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ABSTRACT Skin lesion classification is a pivotal process in dermatology, enabling the early detection
and precise diagnosis of skin diseases, leading to improved patient outcomes. Deep learning has shown
great potential for this task by leveraging its ability to learn complex patterns from images. However,
diagnostic accuracy is compromised by exclusive reliance on single-modality images. This research
work proposes an innovative framework that unifies a Vision Transformer model with transfer learning,
channel attention mechanism, and ROI for the accurate detection of skin conditions, including skin
cancer. The proposed approach blends computer vision and machine-learning techniques, leveraging a
comprehensive dataset comprised of macroscopic dermoscopic images, appended with patient metadata.
Compared with conventional techniques, the proposed methodology exhibits significant improvements in
various parameters, including sensitivity, specificity, and precision. Moreover, it demonstrates outstanding
performance in real-world datasets, reinforcing its potential for clinical implementation. With a remarkable
accuracy of 99%, the method outperforms existing approaches. Overall, this investigation underscores the
transformative impact of deep learning and multimodal data analysis in the dermoscopic domain, projecting
substantial headway into the field of skin lesion analytic diagnosis.

INDEX TERMS Skin lesion classification, dermatology, deep learning, multimodal data analysis, transfer
learning, vision transformer.

I. INTRODUCTION
Dermatology is a branch of medicine that focuses on the
prevention, identification, and treatment of skin conditions
that affect a sizable segment of the global population.
According to the World Health Organization (WHO), a sub-
stantial portion of the global population is affected by skin
ailments that call for early detection and diagnosis to avert
adverse health effects that exacerbate mortality. As a rule,
readily visible skin lesions are the primary symptoms of
skin disorders. Hence, effectivemanagement of skinmaladies
mandates error-free diagnosis of lesions in the early stages.

Traditionally, skin lesions are detected by dermoscopy,
a non-invasive imaging procedure performed by dermatol-
ogists. Ensued by the wide range in the size, shape, and
location of skin lesions, exclusive reliance on a single
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gadget seldom provides adequate information for an accurate
diagnosis. Even skilled dermatologists run into arduous
encounters in the diagnosis and treatment of skin disorders,
unable to discern between benign and malignant tumors,
leading to incorrect diagnoses. This study recommends a
multi-pronged strategy that marshals diverse modalities of
lesion images conjectured to deal with this symptomatic
shortcoming. In this study, ultrasound and MRI images are
added to the dataset, allowing for a more accurate diagnosis
and efficient treatment of skin conditions.

DeployingComputer Vision (CV) andDeep Learning (DL)
methods, this research proffers an innovative multimodal
framework for the diagnosis of skin lesions [1]. The
conceived strategy unifies ultrasonic and MRI imaging
modalities to overcome the constraints of acquiring labelled
data due to low prevalence and confidentiality concerns.
The suggested approach intends to augment accuracy while
enabling focused disease management. Transfer learning is
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also used to increase performance by fine-tuning existing
models on a smaller sample. A group of models, Vision
Transformers (ViTs), has recently been demonstrated to
perform remarkably well on various CV tasks. As ViT
models manipulate self-attention methods to discern the
overall correlations between image features, they are supe-
rior to standard CNNs at processing massive data. This
study presents a novel multimodal with a transfer learning
approach, which affords efficient categorization of skin
lesions, with enhanced precision [2]. The recommended
technique employs clinical and dermoscopic images to train
a ViT model with metadata (patient age, gender, and lesion
locations). The model presents an enlarged view of skin
lesions, propitious to easier discernment of features such
as borders, colors, and structures. Clinical images, captured
using a conventional camera, provide a comprehensive view
of the lesion, and the metadata provides useful information
that can improve classification accuracy.

Comparison of the recommended framework with conven-
tional dermoscopic practices yields multiple advantages:
• Uses dermoscopic images that facilitate feature extrac-
tion and promote precise classification.

• Better-envisioned skin lesions provide more accurate
diagnoses with multiple data sources.

