-access
simulator. This section generates a node directly fromMatlab,
ensuring control over the entire system. Users can easily
modify the design parameters within the controller and verify
the system’s behavior under these modifications.

The simulated kinematics and dynamics of the aerial
robotic manipulator, as discussed in Section III-A, are inte-
grated into (d) Submodule MIL scheme. In this submodule,
a ROS node in Python language is generated as part of this
work. This node incorporates all the relevant information
pertaining to the entire system, including parameters such as
sample time ts, initial conditions of the simulator, and the
execution time of the system.

As shown in Figure 3, communication between sub-
modules was established using ROS, which allowed for
proper synchronization and the exchange of information
between different software and languages. Therefore, the
visualizer inside Unity3D framework provides a powerful
platform for testing the simulated robot’s behavior, where
developers can efficiently design and test robotic systems in
a simulated environment, reducing the time and cost required
for physical testing.

IV. CONTROL ALGORITHM FORMULATION
In this section, the controller formulation based on the
differential kinematics of the entire system (4) is presented.
The control formulation tries to achieve the desired position
of the end effector generating the maneuverability velocities
for the entire system.

This work uses the concepts of non-linear control in order
to generate the adequate law that guarantees the stability of
the system along the desired pose defined by the users.

This work defines a Lyapunov V (ire) : R4
→ R≥0, which

includes the control error generated between the desired
reference irde and the position of the end effector, and can
be expanded as follows.

V (ire) =
1
2
ir̃⊺e 0 ir̃e (25)

where ir̃e =
[
irde −

ire
]⊺ and 0 is a positive definite matrix.

Applying the derivative in (25) the candidate Lyapunov
function can be written as follows:

V̇ (ire) =
ir̃⊺e 0 i ˙̃re (26)

where i ˙̃re =
iṙde − J(q)v. According to the Lyapunov

stability criterion and concepts of nonlinear control, this work

49742 VOLUME 12, 2024

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

FIGURE 3. Open-access Simulator Scheme.

FIGURE 4. Open access simulator user interface.

formulated a control law that guarantees that V̇ (ire) ≤ 0, the
control law can be written as follows:

vc = J†(q)(iṙde + K2 tanh (K−1
2 K1

i ˙̃re)) (27)

where tanh(·) is a saturation function, K1 > 0 is a diagonal
matrix that defines the slopes of the saturation function,
K2 > 0 is a diagonal matrix that represents the maximum and
minimum velocities generated by the controller; additionally,
this work assumes that vc ≡ v. Under the formulation
presented before the derivative of the Lyapunov function can
be defined negative and written as follows:

V̇ (ire) = −
i ˙̃r⊺e 0K2 tanh (K−1

2 K1
ir̃e) (28)

which guarantees either the stability of the controller or the
entire system as well. The controller was used to demonstrate
the behavior of the open access platform for aerial robotic

manipulators, and the results of these experiments are
presented in the next section.

V. SIMULATION RESULTS
This section presents the results obtained through the
proposed open access simulator for the aerial robotic
manipulator. In addition, it briefly introduces how users can
access information within the simulator to develop additional
formulations for control algorithms. The hardware used dur-
ing simulation experiments using the simulator is described
as follows: Intel processor i7-7700HQ, CPU 2.80GHz × 8,
and Graphics GeForce GTX 1050. The performance of the
simulation platform, especially the system dynamics, is not
strictly related to the hardware characteristics. However,
to obtain smooth animation, it is highly recommended to
include specialized graphics hardware.

The node controller developed in Matlab has access
to the internal states of the simulator throw top-
ics \aerial_manipulator\odom and \aerial_
manipulator\joints, which are available in the ROS
framework with a publication rate of 20 Hz. On the
other hand, the control node updates the desired reference
velocities at 10 Hz to modify the position of the end
effector. Communication between the controller node and
the simulator is possible through the following topics within
the ROS framework\aerial_manipulator\cmd_vel
and \aerial_manipulator\joints_ref. More
details of the communication structure are presented in
Figure 5.

VOLUME 12, 2024 49743

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

FIGURE 5. Inter-process communication.

FIGURE 6. Simulation results using the open-access platform for aerial robotic manipulators.

Based on the considerations presented above, the results
of the proposed controller using the open access simulation
platform are presented in Figure 7(a), where the end effector
follows the desired reference trajectory iṙde , the location of
the end effector is represented as ire and the aerial platform
is represented by irb. Furthermore, the control error vector is
presented in Figure 7(b), which is defined by ir̃e =

irde −
ire

considering that (ir̃x , ir̃y, ir̃z) is the error on each axis.
The visualization results using the proposed open access

simulator are presented in Figure 6, where the proposal can
solve the problems associated with the implementation of
control algorithms in real-world robotic systems, guarantee-
ing users the development of new research proposals aimed at
autonomous or semi-autonomous control in the area of aerial
robotic manipulators.

The proposed open-access simulator showcases its ability
to control ARMs through various experimental tests, verify-
ing the stability and robustness of the controller. In numerous
instances, the acquisition of aerial robotics manipulators

poses a significant financial burden for universities and
research institutes. Moreover, experimental tests are deemed
risky, not only for the user but also for the entire system. How-
ever, the developed platform fulfills essential requirements,
including system dynamics, modularity, and accessibility to
code reuse without additional effort, features that are often
lacking in many simulator systems.

Finally, due to the system dynamics identification proce-
dure, the controller proposed in Section IV cannot control the
system perfectly, which guarantees how the simulator can be
used to verify the performance of different control laws. This
work presented a video in which the user can verify the open
access simulator proposal for the aerial robotic manipulator
in the following link Video.

