
Received 20 February 2024, accepted 29 March 2024, date of publication 4 April 2024, date of current version 11 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3385113

Polish Word Recognition Based
on n-Gram Methods
PIOTR WOJCICKI AND TOMASZ ZIENTARSKI
Department of Computer Science, Lublin University of Technology, 20-618 Lublin, Poland

Corresponding author: Piotr Wojcicki (p.wojcicki@pollub.pl)

This work was supported in part by the Computer Science Discipline, Lublin University of Technology, under Grant FD-20/IT-3/010 and
Grant FD-20/IT-3/028.

ABSTRACT Word recognition of Slavic languages is not an easy task due to the complicated declension of
words and a variety of diacritical signs. Polish is a representative ofWest Slavic languages, which are written
in Latin characters. Automatic handwritten word recognition in Slavic languages is not easy, due to the poor
recognition rate of letters with diacritical signs and lack of good handwritten text corpora for languages with
declension. The main aim of the research is to investigate the possibility of correcting typos made in the final
phase of recognizing Polish. The method developed is based on letter recognition by means of convolutional
neural networks (CNNs) and text matching algorithms for resulting words. At the first stage, we use a
designed convolutional neural network for character recognition. At the second stage, after combining letters
into words we apply a post-processing error correction method, which improves the efficiency of recognition
of the misspelled words. We checked the efficiency of word matching for a few measures of similarity of
words, i.e: edit distance (Damerau-Levenshtein), string matching (Sorensen-Dice) and list of candidates.
In addition, we examine how word length and the number of misplaced letters affect the behaviour of the
algorithms used. The analysis is carried out for bigram and trigrammethods. By combining different methods
to assess the similarity of words, better selection of lists of proposed words has been achieved. The article
proposes an innovative method for correcting post-processing errors in recognizing Polish words with the
efficiency of correct word matching ranging from 76% to 99%, depending on the measure and word length
used.

INDEX TERMS Error detection, natural language processing, optical character recognition, Slavic
languages, text matching.

I. INTRODUCTION
Handwritten word recognition is a task which is sometimes
performed with the use of deep learning algorithms such as
convolutional neural networks. To improve word recognition
efficiency in computer systems, very often matching a
dictionary text is made. Both methods are complementing
each other in natural language processing tasks.

The letters of West Slavic languages are based on the Latin
alphabet, but they also include characters with diacritical
signs. For example, in the Polish language there are nine
additional lowercase letters generated with diacritical signs

The associate editor coordinating the review of this manuscript and

approving it for publication was Alicia Fornés.

and as many additional capital letters. Automatic handwritten
word recognition in Slavic languages is not easy, due to the
poor recognition rate of letters with diacritical signs and lack
of good handwritten text corpora for languages with declen-
sion. In the paper [1] convolutional neural networks (CNN)
are used to develop an optical character recognition (OCR)
system in Latin-based text containing diacritics. As part of the
work, a Polish Handwriting Database (PHCD) was created.
It consists of 530,000 images of handwritten characters
written by over 2,000 people, including students, graduates
and lecturers. The created open access database, which can
be used free of charge for academic purposes such as further
research, is available at: https://cs.pollub.pl/phcd/?lang=en.
The CNN used in this project achieved efficiency in the range

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 49817

https://orcid.org/0000-0002-0522-6223
https://orcid.org/0000-0002-1693-5316
https://orcid.org/0000-0002-0023-1891


P. Wojcicki, T. Zientarski: Polish Word Recognition Based on n-Gram Methods

of 91% to 97%, depending on the length of the word and the
type of characters.

The main goal of this work is to propose a method
for post-processing error correction, which improves the
effectiveness of recognizing misspelled words produced by
the CNN for Polish texts [1]. In this method, dictionary
text matching is sought after combining letters into words.
Construction of proposed spelling lists using the n-gram
model was carried out with the string matching algorithm
and edit distance metrics algorithm for every detected word.
In addition, the relationship between the word length and
the number of misplaced letters was checked, as well as
the impact on the behavior of the algorithms used. The
analysis was carried out for bigram and trigram methods.
By combining different methods to assess the similarity of
words, we have achieved a better selection of lists of proposed
words.

Themain aim of our study can be divided into the following
steps:

• Composing words from letters.
• Finding a word in the dictionary.
• Construction of proposed lists using the algorithms
disscussed.

The rest of this paper is organised as follows. In Section II,
the authors refer to related works, Section III con-
tains the research methodology divided into subsections. The
research results and discussion are presented in section IV.
Conclusions and an outline of future work follow in
Section V.

II. RELATED WORK
Character recognition is a task where artificial intelligence
algorithms can be used [2]. For handwritten character
recognition (HCR) scientists use artificial neural networks
(ANNs), the Support Vector Machine (SVM) and the Hidden
Markov Model (HMM) [3], [4], [5], [6]. Lately the best
results for HCR have been obtained with the type of ANNs
called convolutional neural networks. Popko and Weinstein
in [7] present a method for recognizing handwritten digits
with the use of CNNs, in which the integrated fuzzy logic
module based on a structural approach was developed. A high
recognition rate of 99.23% was achieved.