• Pretrained ViT models obviate reliance on labeled data.
Given the large amount of data on skin diseases, this
effective data use is extremely valuable. By synergizing
diverse data sources and automated analysis of skin lesions,
the proposed method holds the potential to substantially
impact the field of dermatology [3]. Existing techniques
for automated analysis of skin lesions often struggle with
accurately distinguishing between benign and malignant
lesions due to complex variations in lesion appearances.
Additionally, these techniques can be limited by the lack
of diverse and well-annotated datasets, hindering their
generalization across different populations and skin types.
Early detection and precise diagnosis lead to improved health
outcomes and reduced response times, establishing a more
confident and effective approach.

Furthermore, automating and streamlining the procedure
could reduce the workload of dermatologists, allowing them
to concentrate on their cases and improve efficiency in
healthcare settings. The main objectives of this study are as
follows:

1) Develop a novel skin lesion classification approach that
integrates a real-world dataset with a HAM dataset.
A ViT model is used to learn features from visual and
textual descriptions for comprehensive and accurate
classification.

2) Combine a cutting-edge ViT model with visual and
textual data, to improve classification accuracy and
enable the early detection of skin cancer..

3) Assess the computational efficiency and scalability of
the ViT approach for real-world applications using
metrics such as precision, recall, F1 score, and
accuracy.

4) Compare the proposed ViT approach with SVM, KNN,
MobileNet, ResNet152v2, and VGG-16 on the same
dataset and experimental settings.

This demonstrates the superiority and potential break-
throughs of the proposed method in skin lesion classification.
The study advances the area of dermatology by presenting
a cutting-edge multimodal deep-learning framework for
precise skin lesion classification, gets over data restrictions,
and boosts diagnostic accuracy by incorporating a variety
of lesion images using transfer learning. The suggested
methodology has the potential to revolutionize the study
of skin lesions, thereby assisting patients in treating skin
illnesses by enabling prompt and efficient interventions.

By addressing the challenges of diagnostic accuracy
through the integration of deep learning and multimodal data
analysis, this research work positions itself at the forefront
of transformative advancements in the dermoscopic domain.
The contribution of this work is the innovative framework
to significantly elevate the precision and efficacy of skin
lesion analytic diagnosis, marking a substantial stride towards
improved healthcare outcomes. The specific contributions of
this research work are delineated as follows:

1) Multimodal Fusion for Accurate Analysis: Introduce
an innovative framework for classifying skin lesions
that employs a ViT model, transfer learning, channel
attention, and ROI. This framework combines visual
data with patient metadata to achieve precise detection
of skin conditions, surpassing traditional approaches
that rely on a single modality.

2) Significance in Clinical Impact and Real-world Via-
bility: Demonstrate the transformative potential of the
developed method by exhibiting significant improve-
ments in sensitivity, specificity, and precision. Achieve
an outstanding accuracy of 99%, surpassing existing
approaches, and reinforcing its potential for practical
implementation in clinical settings.

3) Efficiency and Automation for Dermatology: Address
the core objectives of improving confidence and effi-
ciency in dermatology by automating and streamlining
skin lesion analysis.

4) Evaluate the computational efficiency and scalability
of the ViT model, as well as its potential to alleviate
the effort of dermatologists and enhance healthcare
services.

This paper is organized into several sections. The research
context is provided in Section II through a detailed analysis of
relevant works by other investigators in the field. Section III
provides overall insight into the adopted approach, including
the tools, procedures, datasets, pre-processing methods,
and network structure. Section IV, which elucidates the
methodology for the classification of skin lesions, provides
the details of the proposed approach. Section V reports on the
assessment of the proffered method, highlighting the prime
benefits of the proposed approach for the diagnosis of skin
lesions. Finally, Section VI provides closing remarks and
future enhancements.
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II. RELATED WORKS
DL algorithms have recently accomplished notable advance-
ments in the classification of skin lesions, an outgrowth
of their capability to extract specific patterns and features
from images. However, these attributes are inadequate
to correctly discern skin lesions. Studies have suggested
different modalities, including dermoscopic, clinical, and
histological imaging, to enhance classification accuracy, few
of which have looked at histopathological imaging.