VI. DISCUSSION
The parameters identified in a robotic system are important
not only to guarantee an accurate behavior of the simulator
but also to ensure robust control algorithms, especially in

49744 VOLUME 12, 2024

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

FIGURE 7. Simulation results using the open-access simulator and the
proposed control law, (a) shows the evolution of system under
the proposed controller and (b) presents the control error during
the experiment.

the robotic field, where systems are exposed to external
forces such as loads or disturbances. In this context,
manipulator robots have generated interest by proposing
new algorithms for the accurate identification of dynamic
parameters [32]. Similarly, for the field of UAVs, there
are proposals for the non-linear identification of parameters
for aerial platform vehicles [33]. Recently, the combination
of manipulator robots and UAVs has been used in many
areas that allow robust and accurate manipulation tasks.
Although few proposed models still consider the dynamics of
the aerial manipulator, the dynamic models were developed
only through a physics engine simulator [34]. However,
our dynamic model has been validated against a real aerial
manipulator, ensuring an accurate response similar to real-
world scenarios.

Dynamic models are widely used to develop simulators,
allowing the user to validate new control algorithms [35].
In general, the dynamic of robots is integrated into the physics
engine, and researchers have compared various models to
achieve optimal performance. However, there are still many
factors in the area of simulator development that require
further investigation, as mentioned in [18]. Specifically, in the
field of UAVs, several simulators are available to evaluate
flight controllers in both simple and complex tasks, where
the simulator provides realistic environments that consider
various aspects, including dynamics, aerodynamics, multi-
robot systems, communications, and more [36], [37], [38].
However, many of these simulators have limited access for
researchers, imposing usage costs or restrictions on the base
models incorporated within the simulator. In contrast, our
simulator offers free access to the model and allows the
evaluation of control algorithms in the aerial manipulator
within a realistic environment.

Furthermore, the literature related to aerial manipulator
simulators is scarce; for example, in the study presented

in [39], a simulator is used to provide users with realistic
haptic feedback during human-aerial manipulator interaction
activities. Forces exchanged during the interaction are
measured and then applied to a dynamically simulated
aerial manipulator. In contrast to our proposal, this research
is focused solely on this specific application and does
not provide a detailed explanation of the dynamic model
that governs the behavior of the aerial manipulator. With
this justification, our work offers the scientific community
the opportunity to evaluate aerial manipulation algorithms
using different methods; additionally, the proposal guarantees
modularity and access to code reuse without additional effort,
where many simulator systems lack these features. Finally,
it is important to note the limitations of our simulator, as it
does not consider the aerodynamics of the system, which can
be crucial in the design of certain applications.

VII. CONCLUSION
This paper describes an open-access simulator for aerial
robotic manipulators based on the Model-in-Loop (MIL)
architecture. On the other hand, the precision of the proposed
simulator is based on the mathematical model of the
entire system, which was developed using the concepts of
Euler-Lagrange, parameter identification, and optimization
techniques applied to the commercial aerial vehicle (Matrice-
100) equipped with a 3DOF robotic arm. The simulator
platform was developed based on Python, ROS and Unity,
which guarantees the modularity of the entire system, shows
the behavior and evolution over time, and manages the
communication between different languages in a distributed
system such as Matlab and Julia. This work validated the
proposed simulation platform using a basic control algorithm
applied to the trajectory tracking control problem, which
guarantees that the platform allows users to simulate the
behavior of aerial robotic manipulators and modify the
control parameters of the system to evaluate performance in
different situations. Finally, the proposal was released as an
open-source platform, making the project accessible and easy
to reuse code, which are essential requirements for simulation
platforms. Future work includes the integration of collision
detection and contact forces into the simulation platform,
which can guarantee manipulation experiments with more
advanced robotics applications.

APPENDIX
This section presents the extra-material of differential
kinematics and dynamics of the aerial manipulator. Taking
this into account the Jacobian matrix can be formulated as
follow:

J =

c(qψ) − s(qψ) 0 J(1,4) J(1,5) J(1,6) J(1,7)

s(qψ) c(qψ) 0 J(2,4) J(2,5) J(2,6) J(2,7)

0 0 1 0 0 J(3,6) J(3,7)

0 0 0 1 1 0 0

(A-1)

VOLUME 12, 2024 49745

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

where:

J(1,4) = −s(qψq1)(l3c(q2q3) + l2c(q2))

J(1,5) = J(1,4)

J(1,6) = −c(qψq1)(l3s(q2q3) + l2 s(q2))

J(1,7) = −l3c(qψq1)s(q2q3)

J(2,4) = c(qψq1)(l3c(q2q3) + l2c(q2))

J(2,5) = J(2,4)

J(2,6) = −s(qψq1)(l3s(q2q3) + l2s(q2))

J(2,7) = −l3s(qψq1)s(q2q3)

J(3,6) = −l3c(q2q3) − l2c(q2)

J(3,7) = −l3c(q2q3)

The acceleration of the generalized coordinates used the
matrix S(q) and its derivative Ṡ(q) defined as:

S(q) =

c(qψ) −s(qψ) 0 0 0 0 0
s(qψ) c(qψ) 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

(A-2)

Ṡ(q) =

−ωs(qψ) −ωc(qψ) 0 0 0 0 0
ωc(qψ) −ωc(qψ) 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(A-3)

The matrix A allows the mapping between the force and
torque vector and the vector τ ; the matrix can be written as
follows:

A =

−K1 −K1 −K1 −K1 0 0 0
−K1 K1 K1 −K1 0 0 0
K1 K1 K1 K1 0 0 0
b1 b1 b1 b1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

(A-4)

The actuator model of the entire system can be written in a
compact form using the matrices B and P, which are defined

as follows:

B =

Kap
Rap

0 0 0 0 0 0

0
Kap
Rap

0 0 0 0 0

0 0
Kap
Rap

0 0 0 0

0 0 0
Kap
Rap

0 0 0

0 0 0 0
Ka
Ra

0 0

0 0 0 0 0
Ka
Ra

0

0 0 0 0 0 0
Ka
Ra

(A-5)

P =

KapKbp
Rap

0 0 0 0 0 0

0
KapKbp
Rap

0 0 0 0 0

0 0
KapKbp
Rap

0 0 0 0

0 0 0
KapKbp
Rap

0 0 0

0 0 0 0
KaKb
Ra

0 0

0 0 0 0 0
KaKb
Ra

0

0 0 0 0 0 0
KaKb
Ra

(A-6)

The generalized velocity of the entire system v can be
formulated as a function of the angular velocities of each
motor ω using the the matrix E defined as follows:

E =

−a1 −a1 a1 a1 0 0 0
−a2 a2 a2 −a2 0 0 0
a3 a3 a3 a3 0 0 0
a4 −a4 a4 −a4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

(A-7)

The linear mapping between the voltage require in eachmotor
and the general voltage produced for the reference velocities
can be implemented using the matrixD, which can be written
as follows:

D =
1
4

−1 −1 1 1 0 0 0
−1 1 1 −1 0 0 0
1 1 1 1 0 0 0
1 −1 1 −1 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 4 0
0 0 0 0 0 0 4

(A-8)

The gains of the reference velocities controller can be
compacted written using the matrices F and H, which can

49746 VOLUME 12, 2024

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

be defined as:

F =

Kp1 0 0 0 0 0 0
0 Kp2 0 0 0 0 0
0 0 Kp3 0 0 0 0
0 0 0 Kp4 0 0 0
0 0 0 0 Kp 0 0
0 0 0 0 0 Kp 0
0 0 0 0 0 0 Kp

(A-9)

H =

Kd1 0 0 0 0 0 0
0 Kd2 0 0 0 0 0
0 0 Kd3 0 0 0 0
0 0 0 Kd4 0 0 0
0 0 0 0 Kd 0 0
0 0 0 0 0 Kd 0
0 0 0 0 0 0 Kd

(A-10)

Themass and inertia matrix of the simplified dynamics can be
written as in (A-11), shown at the bottom of the page, where

M̄(1,1)
= ζ1

M̄(1,2)
= −ζ2

M̄(1,3)
= ζ3

M̄(1,4)
= −ζ4(c(q2)s(q1)ζ5 − ζ8 + c(q2)s(q1)ζ6

+ c(q2)c(q3)c(q1)ζ7 − s(q1)s(q2)s(q3)ζ7)

M̄(1,5)
= −s(q1)ζ4(c(q2)ζ5 + c(q2)ζ6 + c(q2q3)ζ7)

M̄(1,6)
= −c(q1)ζ4(s(q2)ζ5 + s(q2)ζ6 + s(q2q3)ζ7)

M̄(1,7)
= −c(q1)s(q2q3)ζ4ζ7

M̄(2,1)
= −ζ9

M̄(2,2)
= ζ10

M̄(2,3)
= ζ11

M̄(2,4)
= ζ12(c(q1)c(q2)ζ5 − ζ8 + c(q1)c(q2)ζ6

+ c(q1)c(q2)c(q3)ζ7 − c(q1)s(q2)s(q3)ζ7)

M̄(2,5)
= c(q1)ζ12(c(q2)ζ5 + c(q2)ζ6 + c(q2q3)ζ7)

M̄(2,6)
= −s(q1)ζ12(s(q2)ζ5 + s(q2)ζ6 + s(q2q3)ζ7)

M̄(2,7)
= −s(q1)s(q2q3)ζ7ζ12

M̄(3,1)
= ζ13

M̄(3,2)
= ζ14

M̄(3,3)
= ζ15

M̄(3,4)
= ζ16

M̄(3,6)
= −ζ17(s(q2)ζ5 + c(q2)ζ6 + c(q2q3)ζ7)

M̄(3,7)
= −c(q2q3)ζ7ζ17

M̄(4,1)
= ζ18(ζ19 − s(q1)(c(q2)ζ5 + c(q2)ζ6

+ c(q2q3)ζ7))

M̄(4,2)
= −ζ18(ζ20 − c(q1)(c(q2)ζ5 + c(q2)ζ6

+ c(q2q3)ζ7))

M̄(4,3)
= ζ21

M̄(4,4)
= (ζ18(ζ22 + ζ23 + 2 c(q3)l3ζ6 + c(2q2)l2ζ5

+ c(2q2)l2ζ6 + 2 c(2q2q3)l3ζ6 + c(2q22 q3)l3ζ7))/2

M̄(4,5)
= (ζ18(ζ23 + 2 c(q3)l3ζ6 + c(2q2)l2ζ5
+ c(2q2)l2ζ6 + 2 c(2q2q3)l3ζ6 + c(2q22 q3)l3ζ7))/2

M̄(5,1)
= −s(q1)ζ24(c(q2)ζ5 + c(q1)ζ6 + c(q2q3)ζ7)

M̄(5,2)
= c(q1)ζ24(c(q2)ζ5 + c(q1)ζ6 + c(q2q3)ζ7)

M̄(5,4)
= (ζ24(ζ23 + 2 c(q2)l3ζ6 + c(2q2)l2ζ5

+ c(2q2)l2ζ6 + 2 c(2q2q3)l3ζ6 + c(2q22 q3)l3ζ7))/2

M̄(5,5)
= (ζ24(ζ23 + 2ζ25 + 2 c(q3)l3ζ6 + c(2q2)l2ζ5

+ c(2q2)l2ζ6 + 2 c(2q2q3)l3ζ6 + c(2q22 q3)l3ζ7))/2

M̄(6,1)
= −c(q1)ζ24(s(q2)ζ5 + s(q2)ζ6 + s(q2q3)ζ7)