However, such good efficiency is not achievable in the
case of Slavic language characters. Martinovska et al.
in [8] obtained on average a 76% efficiency of recognition
of handprinted characters. The idea of recognizing the
Slavic characters in manuscripts with the use of CNNs and
Transkribus was presented by [9]. Moreover, the authors
did not present the efficiency results, which suggests that
this approach still needs their verification and improvement.
A promising outcomewas obtained byKacalak andMajewski
in [10]. Their recognition efficiency of the ANN was about
95%, but for a much easier task, i.e. handprinted Polish
characters. Grzelak et al. in [11] used a modified EMNIST
database for character recognition. They generated Polish

letters with the LeNet5 neural network and added them to the
EMNIST database. The efficiency of recognizing the Polish
letters ranged from 43% to 87%.

Natural language processing (NLP) is an interdisciplinary
field, combining issues of artificial intelligence and linguis-
tics, dealing with the automation of analysis, understanding,
translating and generating natural language. N-grams have a
great potential in language processing. Combined together
with other methods they have many various applications,
like: spell checking (e.g. in search engines) [12], [13], word
correction [14], [15], text categorization [16] or word based
sentiment classification [17]. One advantage of the n-gram
method is that it is language independent. Moreover, it is
stated that implementing n-grams into the auto-correlation
approach improves accuracy [18].

A hybrid spell checking methodology for isolated word
error correction with high accuracy is presented in [12]. This
approach uses unigrams for spellings with less than four
characters, bigrams for four to six characters and trigrams
for spellings with more than six characters. An algorithm for
a language-independent spell checker based on the n-gram
model for English and Portuguese is presented in [13].

There are many methods of spell checking errors dedicated
to the Bengali language [19]. A system for checking the
spelling of an English word transliterated to Bengali, based
on Levenshtein distance and unigram is presented in [18].
Another solution for Bengali in the form of smart spell
checking is shown in [20]. The algorithm proposed in [21]
is a combination of n-gram characters with a neural network.
N-grams and recurrent neural network (LSTM) are used for
spell checking of the Punjabi language [22] and for the
spelling correction process in Turkish [14].

A framework involving word correction for Indian lan-
guages with a varying degree of inflections is presented
in [15]. It is based on the dictionary. The incorrect words are
gathered from the OCR document. The n-gram technology
(where n equals 2 or more) and error detection are used.
The efficiency of this solution varies for different Indian
languages. Error detection is in the range 64% to 85%.

Errors occurring in the Arabic language can also be
detected using the system presented in [23]. After detecting
an error, the system generates a list of probable corrections.
A list of candidates is created on the basis of the Levenshtein
distance and occurrence in a given dictionary. In this solution
the best score (82.86%) was achieved for the automatic
correction using the bigram language model with a candidate
cut-off limit of 3.

The performance of the error correction module for the
Tamil language is presented in [24]. The authors use n-grams
(where n equals 2 and 3), stemming and the hash-table
technique in their implementation. Various words were taken
into consideration. The described tool generates words with
the accuracy of 95 percent.

The comparison between n-grams and syntactic n-grams
using three classifiers (SVM, Naive Bayes, and J48) is
described in [25]. The work [26] presents a syntactic

49818 VOLUME 12, 2024



P. Wojcicki, T. Zientarski: Polish Word Recognition Based on n-Gram Methods

TABLE 1. Comparison of selected works on character recognition with error detection.

similarity framework that can be used to match a short
text. The algorithm for context-sensitive word correction are
presented in [27] and [28], and for correcting real errors
in [29]. The paper [30] describes a system for automatic
recognition of common Arabic handwritten words.

Pang et al. in paper [31] proposes for text matching the
approach of image recognition and apply the deep neural
network architecture. The tools presented are used for two
tasks: firstly checking of the semantic compatibility of
two sentences and then for the paper citation matching.
In paper [32] a handwriting recognition method based on
template matching has been proposed. The knowledge base
consists of typed or handwritten numbers, punctuation and
the uppercase and lowercase letters of the English alphabet.
Single character images in the knowledge base are used to
generate correlation values for the input character image
and the character output text. The accuracy of the tested
system was 90%. It was pointed out that the OCR system
performance unit is independent and fixed for handwritten
and typed images of various sizes.

Little research has been done on the Polish language by
using the n-gram method, because its handwritten characters
are potentially more difficult than English ones and there are
no sufficient corpora for studying them [33], [34]. Table 1
summarizes related research works on character recognition
with error detection.