This literature review focuses on three main areas crucial
to this research on a new transfer learning framework for
analyzing skin lesions. Firstly, multimodal fusion for skin
lesion classification is explored, looking at advances in
ensemble based techniques and focusing on the importance
of combining different types of data. In addition, the
challenges in segmentation such as dealing with limited
data are discussed, proposing a shift towards attention-based
models. The second part involves transfer learning and model
comparisons, where assessment is done in terms of how
well transfer learning works and compares various models
to find the most effective ones. Lastly, the importance of
patient-specific information is emphasized, advocating for
patient-centric deep learning and exploring advancements in
clinical integration. These three areas provide a comprehen-
sive background for the novel framework presented in this
paper, which has the potential to transform the multimodal
skin lesion analysis.

A. ADVANCEMENTS IN ENSEMBLE-BASED TECHNIQUES
The use of ensemble-based techniques in dermatology has
gained prominence, aiming to enhance classification accu-
racy and robustness. In a research work by Esteva et al., [4],
a revolutionary model utilizing a CNN architecture demon-
strated dermatologist-level precision in skin cancer classifi-
cation, primarily leveraging dermoscopic images. However,
the reliance on specific image types raises concerns about the
adaptability of the model, where such images are unavailable.
In this study, with the help of CNN architecture, the
complex visual patterns, which include the different types of
skin cancers such as melanoma, basal cell carcinoma, and
squamous cell carcinoma, can be analyzed and classified.
It made use of a substantial dataset of dermatoscopic pictures.
From clinical images, it attained an accuracy of 71.3%. The
proposed deep learning model performed exceptionally well,
matching dermatologists’ level of expertise in detecting skin
cancer in terms of accuracy values. This study demonstrated
how deep learning has the potential to revolutionize clinical
diagnostics and dermatology practice. Using a large and
diverse dataset that contains thousands of annotated dermo-
scopic images is one of the key advantages. The model has
strong categorization capabilities as a result of its capacity
to learn detailed characteristics and patterns from such a vast
amount of data. Insights into the key factors influencing its
predictions were provided, which is a characteristic essential
for establishing confidence within therapeutic applications.

The integration of visual and textual information has been
a pivotal area of exploration in dermatological research.
Ozturk et al. [5] introduced a hybrid model emphasizing
the importance of incorporating diverse data sources. Their
work showcased good accuracy in distinguishing benign and
malignant tumors through the fusion of visual and textual
data. Nevertheless, challenges may arise in scenarios where
certain data modalities are limited, necessitating a meticulous
approach to account for such constraints.

Addressing the intricacies of skin lesion analysis,
Zhang et al. [6] delved into the crucial aspects of precise
lesion delineation through CNN-based segmentation. Using
multimodal data, the model showed increased accuracy in
distinguishing between benign and malignant tumors. This
study showed the potential of combining several data sources
to enhance the diagnostic capabilities of deep learningmodels
for dermatology. Additionally, challenges related to the
scarcity of multimodal datasets for ViTs were acknowledged,
underscoring the necessity for further development in both
segmentation techniques and dataset availability.

The transition towards attention-based models in skin
lesion classification was explored by Nasr-Esfahani et al [7].
Their attention-based deep-learning model not only empha-
sized improved interpretability but also exhibited enhanced
performance However, the optimal application of attention
mechanisms poses challenges, and the positive impact on
overall classification accuracy justifies further exploration.
As the field evolves, attention-based models showcase a
promising avenue for refining interpretability in dermatolog-
ical diagnostics.

Thus, the integration of multimodal fusion techniques,
ensemble-based strategies, segmentation refinement, and
attention mechanisms represents a dynamic landscape in the
realm of skin lesion classification. While advancements have
been notable, each approach brings its set of challenges, from
dependency on specific image types to issues related to data
scarcity and optimal attention mechanism application. The
collective pursuit of these innovations signifies a transfor-
mative trajectory in dermatology signifies more accurate and
effective diagnostic tools with the potential to revolutionize
clinical practices.

B. TRANSFER LEARNING BASED MODEL COMPARISONS
In the realm of skin lesion classification, the exploration
of transfer learning and model comparisons has introduced
novel perspectives, aiming to enhance the efficacy of diagnos-
tic tools. Chen et al. [8] conducted an extensive investigation
into the effectiveness of transfer learning and fine-tuning in
CNNs. Their findings highlighted improved performance and
accelerated training, suggesting that pre-trained models lay a
solid foundation for various skin lesion categorization tasks.
However, the selection of appropriate pre-trained models
emerges as a critical consideration, introducing subtleties in
the application of transfer learning in dermatology.