M̄(6,2)
= −s(q1)ζ24(s(q2)ζ5 + s(q2)ζ6 + s(q2q3)ζ7)

M̄(6,3)
= −ζ24(c(q2)ζ5 + c(q2)ζ6 + c(q2q3)ζ7)

M̄(6,6)
= ζ24(ζ23 + ζ25 + 2 c(q3)l3ζ6)

M̄(6,7)
= ζ7ζ24(l3 + c(q3)l2)

M̄(7,1)
= −c(q1)s(q2q3)ζ7ζ24

M̄(7,2)
= −s(q1)s(q2q3)ζ7ζ24

M̄(7,3)
= −c(q2q3)ζ7ζ24

M̄(7,6)
= ζ7ζ24(l3 + c(q3)l2)

M̄(7,7)
= ζ24(ζ25 + l3ζ7)

The Coriolis matrix can be compacted written as follows:

C̄ =

C̄(1,1) C̄(1,2) 0 C̄(1,4) C̄(1,5) C̄(1,6) C̄(1,7)

C̄(2,1) C̄(2,2) 0 C̄(2,4) C̄(2,5) C̄(2,6) C̄(2,7)

0 0 C̄(3,3) 0 0 C̄(3,6) C̄(3,7)

C̄(4,1) C̄(4,2) 0 C̄(4,4) C̄(4,5) C̄(4,6) C̄(4,7)

C̄(5,1) C̄(5,2) 0 C̄(5,4) C̄(5,5) C̄(5,6) C̄(5,7)

C̄(6,1) C̄(6,2) 0 C̄(6,4) C̄(6,5) C̄(6,6) C̄(6,7)

C̄(7,1) C̄(7,2) 0 C̄(7,4) C̄(7,5) C̄(7,6) C̄(7,7)

(A-12)

M̄(q) =

M̄(1,1) M̄(1,2) M̄(1,3) M̄(1,4) M̄(1,5) M̄(1,6) M̄(1,7)

M̄(2,1) M̄(2,2) M̄(2,3) M̄(2,4) M̄(2,5) M̄(2,6) M̄(2,7)

M̄(3,1) M̄(3,2) M̄(3,3) M̄(3,4) 0 M̄(3,6) M̄(3,7)

M̄(4,1) M̄(4,2) M̄(4,3) M̄(4,4) M̄(4,5) 0 0
M̄(5,1) M̄(5,2) 0 M̄(5,4) M̄(5,5) 0 0
M̄(6,1) M̄(6,2) M̄(6,3) 0 0 M̄(6,6) M̄(6,7)

M̄(7,1) M̄(7,2) M̄(7,3) 0 0 M̄(7,6) M̄(7,7)

(A-11)

VOLUME 12, 2024 49747

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

C̄(1,1)
= ζ26

C̄(1,2)
= −ωζ4ζ27

C̄(1,4)
= ζ4(s(q1)s(q2)q̇2ζ5 − c(q1)c(q2)q̇1ζ6 − c(q1)c(q2)ωζ5 − c(q1)c(q2)ωζ6 − c(q1)c(q2)q̇1ζ5 + s(q1)s(q2)q̇2ζ6

−c(q1)c(q2)c(q3)q̇1ζ7 − c(q1)c(q2)c(q3)ωζ7 + c(q1)s(q2)s(q3)q̇1ζ7 + c(q2)s(q1)s(q3)q̇2ζ7 + c(q3)s(q1)s(q2)q̇2ζ7
+ c(q2)s(q1)s(q3)q̇3ζ7 + c(q3)s(q1)s(q2)q̇3ζ7 + c(q1))s(q2)s(q3)ωζ7)

C̄(1,5)
= ζ4(s(q1)s(q2)q̇2ζ5 − c(q1)c(q2)q̇1ζ6 − c(q1)c(q2)ωζ5 − c(q1)c(q2)ωζ6 − c(q1)c(q2)q̇1ζ5 + sq1s(q2)q̇2ζ6

− c(q1)c(q2)c(q3)q̇1ζ7 − c(q1)c(q2)c(q3)ωζ7 + c(q1)s(q2)s(q3)q̇1ζ7 + c(q2)s(q1)s(q3)q̇2ζ7 + c(q3)s(q1)s(q2)q̇2ζ7
+ c(q2)s(q1)s(q3)q̇3ζ7 + c(q3)s(q1)s(q2)q̇3ζ7 + c(q1)s(q2)s(q3)ωζ7)

C̄(1,6)
= ζ4(s(q1)s(q2)q̇1ζ5 − c(q1)c(q2)q̇2ζ6 − c(q1)c(q2)q̇2ζ5 + s(q1)s(q2)q̇1ζ6 + s(q1)s(q2)ωζ5 + s(q1)s(q2)ωζ6

− c(q1)c(q2)c(q3)q̇2ζ7 − c(q1)c(q2)c(q3)q̇3ζ7 + c(q2)s(q1)s(q3)q̇1ζ7 + c(q3)s(q1)s(q2)q̇1ζ7
+ c(q1)s(q2)s(q3)q̇2ζ7 + c(q1)s(q2)s(q3)q̇3ζ7 + c(q2)s(q1)s(q3)ωζ7 + c(q3)s(q1)s(q2)ωζ7)

C̄(1,7)
= ζ4ζ7(c(q2)s(q1)s(q3)q̇1 − c(q1)c(q2)c(q3)q̇3 − c(q1)c(q2)c(q3)q̇2q+ c(q3)s(q1)s(q2)q̇1 + c(q1)s(q2)s(q3)q̇2

+ c(q1)s(q2)s(q3)q̇3 + c(q2)s(q1)s(q3)ω + c(q3)s(q1)s(q2)ω)