III. METHODOLOGY
The n-gram model has so far been applied in many linguistic
problems such as spelling corrections, speech recognition
and word sentence prediction. The n-gram is a probabilistic
method originally proposed by Markov [35] and later applied
by Shannon [36]. It is a sequence of consecutive units such
as words, phonemes, sounds, syllables and letters. Depending
on the number of elements, the following names are used:
unigram for one-element n-grams, bigram for a sequence of
two elements and then a trigram - referring to a sequence of
three elements. For the word paper we will get 4 bigrams
(pa;ap; pe;er) and 3 trigrams (pap;ape; per).

A. STRING MATCHING ALGORITHMS
In the spelling correction tasks an n-gram is the sequence of n
characters in a word and can be used to measure similarity of
two strings. The more similar n-grams exist between words,
the more similar the words will be. The similarity coefficient

(γ ) can be defined by the following equation [37]:

γ =
α ∩ β

α ∪ β
(1)

where α and β are n-gram sets of two words a and b. The
expression α∩β denotes the number of similar n-grams, and
α ∪ β denotes the number of unique n-grams in α and β.
For a string similarity measure, the Sorensen-Dice

(SD) similarity coefficient 0 may be calculated from the
equation [37]:

0 =
2nt

nx + ny
(2)

where nt is the number of character n-grams found in
both strings, nx is the number of n-grams in string x
and ny in y, respectively. For example, for the words
computer and computations, the Sorensen-Dice coefficient
given for bigrams will be 0.588. The word contains
7 bigrams: co;om;mp;pu;ut;te;er, but for computations we
have 10 bigrams. Both words have 5 common bigrams.

B. LIST OF CANDIDATES
Another method based on the string similarity matching is the
so-called list of candidates (TOP) [28]. This method produces
a list of probable spelling corrections for themisspelledwords
detected. In the first step, the misspelled word is broken down
into ngrams (e.g. floder, original word: flower), giving the
bigram 0n = fl; lo; od; de; er .

TABLE 2. List of candidate spelling words. Original word: flower .
Misspelled word: floder , bigram: fl, lo, od , de, er .

Then, for each n-gram from 0n, the words in the dictionary
containing the selected n-gram are searched. Next, we count
the number of shared n-grams contained in words. The result
obtained is hardly readable, and finally, after sorting, the
record containing the words with the largest number of shared
n-grams is returned. For example, Table 2 shows results

VOLUME 12, 2024 49819



P. Wojcicki, T. Zientarski: Polish Word Recognition Based on n-Gram Methods

for the word floder sorted by the largest number of shared
n-grams.

C. MINIMUM EDIT DISTANCE ALGORITHMS
Most often, spelling errors entered into the text are errors at
the character level. They can be classified into four categories
related to insertion, deletion, substitution, or transposition of
two adjacent characters. The majority of spelling correction
errors made by humans is connected with a single edit
operation. Damerau showed that 80% of typographical errors
are distance 1 [38]. However, it should be remembered that
there are many other factors affecting errors occurring in the
text, starting from the errors associated with pre-processing
of the analysed text and ending with those generated by the
OCR algorithm.

Based on these typical four types of errors, Damerau
employs the so-called Damerau-Levenshtein string metric
for calculating the minimum number of single character
operations necessary to change one word into another.
Simultaneously, in 1966, Levenshtein employs a distance
measure algorithm which includes only three types of
single edit errors, without transposition [39]. Note, that a
transpositions can be replaced by a sequence an insertion
followed by a deletion, so transposition are still covered by
the Levenshtein metric. Both methods are commonly used
in text analysis. The Damerau-Levenshtein distance (LD)
da,b(i, j) between two strings a and b is defined by the
relation:

da,b(i, j) = min


0, i, j = 0
da,b(i− 1, j) +1, i > 0
da,b(i, j− 1) +1, j > 0
da,b(i− 1, j− 1)+Csub, i, j > 0
da,b(i− 2, j− 2)+Ctrans, i, j > 1

(3)

where the cost substitution (Csub) of the i character from the
word a with another character j from word b is:

Csub =
{
0, a[i] = b[j]
1, a[i] ̸= b[j]

(4)

and the cost transposition (Ctrans) of character a[i] into b[j]
are expressed as:

Ctrans = 1, for a[i] = b[j− 1] and a[i− 1] = b[j] (5)

An short example follows for the word: COMPUTE and its
likely transformations:
• an additional letter is inserted COMBPUTE ,
• a letter is deleted COMUTE ,
• a letter is substituted by another letter CAMPUTE ,
• a two adjacent letters are transposed COMPUET

D. POST-PROCESSING
The last stage of an OCR system is the post-processing
stage, whose task is to detect and correct spelling mistakes.
In fact, there are two types of errors: non-word spelling
errors (misspelled words) that result in non-existent words,

and real-word errors that give real, but grammatically or
semantically incorrect words [15], [27], [28].
For non-word spelling error detection, we use two meth-

ods, the direct one that matches a word to the dictionary, and
the character-based language modelling method when a word
is not available in the dictionary. A good spelling correction
system needs a balance between three main components:
the dictionary, error model and language model. In the error
model there is a direct relationship between the number
of correction candidates and the likelihood of finding the
appropriate corrections.