Diversity in deep learning models and their architectures
has been a focal point in skin lesion classification research.
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TABLE 1. Summary of the literature review.
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TABLE 1. (Continued.) Summary of the literature review.

The study by Codella et al. [9] delved into the evaluation
of various models, establishing a benchmark dataset for
ongoing research endeavors. While the superiority of deep
learning models over manual classification was evident,
the diversity of skin lesions presented a challenge in
selecting the most effective model for specific diagnostic
scenarios. This underscores the need for a detailed under-
standing of the intricacies associated with diverse skin
lesions, emphasizing the importance of subtleties in this
context.

Multi-task learning in the context of skin lesion
analysis has been a domain of significant innovation.
Haenssle et al [10] directed their focus towards multi-task
deep learning for melanoma detection, achieving exceptional
diagnostic accuracy. The simultaneous training on segmen-
tation and classification tasks showcased the potential of

multitasking techniques in providing comprehensive insights
into skin lesion characteristics. However, the integration of
multiple tasks introduces complexity, posing challenges in
terms of model interpretability and application in real-world
clinical settings.

Thus, the exploration of transfer learning and model
comparisons in skin lesion classification has introduced
advancements and challenges. While transfer learning offers
improved performance, careful consideration is needed in
selecting pre-trained models. The diversity in model archi-
tectures necessitates a tailored approach to match specific
diagnostic requirements. Furthermore, the innovation in
multi-task learning showcases promise in providing com-
prehensive insights, yet the complexity of integration calls
for further refinement. Collectively, these research avenues
signify a dynamic landscape in dermatological diagnostics,
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pushing the boundaries for more effective and precise skin
lesion classification tools.

C. IMPORTANCE OF PATIENT SPECIFIC INFORMATION
In the evolving landscape of dermatological research, the
incorporation of patient-specific information has emerged
as a pivotal avenue for refining skin lesion classification.
Tschandl et al. [11] laid the foundation by developing a
CNN-based approach that underscored the significance of
patient-centric deep learning. Their emphasis on integrating
contextual factors such as age, gender, and lesion location
led to improved accuracy, signaling a shift toward more
personalized dermatological diagnostic tools. This work
prompts a deeper exploration into the utilization of patient
metadata, recognizing the potential impact on diagnostic
precision.

Advancements in clinical integration have further enriched
the understanding of patient-specific considerations in skin
lesion analysis. Grochowski et al. [12] delved into the effects
of data augmentation on deep neural network performance,
showcasing effective strategies for enhancing durability and
generalization. The emphasis on data augmentation directly
addresses challenges associated with overfitting, providing
valuable insights for refining deep learning models in der-
matological applications. However, the need for standardized
augmentation techniques remains a critical consideration to
ensure the reliability and reproducibility of the models. This
not only enhances diagnostic accuracy but also positions
dermatology on a trajectory towardmore patient-centered and
refined diagnostic tools.

Addressing challenges associated with single-modality
approaches, Yuan et al [13] emphasized the significance of
AI-based algorithms in skin cancer segmentation and diag-
nosis, particularly using histopathology images. This work
demonstrated the integration of segmentation and diagnosis
to enhance precision and provide detailed insights. While
the study provides valuable advancements, it also highlights
the imperative for additional research to fully harness the
expansive potential of deep learning in comprehensive skin
lesion analysis [14].
Ensemble strategies have emerged as a robust approach in

dermatological applications, as exemplified by the work of
Sandri et al [15]. Their showcase of a powerful transfer learn-
ing strategy employing an ensemble of deep learning models
for skin lesion classification underscores the effectiveness
of leveraging pre-trained models. The ensemble strategy
outperformed individual models, signaling the potential for
further exploration of ensemble-based techniques to enhance
the robustness and accuracy of dermatological diagnostic
tools.