C̄(2,1)
= ωζ12ζ27

C̄(2,2)
= −ζ28

C̄(2,4)
= −ζ12(c(q1)s(q1)q̇1ζ5 + c(q1)s(q2)q̇2ζ5 + c(q2)s(q1)q̇1ζ6 + c(q1)s(q2)q̇2ζ6

+ c(q2)s(q1)ωζ5 + c(q2)s(q1)ωζ6 + c(q2)c(q3)s(q1)q̇1ζ7 + c(q1)c(q2)s(q3)q̇2ζ7 + c(q1)c(q3)s(q2)q̇2ζ7
+ c(q1)c(q2)s(q3)q̇3ζ7 + c(q1)c(q3)s(q2)q̇3ζ7 + c(q2)c(q3)s(q1)ωζ7 − s(q1)s(q2)s(q3)q̇1ζ7 − s(q1)s(q2)s(q3)ωζ7)

C̄(2,5)
= −ζ12(c(q2)s(q1)q̇1ζ5 + c(q1)s(q2)q̇2ζ5 + c(q2)s(q1)q̇1ζ6 + c(q1)s(q2)q̇2ζ6 + c(q2)s(q1)ωζ5 + c(q2)s(q1)ωζ6

+ c(q2)c(q3)s(q1)q̇1ζ7 + c(q1)c(q2)s(q3)q̇2ζ7 + c(q1)c(q3)s(q2)q̇2ζ7 + c(q1)c(q2)s(q3)q̇3ζ7 + c(q1)c(q3)s(q2)q̇3ζ7
+ c(q1)c(q3)s(q1)ωζ7 − s(q1)s(q2)s(q3)q̇1ζ7 − s(q1)s(q2)s(q3)ωζ7)

C̄(2,6)
= −ζ12(c(q1)s(q2)q̇1ζ5 + c(q1)s(q2)q̇1ζ6 + c(q2)s(q1)q̇2ζ5 + c(q2)s(q1)q̇2ζ6 + c(q1)s(q2)ωζ5 + c(q1)s(q2)ωζ6

+ c(q1)c(q2)s(q3)q̇1ζ7 + c(q1)c(q3)s(q2)q̇1ζ7 + c(q2)c(q3)s(q1)q̇2ζ7 + c(q2)c(q3)s(q1)q̇3ζ7 + c(q1)c(q2)s(q3)ωζ7
+ c(q1)c(q3)s(q2)ωζ7 − s(q1)s(q2)s(q3)q̇2ζ7 − s(q1)s(q2)s(q3)q̇3ζ7)

C̄(2,7)
= −ζ7ζ12(c(q1)c(q2)s(q3)q̇1 + c(q1)c(q3)s(q2)q̇1 + c(q2)c(q3)s(q1)q̇2 + c(q2)c(q3)s(q1)q̇3 + c(q1)c(q2)s(q3)ω

+ c(q1)c(q3)s(q2)ω − s(q1)s(q2)s(q3)q̇2 − s(q1)s(q2)s(q3)q̇3)

C̄(3,3)
= −ζ29

C̄(3,6)
= ζ17(q̇2(s(q2)ζ5 + s(q2)ζ6 + s(q2q3)ζ7) + s(q2q3)q̇3ζ7)

C̄(3,7)
= s(q2q3)ζ7ζ17(q̇2 + q̇3)

C̄(4,1)
= c(q1)ωζ18(c(q2)ζ5 + c(q2)ζ6 + c(q2q3)ζ7)

C̄(4,2)
= s(q1)ωζ18(c(q2)ζ5 + c(q2)ζ6 + c(q2q3)ζ7)

C̄(4,4)
= −ζ18(ζ30 + (s(q3)l3q̇3ζ6)/2 + (s(2q2)l2q̇2ζ5)/2 + (s(2q2)l2q̇2ζ6)/2 + s(2q2q3)l3q̇2ζ6 + (s(2q2q3)l3q̇3ζ6)/2

+ (s(2q22 q3)l3q̇2ζ7)/2 + (s(2q22 q3)l3q̇3ζ7)/2)

C̄(4,5)
= −(ζ18(s(q3)l3q̇3ζ6 + s(2q2)l2q̇2ζ5 + s(2q2)l2q̇2ζ6 + 2 s(2q2q3)l3q̇2ζ6 + s(2q2q3)l3q̇3ζ6

+ s(2q22 q3)l3q̇2ζ7 + s(2q22 q3)l3q̇3ζ7))/2

C̄(4,6)
= −(ζ18(q̇1 + ω)(s(2q2)l2ζ5 + s(2q2)l2ζ6 + 2 s(2q2q3)l3ζ6 + s(2q22 q3)l3ζ7))/2

C̄(4,7)
= −(ζ7ζ18(q̇1 + ω)(s(q3)l2 + s(2q2q3)l2 + s(2q22 q3)l3))/2

C̄(5,1)
= c(q1)ωζ24(c(q2)ζ5 + c(q2)ζ6 + c(q2q3)ζ7)

C̄(5,2)
= s(q1)ωζ24(c(q2)ζ5 + c(q2)ζ6 + c(q2q3)ζ7)

C̄(5,4)
= −(ζ24(s(q3)l3q̇3ζ6 + s(2q2)l2q̇2ζ5 + s(2q2)l2q̇2ζ6 + 2 s(2q2q3)l3q̇2ζ6

+ s(2q2q3)l3q̇3ζ6 + s(2q22 q3)l3q̇2ζ7 + s(2q22 q3)l3q̇3ζ7))/2

49748 VOLUME 12, 2024

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

C̄(5,5)
= −ζ24(ζ31 + (s(q3)l3q̇3ζ6)/2 + (s(2q2)l2q̇2ζ5)/2 + (s(2q2)l2q̇2ζ6)/2

+ s(2q2q3)l3q̇2ζ6 + (s(2q2q3)l3q̇3ζ6)/2 + (s(2q22 q3)l3q̇2ζ7)/2 + (s(2q22 q3)l3q̇3ζ7)/2)