The system consists of two parts: a Polish language
dictionary database system containing over 5 million words
and the part responsible for creating a list of proposed
words for each misspelled words (Top10Can). The dictionary
is the main component of the spell checking system as
well as a reference to whether the word is correct or
misspelled. It is also a reference in the event of searching
for words that require correction. We created a dictionary
database system based on the Polish dictionary available at:
https://sjp.pl/slownik/odmiany/. This dictionary is published
under the GPL 2, LGPL 2.1, Apache 2.0 and Creative
Commons Attribution 4.0 International licenses. In the
second part, the n-gram model joined with the two different
string matching algorithms (SD, TOP) and edit distance
metrics respecting various cost algorithm (LD) for misspelled
words is used.

Moreover, we divided our work into a test part and
evaluation part. In the test part, we needed to prepare a test set
file (input file) containing a lot of words with spelling errors.
The tests were carried out for a specific number of words
(Nt ) with a length Lz ranging from 4 to 14 characters and
additionally containing from one to three incorrect replaced
characters Bz. The lower word length limit is due to the use of
n-grams method. For a four character word, we receive three
bigrams and two trigrams. This is the absolute minimum. The
selected word length range corresponds to the most common
word lengths in Polish.

For this purpose, words of a given length were read
randomly from the dictionary, then after a random change of
characters the set was saved to file. Random placed characters
contained letters and numbers. This data set was the input for
the test procedure creating the proposed word list with the
length equal to 10.

In the evaluation part, we used misspelled words taken
from the OCR module, the input was one misspelled
word. The method of creating a list of words proposed
for a given misspelled word is shown in Algorithm 1.
In the test part, Algorithm 1 was used to process words
from the Polish dictionary with artificially entered incorrect
characters. The algorithm can be summarized in the following
steps:

1) Read input test file with the misspelled words.
2) Executing a query to read a record from the database

containing all wordswith the length equal to±1 n-gram
in relation to the length of the misspelled word.

49820 VOLUME 12, 2024



P. Wojcicki, T. Zientarski: Polish Word Recognition Based on n-Gram Methods

Algorithm 1Create Top10Can List for OneMisspelledWord
Input: Single misspelled word
Output: Ten element list of suggested words
1: NG← Create a list of n-grams from misspelled word
2: Lz← Calculate length of NG list
3: Nw← Number of words from database with length
Lz ± 1

4: for i = 1 to Nw do
5: SD[i] ← store word and Sorensen-Dice value using

equation 2
6: LD[i] ← store word and Damerau-Levenshtein value

using equation 3
7: end for
8: TOP ← Read from database list of words containing

shared n-grams NG and its number
9: SD ← Sort list in descending order of Sorensen-Dice

value
10: LD ← Sort list in ascending order of Damerau-

Levenshtein value
11: TOP ← Sort list in descending order of shared n-grams

number
12: for all words in TOP do
13: TOPSD← calculate Sorensen-Dice value
14: TOPLD← calculate Damerau-Levenshtein value
15: end for
16: for all words in TOPSD do
17: TOPSDLD← Calculate Damerau-Levenshtein value
18: end for
19: for all words in TOPLD do
20: TOPLDSD← Calculate Sorensen-Dice value
21: end for
22: TOPSD ← Sort list in descending order of Sorensen-

Dice value
23: TOPLD ← Sort list in ascending order of Damerau-

Levenshtein value
24: TOPLDSD← Sort list in descending order of Sorensen-

Dice value
25: TOPSDLD ← Sort list in ascending order of Damerau-

Levenshtein value
26: return The first 10 elements of the SD, LD, TOP,

TOPSD, TOPLD, TOPSDLD, TOPLDSD lists

3) Calculation of SD, LD values for each randomly
selected misspelled words. Repetition of calculations
for other Bz values.

4) Performing the next query to calculate the TOP value
for different values of Bz for the same misspelled
words. The searching query is executed for words with
the length equal to ±1 n-gram in relation to the length
of the misspelled word.

5) For each misspelled word and calculated SD, LD,
TOP values we create a Top10Can list with the most
favourable values of these parameters at the beginning
of the list. We also create lists containing various

combinations of calculated values: TOP+ SD, TOP+
LD, TOP + SD + LD, and TOP+LD+SD. We finally
have 7 lists of suggested words.

6) Finally, we check in which position on the list is the
originally found word. The position values of the words
found are in the range of 0 to 10, a value of 0 meaning
that the word is not on the list of the proposed 10 words.

7) Save the obtained results: list of proposed words and
word positions.

8) Repeat steps from 2 to 7 for each length of misspelled
words error, Lz.