Recently, skin lesion categorization utilizing single-
modality pictures, such as dermoscopic and clinical images,
has been attempted using ViTs, with encouraging results.
Similarly, Yan et al [16]. achieved an accuracy of 84%
using a ViT with clinical images. However, there has been

limited research on multimodal skin lesion classification
using ViT. Further investigation of this approach could
lead to improved accuracy in skin lesion classification
[17]. Addressing challenges associated with single-modality
approaches, Brinker et al. [18] emphasized the significance of
AI-based algorithms in skin cancer segmentation and diag-
nosis, particularly using histopathology images. This work
demonstrated the integration of segmentation and diagnosis
to enhance precision and provide detailed insights. While
the study provides valuable advancements, it also highlights
the imperative for additional research to fully harness the
expansive potential of deep learning in comprehensive skin
lesion analysis [19].

In summary, the integration of ViTs, the exploration
of multi-modality applications, and the effectiveness of
ensemble strategies collectively represent a transformative
trajectory in dermatological diagnostics. While ViTs demon-
strate promise in precise classification, the field calls for
further research to exploit their full potential. Addressing
the challenges in single-modality approaches and harnessing
the power of ensemble strategies contribute to the ongoing
evolution of accurate and effective skin lesion classification
tools in dermatology. The summary of the state of the art of
lesion image analysis is shown in Table1.

III. MATERIALS AND METHODS
A. MATERIALS
1) DATASET
The HAM10000 dataset is a well-known, widely used
resource, in the domain of dermatology research. It can be
accessed at https : //dataverse.harvard .edu/dataset.xhtml?
persistentId = doi : 10.7910/DVN/DBW86T . The dataset
comprises 10,015 images of pigmented skin lesions, carefully
collected from patient records at the Medical University
of Vienna. The dataset is highly treasured for training,
evaluation, and validation of Computer Aided Diagnosis
(CAD) systems focused on categorization of skin lesions and
the detection of skin cancer. This dataset includes a range of
lesion types and clinical characteristics [20], [21], [22], [23].
In addition, collected real-world data, which was considered
for analysis. The dataset has been meticulously organized
into seven distinct classes based on histopathological exam-
ination and clinical diagnosis. These classes are noted
hereunder:

• Actinic Keratosis (AK): Manifesting rough, scaly
patches. Untreated AK can develop into squamous cell
carcinoma, incited by prolonged exposure to sunlight.

• Basal Cell Carcinoma (BCC): BCC appears as small,
shiny bumps or nodules with slow growth rates that can
be locally invasive. This is the most prevalent form of
skin cancer.

• Benign Keratosis-like Lesions (BKL): Benign skin
growths, commonly found in older adults, encompass
a wide range of lesions such as solar lentigines and
seborrheic keratosis.
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• Dermatofibroma (DF): Benign fibrous tumor often
encountered on the legs; dermatofibroma typically
exhibits a firm, reddish-brown appearance.

• Melanoma (MEL): Potentially life-threatening
melanoma is a malignant skin cancer that arises from
melanocytes. Early detection is crucial for an effective
treatment.

• Nevus (NV): Also known as moles, nevi are benign skin
lesions that can be flat or raised and vary in color and
size.

• Vascular Lesions (VASC): This category comprises a
range of vascular anomalies, including hemangiomas
and port-wine stains [24], [25].

2) DATA PRE-PROCESSING
The efficiency of the proposed framework, for analysis
of skin lesions using ViTs and transfer learning methods,
heavily rely on data preprocessing. Skin cancer is a type of
cancer that can be challenging to detect in its early stages.
Skin moles or lesions often serve as the indications of skin
cancer, highlighting the importance of diagnosis for early
detection [26], [27].

The proposed method utilizes three distinct CNNs for
processing dermoscopic, clinical, and histological skin lesion
images, enhancing accuracy and efficiency. It employs the
ViT model, trained through transfer learning on a substantial
dataset, to identify skin lesions accurately. This approach
benefits dermatologists in diagnosing skin lesions effectively
and enables the automated system to classify them accurately.
By integrating dermoscopic and macroscopic images and
leveraging pre-trainedmodels, the proposed strategy achieves
outstanding results on two widely recognized benchmark
datasets, demonstrating its effectiveness in skin lesion
analysis.