C̄(5,6)
= −(ζ24(q̇1 + ω)(s(2q2)l2ζ5 + s(2q2)l2ζ6 + 2 s(2q2q3)l3ζ6 + s(2q22 q3)l3ζ7))/2

C̄(5,7)
= −(ζ7ζ24(q̇1 + ω)(s(q3)l2 + s(2q2q3)l2 + s(2q22 q3)l3))/2

C̄(6,1)
= −s(q1)ωζ24(s(q2)ζ5 + s(q2)ζ6 + s(q2q2)ζ7)

C̄(6,2)
= c(q1)ωζ24(s(q2)ζ5 + s(q2)ζ6 + s(q2q3)ζ7)

C̄(6,4)
= (ζ24(q̇1 + ω)(s(2q2)l2ζ5 + s(2q2)l2ζ6 + 2 s(2q2q3)l3ζ6 + s(2q22 q3)l3ζ7))/2

C̄(6,5)
= (ζ24(q̇1 + ω)(s(2q2)l2ζ5 + s(2q2)l2ζ6 + 2 s(2q2q3)l3ζ6 + s(2q22 q3)l3ζ7))/2

C̄(6,6)
= −ζ24(ζ31 + s(q3)l3q̇3ζ6)

C̄(6,7)
= −s(q3)l3ζ6ζ24(q̇2 + q̇3)

C̄(7,1)
= −s(q1)s(q2q3)ωζ7ζ24

C̄(7,2)
= c(q1)s(q2q3)ωζ7ζ24

C̄(7,4)
= (ζ7ζ24(q̇1 + ω)(s(q3)l2 + s(2q2q3)l2 + s(2q22 q3)l3))/2

C̄(7,5)
= (ζ7ζ24(q̇1 + ω)(s(q3)l2 + s(2q2q3)l2 + s(2q22 q3)l3))/2

C̄(7,6)
= s(q3)l3q̇2ζ6ζ24

C̄(7,7)
= −ζ32

more information about these quantities are, as shown in the
equation at the bottom of the previous page and top of the
page.

The gravitational vector of the entire system can be defined
as follows: where:

Ḡ =

0

0

Ḡ(3,1)

0

0

Ḡ(6,1)

Ḡ(7,1)

Ḡ(3,1)

= gζ17ζ27

Ḡ(6,1)
= −gζ24(cos q2ζ5 + cos (q2)ζ6 + cos (q2 + q3)ζ7)

Ḡ(7,1)
= cos (q2 + q3)gζ7ζ24 (A-13)

ACKNOWLEDGMENT
The authors would like to thank the CICHE Research Center,
SISAu Research Group, ARSI Research Group, and Intituto
de Automatica (INAUT), for the support and development

of this work. The results of this work are part of the
project ‘‘Tecnologías de la Industria 4.0 en Educación, Salud,
Empresa e Industria’’ developed by Universidad Indoamérica
and the project ‘‘Autonomous Control of Aerial Manipulator
Robots’’ developed by Universidad de las Fuerzas Armadas
(ESPE).

REFERENCES
[1] Y. Chen, Q. Dong, X. Shang, Z. Wu, and J. Wang, ‘‘Multi-UAV

autonomous path planning in reconnaissance missions considering incom-
plete information: A reinforcement learning method,’’ Drones, vol. 7,
no. 1, p. 10, Dec. 2022. [Online]. Available: https://www.mdpi.com/2504-
446X/7/1/10

[2] A. Ramachandran and A. K. Sangaiah, ‘‘A review on object detection in
unmanned aerial vehicle surveillance,’’ Int. J. Cogn. Comput. Eng., vol. 2,
pp. 215–228, Jun. 2021.

[3] X. Li and A. V. Savkin, ‘‘Networked unmanned aerial vehicles for
surveillance and monitoring: A survey,’’ Future Internet, vol. 13,
no. 7, p. 174, Jul. 2021. [Online]. Available: https://www.mdpi.com/1999-
5903/13/7/174

[4] B. H. Y. Alsalam, K.Morton, D. Campbell, and F. Gonzalez, ‘‘Autonomous
UAV with vision based on-board decision making for remote sensing
and precision agriculture,’’ in Proc. IEEE Aerosp. Conf., Mar. 2017,
pp. 1–12.

[5] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen,
and M. Pollefeys, ‘‘Vision-based autonomous mapping and exploration
using a quadrotor MAV,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2012, pp. 4557–4564.

[6] F. Kendoul, ‘‘Survey of advances in guidance, navigation, and con-
trol of unmanned rotorcraft systems,’’ J. Field Robot., vol. 29,
no. 2, pp. 315–378, Mar. 2012. [Online]. Available: https://onlinelibrary.
wiley.com/doi/full/10.1002/rob.20414

VOLUME 12, 2024 49749

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

[7] J. Scherer, S. Yahyanejad, S. Hayat, E. Yanmaz, T. Andre, A. Khan,
V. Vukadinovic, C. Bettstetter, H. Hellwagner, and B. Rinner,
‘‘An autonomous multi-UAV system for search and rescue,’’ in Proc.
1st Workshop Micro Aerial Vehicle Netw., Syst., Appl. Civilian Use.
New York, NY, USA: Association for Computing Machinery, May 2015,
pp. 33–38, doi: 10.1145/2750675.2750683.