IV. RESULTS AND DISCUSSIONS
The research conducted was focused on combining the above
mentioned research methods with the aim of examining their
efficiency in the case of the presence of Polish characters in
recognized words. In the experimental part two sets of data
were prepared. The first contained data necessary to test the
methods used to assess the quality of the proposed word lists.
The second set contained words after the OCR process with
letters with the lowest degree of recognition [1]. For all tests,
we divided the words into bigram and trigram.
The first test set contained words with a length of 4 to

14 characters including one, two and three randomly entered
character errors. The total set contained 9000 words for each
length. The second test set contained 4000 words with letters
incorrectly recognized by the CNN. The words contained
only one misspelled character.

A. TESTING
The above algorithm allows calculation of SD, LD and TOP
values being a measure of word similarity. A list of the most
favourable values of these parameters at the beginning of
the list is created. It is assumed that the test is passed if the
searched word is among the first ten words on the list.

TABLE 3. The proposed list of suggested words for the misspelled word:
mate9iał, correct word materiał.

For example (see Table 3), for the misspelled word
mate9iał (material with misspelled r), the correct word
materiał (Eng. material) is located in the first position of the
SD and LD lists, and the fourth of the TOP list. We also tried
to combine several methods together to improve the results.
In this case, first sorting takes place based on the calculated
successive coefficient. The results obtained using algorithms

VOLUME 12, 2024 49821



P. Wojcicki, T. Zientarski: Polish Word Recognition Based on n-Gram Methods

FIGURE 1. Efficiency of finding correct words for a selected combination of algorithms for a misspelled word length: a) 4, b) 6 characters
respectively. The numbers of misspelled characters are given in the legend.

FIGURE 2. Efficiency of finding correct words for a selected combination of algorithms for a misspelled word length: a) 8, b) 10 characters
respectively. The numbers of misspelled characters are given in the legend.

or their combination are considered satisfactory when their
efficiency exceeds 80%.

Figures 1 – 3 show the efficiency of finding similar words
for different methods and different lengths of misspelled
words with a different number of misspelled characters.
Each figure contains part a - word sequences acquired using
the bigram method and part b - word sequences acquired
using the trigram method. The efficiency of finding the
correct words increases as the length of the analysed word

increases, even when words contain more than one wrong
character.

The results for short words based on 4- and 6-character
sequences are shown in Figure 1. For this word length, using a
bigram sequence will be noticeably more effective in finding
the correct word than a trigram sequence with one letter
changed. Changing two or three letters causes half of the
characters in the word are incorrect and the efficiency of
finding properly words is low. The results for words with

49822 VOLUME 12, 2024



P. Wojcicki, T. Zientarski: Polish Word Recognition Based on n-Gram Methods

FIGURE 3. Efficiency of finding correct words for a selected combination of algorithms for a misspelled word length: a) 12, b) 14 characters
respectively. The numbers of misspelled characters are given in the legend.

medium length (8- and 10-character) based on bi- and trigram
sequences are shown in Figure 2. In the case of this word
length, there is a clear increase in efficiency for two and
three changed characters compared to short words. Dividing
a word into shorter parts (bigrams) is more effective, even
if altering three letters in the word, as shown in the chart.
Application of selected methods (e.g. TOP, SD) after dividing
a word into bigrams gives an efficiency of almost 50% when
changing two characters, while the trigrammethod allows for
less than 30% efficiency. The results for long words (12- and
14-character) based on bi- and tri-gram sequences are
shown in Figure 3. The number of characters changed in
relation to the total word length is smaller than in the
previously considered cases. Therefore, the effectiveness of
improving one or two characters is much higher. Moreover,
some methods, i.e. LD, are characterized by visibly higher
efficiency compared to other methods (e.g. SD, TOP or their
combination) both in the case of bi- and trigrams.

The Damerau-Levenshtein method proved to be the most
effective method for all cases. The algorithm gives good
results even with more incorrect characters placed in the
word. Moreover, the effectiveness of this algorithm does
not depend on the type of a word’s division into n-grams.
In the second place in terms of the efficiency of the
algorithm is Sorensen-Dice. Its performance also increases
with increasing word length; unfortunately, it achieves much
weaker performance for short words (≊ 40% forBz = 1, Lz =
4). We observed a significant decrease of the performance for
the SD method for words divided into trigrams compared to
the same word divided into bigrams. For words longer than
about 10 characters, the division of words into bigrams and
trigrams gives similar algorithm performance. Moreover, the

TABLE 4. The efficiency and time of finding Top10Can for different
misspelled word lengths containing one misspelled character.
Calculations of the SD and LD values were done for misspelled word
length, Lz = 4, 10, 14 characters.

same incorrect character put in the word affects the SD value
calculated for trigrams more significantly than bigrams. The
third of these algorithms (TOP) has the lowest performance.

Combining several algorithms with each other did not
give the expected effect, only slight increases of the total
performance. On the other hand, it improved the quality of
the received list of proposed words, adding the next algorithm
shifting the position of the correct word towards the high
position on the Top10Can list.