This study utilized the HAM10000 dataset and a real-
time dataset, both comprised of dermatoscopic, macroscopic,
and histological images of pigmented skin lesions. To ensure
consistent input dimensions for the ViT, essential metadata,
like diagnosis and anatomical sites, and images resized to a
standard resolution of 224 × 224 pixels, using transformer
and transfer learning models. Normalizing pixel intensities to
a scale of [0, 1] facilitated training convergence and improved
model stability. Data augmentation techniques, including -
rotation, flipping, and zooming, increased model general-
izability, while oversampling and undersampling addressed
class imbalance issues. Transfer learning was employed to
adapt the multimodal data to the input format required by
the ViT model. The dataset was split into distinct subsets
for training, testing, and validation, ensuring unbiased model
evaluation with equal class distributions [28].

3) DATA AUGMENTATION
Data augmentation entails the application of random
transformations such as rotation, flipping, zooming, and
brightness adjustments to skin lesion images. This process
culminates in a diverse dataset that captures real-world

variations, enhancing the model’s ability to generalize and
accurately identify different skin lesions. Retaining the
lesion boundaries ensures diagnostic features remain intact.
Data augmentation is imperative in dermatology, where
lesions exhibit various appearances and textures, helping
avert overfitting, and improving the model’s performance in
handling diverse skin lesion images.

B. METHODS
1) TRANSFER LEARNING
Each image was downsized to 224 × 224 pixels to provide
a uniform size, and the pixel values were set to range
from 0 to 1. Subsequently, applied data augmentation tech-
niques to enlarge the training dataset and prevent overfitting.
Here a pretrained EfficientNet-B0 model is applied as a
feature extractor. Except for the final layer, whose weights
were frozen, a new fully connected layer with seven output
units, one for each type of skin lesion, was added [29].

2) VISION TRANSFORMER
In the proposed method, the ViT architecture is used to
classify skin lesions. A feedforward neural network was
placed after several multi-head self-attention layers in the ViT
architecture. The Adam optimizer was used to train the model
across 20 epochs with a learning rate of 0.0001 and a batch
size of 32.

3) NETWORK ARCHITECTURES
In recent times, the ViT has achieved outstanding results
in computer vision tasks as well as in NLP. However,
adjustments must be made to the ViT design to include
both image and text modalities to use for multimodal skin
lesion categorization. Utilizing two distinct ViT frameworks,
one for processing the image modality and the other for
processing the text modality is integrated here and is used for
the classification process. To do this, the visual and textual
information are concatenated along the sequence dimension
and sent to the ViT architecture. In the proposed method,
text modality is processed using an RNN, whereas the image
modality is processed using CNNs. The ViT architecture is
then fedwith the concatenated outputs of these twomodalities
along the sequence dimension.

The architecture of ViT typically consists of an input layer,
an encoder layer, a fully connected layer, and an output layer.
Figure 1 shows the different components of the proposed
model, and how it is connected. This provides a better
understanding of the working of the model.

1) Input layer: This layer converts the input image into
a set of feature maps that are then fed into the
transformer.

2) Encoder layer: This layer consists of multiple
self-attention blocks that process the feature maps in
a parallel and scalable manner. The encoder layer
captures the local and global context information in the
image.
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FIGURE 1. The proposed model architecture.

3) Fully connected layer: This layer maps the output of
the encoder layer to a high-dimensional space, allowing
the transformer to capture the complex relationships
between the input features.

4) Output layer: This layer generates the final predictions
for a task, such as object detection or semantic
segmentation, based on the features learned by the
transformer.

4) DIFFERENT PHASES OF ViT MODEL
1) Patch Embedding: A series of non-overlapping patches

is created from the input image using the patch
embedding technique, and each patch is represented as
a vector of pixel values. Let X be the input image, with
dimensionsH ×W ×C . Here the image is divided into
non-overlapping patches of size P × P, and create a
series of patch vectors X = [x1, x2, . . . , xn], where xi
has dimensionsP×P×C . Each patch vector is reshaped
into a single vector of length P2 × C , denoted by xi′ .

2) Linear Embedding: In this stage, a learnable linear
projection is used to project each patch vector into a
higher-dimensional space. The model then acquires a
more expressive representation of each patch. Let W
be a learnable weight matrix, with dimensions D ×
(P2 × C), where D is the output dimension of the
linear projection, resulting in a new sequence of vectors
H = [h1, h2, . . . , hn], where hi = W × xi′ where xi′ is
the patch vector.