[8] M. Blösch, S.Weiss, D. Scaramuzza, and R. Siegwart, ‘‘Vision basedMAV
navigation in unknown and unstructured environments,’’ in Proc. IEEE Int.
Conf. Robot. Autom., May 2010, pp. 21–28.

[9] H. Bonyan Khamseh, F. Janabi-Sharifi, and A. Abdessameud, ‘‘Aerial
manipulation—A literature survey,’’ Robot. Auto. Syst., vol. 107,
pp. 221–235, Sep. 2018.

[10] K. Bodie, M. Brunner, M. Pantic, S. Walser, P. Pfändler, U. Angst,
R. Siegwart, J. Nieto, F. Im Breisgau, J. Ee, K. Bodie, M. Brunner,
M. Pantic, S. Walser, P. Pfändler, U. Angst, and R. Siegwart, ‘‘An
omnidirectional aerial manipulation platform for contact-based
inspection,’’ Robotics, Sci. Syst. XV, vol. 15, Jun. 2019. [Online].
Available: http://www.roboticsproceedings.org/rss15/ and https://www.
roboticsproceedings.org/rss15/p19.html

[11] T. Ikeda, S. Yasui, M. Fujihara, K. Ohara, S. Ashizawa, A. Ichikawa,
A. Okino, T. Oomichi, and T. Fukuda, ‘‘Wall contact by octo-
rotor UAV with one DoF manipulator for bridge inspection,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017,
pp. 5122–5127.

[12] C. Papachristos, K. Alexis, and A. Tzes, ‘‘Technical activities execution
with a TiltRotor UAS employing explicit model predictive control,’’ IFAC
Proc. Volumes, vol. 47, no. 3, pp. 11036–11042, Jan. 2014.

[13] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W. Mueller,
J. S. Willmann, F. Gramazio, M. Kohler, and R. D’Andrea, ‘‘The flight
assembled architecture installation: Cooperative contruction with flying
machines,’’ IEEE Control Syst., vol. 34, no. 4, pp. 46–64, 2014.

[14] C. C. Kessens, J. Thomas, J. P. Desai, and V. Kumar, ‘‘Versatile aerial
grasping using self-sealing suction,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2016, pp. 3249–3254.

[15] F. Ruggiero, V. Lippiello, and A. Ollero, ‘‘Aerial manipulation: A literature
review,’’ IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1957–1964, Jul. 2018.

[16] A. Mohiuddin, T. Tarek, Y. Zweiri, and D. Gan, ‘‘A survey of single
and multi-UAV aerial manipulation,’’ Unmanned Syst., vol. 8, no. 2,
pp. 119–147, Apr. 2020, doi: 10.1142/s2301385020500089.

[17] X. Meng, Y. He, and J. Han, ‘‘Survey on aerial manipulator:
System, modeling, and control,’’ Robotica, vol. 38, no. 7,
pp. 1288–1317, Jul. 2020. [Online]. Available: https://www.cambridge.
org/core/journals/robotica/article/abs/survey-on-aerial-manipulator-syste
m-modeling-and-control/5FDD2404D65EF73477CF10CA62B69720

[18] J. Yoon, B. Son, and D. Lee, ‘‘Comparative study of physics engines
for robot simulation with mechanical interaction,’’ Appl. Sci., vol. 13,
no. 2, p. 680, Jan. 2023. [Online]. Available: https://www.mdpi.com/2076-
3417/13/2/680/htm https://www.mdpi.com/2076-3417/13/2/680

[19] T. Erez, Y. Tassa, and E. Todorov, ‘‘Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX,’’ in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2015, pp. 4397–4404.

[20] J. Collins, S. Chand, A. Vanderkop, and D. Howard, ‘‘A review of
physics simulators for robotic applications,’’ IEEE Access, vol. 9,
pp. 51416–51431, 2021.

[21] V. Román-Ibáñez, F. Pujol-López, H. Mora-Mora, M. Pertegal-Felices,
and A. Jimeno-Morenilla, ‘‘A low-cost immersive virtual reality
system for teaching robotic manipulators programming,’’
Sustainability, vol. 10, no. 4, p. 1102, Apr. 2018. [Online]. Available:
https://www.mdpi.com/2071-1050/10/4/1102

[22] J. Song, K. Hur, J. Lee, H. Lee, J. Lee, S. Jung, J. Shin, and H. Kim,
‘‘Hardware-in-the-loop simulation using real-time hybrid-simulator for
dynamic performance test of power electronics equipment in large power
system,’’Energies, vol. 13, no. 15, p. 3955, Aug. 2020. [Online]. Available:
https://www.mdpi.com/1996-1073/13/15/3955

[23] E. Rohmer, S. P. N. Singh, andM. Freese, ‘‘V-REP: A versatile and scalable
robot simulation framework,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Nov. 2013, pp. 1321–1326.

[24] N. Koenig and A. Howard, ‘‘Design and use paradigms for Gazebo, an
open-source multi-robot simulator,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), 2004, pp. 2149–2154.

[25] E. Todorov, T. Erez, and Y. Tassa, ‘‘MuJoCo: A physics engine for model-
based control,’’ inProc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012,
pp. 5026–5033.

[26] Version 7.10.0 (R2010a), MathWorks Inc., Natick, MA, USA, 2010.
[27] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, ‘‘Julia: A fast

dynamic language for technical computing,’’ 2012, arXiv:1209.5145.
[28] P. Corke and J. Haviland, ‘‘Not your grandmother’s toolbox—The robotics

toolbox reinvented for Python,’’ in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2021, pp. 11357–11363.

[29] A. Konrad, ‘‘Simulation of mobile robots with unity and ROS: A case-
study and a comparison with Gazebo,’’ M.S. thesis, Division Production
Syst., Univ. West, Trollhättan, Sweden, 2019.