B. EVALUATION
In the Evaluation part of our work, we tested approximately
4000 misspelled words taken from the output OCR system.
The tests were done using the LD and SD with division of
words into bigrams and trigrams for word lengths equal to 4,
10 and 14 characters.

The result of this calculation is presented in Table 4.
The results show the advantage of the LD algorithm over

VOLUME 12, 2024 49823



P. Wojcicki, T. Zientarski: Polish Word Recognition Based on n-Gram Methods

TABLE 5. The Polish word recognition efficiency for CNN before and after
the post-processing error correction method. The words contain only one
misspelled character.

the SD for short analysed words. Both algorithms achieve
similar performance for long-enough words. In addition, the
method based on the division into n-grams gives a better final
performance, resulting in shorter execution times.

V. CONCLUSION
We proposed a post-processing error correction method used
to improve the quality of misspelled words created by a
neural network system. This method based on the Polish
language dictionary and a character-based error n-gram
model, together with the text matching algorithms, is used
to construct the proposed lists of suggested words.

The effectiveness of word recognition by CNN depends on
the number of misspelled characters in the word and the type
of character. The artificial neural network used in the project
achieved efficiency in the range from 91% to 97% depending
on the length of the word (see Table 5).
The use of the Damerau-Levenshtein or Sorensen-Dice

algorithm significantly increases the final recognition effi-
ciency. It should be noted that the list of suggested words
is created only when a misspelled word does not exist in
the dictionary. In summary, by using the proposed method
the final recognition efficiency of the entire system reaches
99.97% (see Table 5). The most important results from this
study include the following:

1) The proposed algorithms were used to analyse Polish
words, but they are linguistically independent and can
be used for any language.

2) The quality of the list of suggested words depends
strongly on the quality of the dictionary used.

3) The editing distance algorithm used to construct
the list of proposed words was the most effec-
tive. It constructed good lists even for short words
with a large number of incorrect characters. The
Damerau-Levenshtein algorithm is n-gram length
independent.

4) The Sorensen-Dice algorithm matched the perfor-
mance of the Damerau-Levenshtein algorithm only for
word lengths greater than 8 characters. In addition,
increasing the number of errors in a word strongly
affected the algorithm’s efficiency. The use of the
division of words into n-grams in the Damerau-
Levenshtein algorithm made this method sensitive to
low word length and word division width (bigram,
trigram).

5) The effectiveness of both algorithms decreases as the
width of the word division into n-grams increases. For

words longer than about 10 characters, their division
of words into bigrams and trigrams gives similar
algorithm performance.

6) The computational complexity of the
Damerau-Levenshtein algorithm is much higher than
that of Sorensen-Dice. The average Top10Can list
search time for the LD algorithm is over 200 seconds,
while the SD algorithm reaches spells of 15 seconds.

7) Combining several methods slightly affected the total
performance. On the other hand, it improved the quality
of the received list by shifting the position of the correct
word towards the top of the list.

REFERENCES
[1] E. Lukasik, M. Charytanowicz, M. Milosz, M. Tokovarov,

M. Kaczorowska, D. Czerwinski, and T. Zientarski, ‘‘Recognition of
handwritten Latin characters with diacritics using CNN,’’ Bull. Polish
Acad. Sci. Tech. Sci., vol. 69, Jan. 2021, Art. no. 136210.

[2] J. Tait and Y. Wilks, ‘‘Anniversary article: Then and now: 25 years of
progress in natural language engineering,’’ Natural Lang. Eng., vol. 25,
no. 3, pp. 405–418, May 2019.

[3] S. Kundu, H. S. Chhabra, S. S. Ara, and R. P. Mishra, ‘‘Optical character
recognition using 26-point feature extraction and ANN,’’ Int. J. Adv. Res.
Comput. Sci. Softw. Eng., vol. 7, no. 5, pp. 156–162, May 2017.

[4] J. Mahajan and R. Mahajan, ‘‘Designing an intelligent system for optical
handwritten character recognition using ANN,’’ Int. J. Comput. Appl.,
vol. 91, no. 13, pp. 1–4, Apr. 2014.

[5] D. Singh, Mohd. A. Khan, A. Bansal, and N. Bansal, ‘‘An application
of SVM in character recognition with chain code,’’ in Proc. Commun.,
Control Intell. Syst. (CCIS), Mathura, India, Nov. 2015, pp. 167–171.

[6] K. Verma and R. K. Sharma, ‘‘Comparison of HMM- and SVM-based
stroke classifiers for gurmukhi script,’’ Neural Comput. Appl., vol. 28,
no. 1, pp. 51–63, Dec. 2017.

[7] E. A. Popko and I. A. Weinstein, ‘‘Fuzzy logic module of convolutional
neural network for handwritten digits recognition,’’ J. Phys., Conf.,
vol. 738, Aug. 2016, Art. no. 012123.

[8] C.M. Bande,M.Klekovska, I. Nedelkovski, andD. Kaevski, ‘‘Recognition
features for old slavic letters: Macedonian versus Bosnian alphabet,’’ Int.
J. Sci. Res. Publications, vol. 5, no. 12, pp. 145–153, 2015.

[9] A. Rabus, ‘‘Recognizing handwritten text in Slavic manuscripts: A
neural-network approach using transkribus,’’ Scripta e-Scripta, vol. 19,
pp. 9–32, Jan. 2019.

[10] W. Kacalak and M. Majewski, ‘‘Handwriting recognition methods using
artificial neural networks,’’ Proc. Artif. Neural Netw. Eng. (ANNIE),
vol. 16, 2016, pp. 1–9.

[11] D. Grzelak, K. Podlaski, and G. Wiatrowski, ‘‘Analyze the effectiveness
of an algorithm for identifying Polish characters in handwriting based on
neural machine learning technologies,’’ J. King Saud Univ.-Comput. Inf.
Sci., vol. 33, no. 10, pp. 1258–1264, Dec. 2021.

[12] V. J. Hodge and J. Austin, ‘‘A comparison of standard spell checking
algorithms and a novel binary neural approach,’’ IEEE Trans. Knowl. Data
Eng., vol. 15, no. 5, pp. 1073–1081, Sep. 2003.

[13] F. Ahmed, E. W. De Luca, and A. Nürnberger, ‘‘Revised n-gram based
automatic spelling correction tool to improve retrieval effectiveness,’’
Polibits, vol. 40, pp. 39–48, Dec. 2009.

[14] A. C. Kinaci, ‘‘Spelling correction using recurrent neural networks and
character level N-gram,’’ in Proc. Int. Conf. Artif. Intell. Data Process.
(IDAP), Sep. 2018, pp. 1–4.

[15] R. Saluja, D. Adiga, G. Ramakrishnan, P. Chaudhuri, and M. Carman,
‘‘A framework for document specific error detection and corrections in
indic OCR,’’ in Proc. 14th IAPR Int. Conf. Document Anal. Recognit.
(ICDAR), Kyoto, Japan, vol. 4, Nov. 2017, pp. 25–30.

[16] K. Ogada, W. Mwangi, and W. Cheruiyot, ‘‘N-gram based text categoriza-
tion method for improved data mining,’’ J. Inf. Eng. Appl., vol. 5, no. 8,
pp. 35–43, 2015.

[17] K. S. Kalaivani and S. Kuppuswami, ‘‘Exploring the use of syntactic
dependency features for document-level sentiment classification,’’ Bull.
Polish Acad. Sci. Tech. Sci., vol. 67, pp. 339–347, Apr. 2019.

49824 VOLUME 12, 2024



P. Wojcicki, T. Zientarski: Polish Word Recognition Based on n-Gram Methods

[18] Md. M. Hossain, Md. F. Labib, A. S. Rifat, A. K. Das, and
M. Mukta, ‘‘Auto-correction of English to Bengali transliteration system
using Levenshtein distance,’’ in Proc. 7th Int. Conf. Smart Comput.
Commun. (ICSCC), Sarawak, Malaysia, Jun. 2019, pp. 1–5.

[19] P. Mandal and B. M. M. Hossain, ‘‘A systematic literature review on spell
checkers for Bangla language,’’ Int. J. Modern Educ. Comput. Sci., vol. 9,
no. 6, pp. 40–47, Jun. 2017.

[20] T. Mittra, S. Nowrin, L. Islam, and D. C. Roy, ‘‘A Bangla spell checking
technique to facilitate error correction in text entry environment,’’ in
Proc. 1st Int. Conf. Adv. Sci., Eng. Robot. Technol. (ICASERT), Dhaka,
Bangladesh, May 2019, pp. 1–6.

[21] B. C. Gencosman, H. C. Ozmutlu, and S. Ozmutlu, ‘‘Character n-gram
application for automatic new topic identification,’’ Inf. Process. Manag.,
vol. 50, no. 6, pp. 821–856, Nov. 2014.

[22] G. Kaur, K. Kaur, and P. Singh, ‘‘Spell checker for Punjabi language using
deep neural network,’’ in Proc. 5th Int. Conf. Adv. Comput. Commun. Syst.
(ICACCS), Coimbatore, India, Mar. 2019, pp. 147–151.

[23] M. Attia, P. Pecina, Y. Samih, K. Shaalan, and J. Van Genabith, ‘‘Improved
spelling error detection and correction for Arabic,’’ in Proc. COLING,
2012, pp. 103–112.

[24] R. Sakuntharaj and S. Mahesan, ‘‘Use of a novel hash-table for speeding-
up suggestions for misspelt Tamil words,’’ in Proc. IEEE Int. Conf. Ind.
Inf. Syst. (ICIIS), Dec. 2017, pp. 1–5.