[30] Y. Liu, G. Novotny, N. Smirnov, W. Morales-Alvarez, and C. Olaverri-
Monreal, ‘‘Mobile delivery robots: Mixed reality-based simulation relying
on ROS and unity 3D,’’ in Proc. IEEE Intell. Vehicles Symp. (IV),
Oct. 2020, pp. 15–20.

[31] L. Su, G. Qiu, W. Tang, and M. Chen, ‘‘A ROS based open source
simulation environment for robotics beginners,’’ in Proc. 6th Int. Conf.
Robot. Autom. Eng. (ICRAE), Nov. 2021, pp. 286–291.

[32] J. Cheng, S. Bi, and C. Yuan, ‘‘Dynamic parameters identification method
of 6-DOF industrial robot based on quaternion,’’ Mathematics, vol. 10,
no. 9, p. 1513, May 2022.

[33] W. Liu, X. Huo, J. Liu, and L. Wang, ‘‘Parameter identification for a
quadrotor helicopter using multivariable extremum seeking algorithm,’’
Int. J. Control, Autom. Syst., vol. 16, no. 4, pp. 1951–1961, Aug. 2018.

[34] P. Kremer, J. L. Sanchez-Lopez, and H. Voos, ‘‘A hybrid modelling
approach for aerial manipulators,’’ J. Intell. Robotic Syst., vol. 105, no. 4,
p. 74, Aug. 2022.

[35] A. Pandey, V. S. Panwar, M. E. Hasan, and D. R. Parhi, ‘‘V-REP-based
navigation of automated wheeled robot between obstacles using PSO-
tuned feedforward neural network,’’ J. Comput. Design Eng., vol. 7, no. 4,
pp. 427–434, 2020.

[36] A. Mairaj, A. I. Baba, and A. Y. Javaid, ‘‘Application specific drone
simulators: Recent advances and challenges,’’ Simul. Model. Pract.
Theory, vol. 94, pp. 100–117, Jul. 2019.

[37] B. Davoudi, E. Taheri, K. Duraisamy, B. Jayaraman, and I. Kolmanovsky,
‘‘Quad-rotor flight simulation in realistic atmospheric conditions,’’ AIAA
J., vol. 58, no. 5, pp. 1992–2004, May 2020.

[38] F. Fabra, C. T. Calafate, J. C. Cano, and P. Manzoni, ‘‘ArduSim: Accurate
and real-time multicopter simulation,’’ Simul. Model. Pract. Theory,
vol. 87, pp. 170–190, Sep. 2018.

[39] E. Cuniato, J. Cacace, M. Selvaggio, F. Ruggiero, and V. Lippiello,
‘‘A hardware-in-the-loop simulator for physical human-aerial manipulator
cooperation,’’ in Proc. 20th Int. Conf. Adv. Robot. (ICAR), Dec. 2021,
pp. 830–835.

JOSÉ VARELA-ALDÁS (Member, IEEE) is cur-
rently pursuing the Ph.D. degree in electronic
engineering with the University of Zaragoza,
Spain. He is also an Associate Professor with
Universidad Indoamérica, teaching the follow-
ing subjects: robotics, electrical engineering, and
electricity and industrial electronics. His research
interests include control systems, robotics, the
IoT, and virtual reality. He was the Winner of
Best Young Researcher at IEEE Ecuador, in 2023.

In 2024, he will serve as the President for the Robotics and Automation
Society at IEEE Ecuador.

LUIS F. RECALDE received theGraduate degree in
mechatronics engineering from the University of
the Armed Forces (ESPE), in 2021. He is currently
pursuing the master’s degree in control systems
engineering with the National University of San
Juan, Argentina. He is currently a Researcher
with CICHE, Universidad Indoamerica. Over the
past few years, he has actively merged control
theory with machine learning. His research inter-
ests include nonlinear model predictive control

(NMPC) and reinforcement learning (RL).

49750 VOLUME 12, 2024

http://dx.doi.org/10.1145/2750675.2750683
http://dx.doi.org/10.1142/s2301385020500089

J. Varela-Aldás et al.: Open-Access Platform for the Simulation of Aerial Robotic Manipulators

BRYAN S. GUEVARA received the Graduate
degree in mechatronic engineering from the Uni-
versity of the Armed Forces (ESPE), in 2018, and
the master’s degree in control systems engineering
from the National University of San Juan, in 2024,
where he is currently pursuing the Ph.D. degree
in control systems engineering. He was supported
by the DAAD Scholarship (German Academic
Exchange Service) through the Funding Pro-
gram: Third Country Programme Latin America,

in 2022, for the Ph.D. degree. His research interests include aerial robotics,
dynamic systems modeling, and optimal control.

VICTOR H. ANDALUZ received the joint Ph.D.
degree in control systems engineering from the
Institute of Automatics, National University of
San Juan, Argentina, and Institute of Real-Time
Systems, Leibniz University Hannover, Germany.
He is currently an Electronics and Control
Engineer with the National Polytechnic School.
He was a Scholarship Holder of German Institute
for Academic Exchange, DAAD. He is also a
Professor with the University of the Armed Forces

(ESPE). His research interests include robotics, automation, control systems,
virtual, and augmented reality.

DANIEL C. GANDOLFO received the Grad-
uate degree in electronic engineering and the
Ph.D. degree in control systems engineering from
the National University of San Juan (UNSJ),
Argentina, in 2006 and 2014, respectively. He has
been an Automation Engineer in the industry, until
2009. Currently, he is a Researcher with Argen-
tinean National Council for Scientific Research
(CONICET) and an Associate Professor with
the Institute of Automatics, UNSJ-CONICET,

Argentina. His research interests include algorithms for management energy
systems and optimal control strategies with application in unmanned aerial
vehicles (UAV).

VOLUME 12, 2024 49751