[25] G. Sidorov, F. Velasquez, E. Stamatatos, A. Gelbukh, and
L. Chanona-Hernández, ‘‘Syntactic n-grams as machine learning
features for natural language processing,’’ Exp. Syst. Appl., vol. 41, no. 3,
pp. 853–860, Feb. 2014.

[26] N. Gali, R. Mariescu-Istodor, D. Hostettler, and P. Fränti, ‘‘Framework
for syntactic string similarity measures,’’ Exp. Syst. Appl., vol. 129,
pp. 169–185, Sep. 2019.

[27] Y. Bassil and M. Alwani, ‘‘Context-sensitive spelling correction using
Google web 1T 5-gram information,’’ Comput. Inf. Sci., vol. 5, no. 3,
pp. 37–48, Apr. 2012.

[28] Y. Bassil and M. Alwani, ‘‘OCR context-sensitive error correction based
on Google web 1T 5-gram data set,’’ Amer. J. Sci. Res., vol. 50, Feb. 2012,
doi: 10.48550/arXiv.1204.0188.

[29] S. Sharma and S. Gupta, ‘‘A correction model for real-word errors,’’ Proc.
Comput. Sci., vol. 70, pp. 99–106, Jan. 2015.

[30] L. Dinges, A. Al-Hamadi, M. Elzobi, and A. Nürnberger, ‘‘Automatic
recognition of common Arabic handwritten words based on OCR and
N-GRAMS,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2017,
pp. 3625–3629.

[31] L. Pang, Y. Lan, J. Guo, J. Xu, S. Wan, and X. Cheng, ‘‘Text matching
as image recognition,’’ in Proc. AAAI Conf. Artif. Intell., Mar. 2016,
pp. 2793–2799.

[32] O. O. Oladayo, ‘‘Optical character recognition of off-line typed and
handwritten English text using morphological and template matching
techniques,’’ IAES Int. J. Artif. Intell. (IJ-AI), vol. 3, no. 3, p. 121,
Sep. 2014.

[33] B. Ziolko and D. Skurzok, ‘‘N-grams model for Polish,’’ in Speech and
Language Technologies, vol. 107, Jun. 2011, pp. 107–126.

[34] B. Ziolko, D. Skurzok, and M. Michalska, ‘‘Polish n-grams and their
correction process,’’ in Proc. 4th Int. Conf. Multimedia Ubiquitous Eng.,
Aug. 2010, pp. 1–5.

[35] G. A. Fink, ‘‘N-gram models,’’ inMarkov Models for Pattern Recognition
(Advances in Computer Vision and Pattern Recognition). London, U.K.:
Springer, 2014, pp. 107–127, doi: 10.1007/978-1-4471-6308-4_6.

[36] F. Wang, T.-T. Quach, J. Wheeler, J. B. Aimone, and C. D. James,
‘‘Sparse coding for n-gram feature extraction and training for file fragment
classification,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 10,
pp. 2553–2562, Oct. 2018.

[37] B. Ilijoski and Z. Popeska, ‘‘N-gram measure for syntactical similarity of
the words,’’ in Proc. 10th ICT Innovations Conf., Eng. Life Sci. Web, 2018,
pp. 37–45.

[38] G. V. Bard, ‘‘Spelling-error tolerant, order-independent pass-phrases
via the Damerau–Levenshtein string-edit distance metric,’’ in Proc. 5th
Australasian Symp. ACSW Frontiers, vol. 68, 2007, pp. 117–124.

[39] A. Al-Bakry and M. Al-Rikaby, ‘‘Enhanced Levenshtein edit distance
method functioning as a string-to-string similarity measure,’’ Iraqi J.
Comput. Informat., vol. 42, no. 1, pp. 48–54, Dec. 2016.

PIOTR WOJCICKI received the M.Eng. degree in
mechatronics from Lublin University of Technol-
ogy, Lublin, Poland, in 2014. From 2014 to 2016,
he was an Engineer with the Division of Silicon
Microsystem and Nanostructure Technology,
Institute of Electron Technology, Piaseczno. Since
2016, he has been a Research Assistant with
the Department of Computer Science, Lublin
University of Technology. His main research
interests include pattern recognition, machine

learning, voice synthesis, deepfake recognition, robotics, the IoT, and applied
computer science.

TOMASZ ZIENTARSKI received the M.S. and
Ph.D. degrees from the Faculty of Chemistry,
Maria Curie-Skłodowska University, Lublin,
Poland, in 1994 and 2000, respectively. Since
2015, he has been an Associate Professor with
Lublin University of Technology, where he is
currently the Head of the Department of Computer
Science and Computer Modelling. His main
scientific research interests include computer
simulation and modeling of physicochemical

processes, microelectronics, the Internet of Things, natural language
processing, wireless transmission, and neural networks.

VOLUME 12, 2024 49825

http://dx.doi.org/10.48550/arXiv.1204.0188
http://dx.doi.org/10.1007/978-1-4471-6308-4_6