3) Positional Encoding: To capture the spatial structure
of the image, the model also adds a learnable position
embedding to each patch vector. This provided a
model with information on the location of each patch
within the image. Let E be a learnable position
embedding matrix, with dimensions D × N , where
N is the total number of patches in the image. Then

it concatenates the position embedding to each patch
embedding, resulting in a new sequence of vectors
Z = [z1, z2, . . . , zn], where zi = hi + ei.
The position embedding can be computed as follows:

ei,j =


sin(

j

(10000( 2iD ))
) fori = 0, 2..,D− 1

cos(
j

(10000( 2iD ))
) fori = 1, 3, . . . ,D− 1

(1)

Here in both cases j = 0, 1, 2 , . . . , N-1
4) Transformer Layers: The L times repeated self-

attention and feedforward layers with ReLU activation
function make up the Transformer layers. Each layer
receives a set of patch embeddings with positional
encodingsXl as input and produces a new set of embed-
dings Xl+1 which represents the transformer layer
Xl . Each transformer layer employs a self-attention
mechanism that calculates the weighted sum of each
embedding in Xl , with the weights determined by how
similar the embeddings are to one another. Like the
residual connections in other neural network architec-
tures, the resulting weighted sum was subsequently
added to the input embeddings. The skip connection is
then used to pass the output embeddings through [27],
[29], [30].

5) Classification Head: The output embeddings of the
final transformer layer are averaged to generate a single
vector representation of the input image using the ViT
model. The classification head, which comprises a
linear layer and softmax activation function, is then
fed into this vector. The output of the linear layer is
normalized by the softmax activation function such that
the values add up to 1. Consequently, the model can
forecast the likelihood of each class. Let Q, K, and V
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be linear projections of Z of dimensionsD×N , and let Z
be the vector sequence that is input to the Transformer
encoder layer.
The self-attention matrix A is computed as follows:

A = softmax((QT ∗ K )/sqrt(D)) ∗ V (2)

where softmax is the softmax function applied
element-wise to each row of the matrix, and sqrt(D)
is a scaling factor to reduce the variance of the
dot product. The connections between each pair of
input vectors are represented by self-attention matrix
A. Standard gradient descent and backpropagation
methods are used to train the ViT model. For improved
outcomes, the cross-entropy loss function was also
used. By switching out the classification head and
retraining the model on a labelled dataset, the model
can then be fine-tuned for a particular downstream task,
such as image classification.
Each vector in the series was then subjected to FF
neural network with two linear transformations. Let
W1 and W2 be D’ × D and D × D’, respectively, and
be the learnable weight matrices for the FFN. A new
sequence of vectors U = [u1, u2, . . . , un] is created
by applying an FFN to each vector zi in the sequence.
Therefore, the ViT architecture takes advantage of
both transformers and convolutional neural networks
(CNNs) to enhance image analysis. However, to handle
different modalities, the original ViT design probably
needs to be modified. Additionally, to boost perfor-
mance, additional neural network topologies might be
combined.

C. TRAINING & TESTING
The neural networks were trained using the training images,
and the accuracy and loss were assessed at the conclusion of
each epoch. The training process was often stopped after the
accuracy and loss reached an endpoint after 10–20 epochs.
The accuracy and log loss of each neural network were
measured, and the results were examined to determine the
best strategy [31], [32].

IV. PROPOSED METHODOLOGY
A. SYSTEM MODEL AND ARCHITECTURE
A cutting-edge neural network design, ‘‘vision transformer’’,
has been shown to outperform a number of CV applications.
In this study, the feature extraction was based on a pre-trained
ViT model. A fully connected layer was added on top of
the ViT model for classification, and the number of neurons
in the output layer was set to correspond to the number of
classes in the datasets. The model used a multitask learning
strategy that entailed concurrent execution of binary and
multiclass classification tasks. In essence, classifying lesions
into various categories is the responsibility of multiclass
classification [33].

During the model training phase, a 20-epoch training
method was used on the dataset, to train ViT. The ViT

architecture, comprised of FF and self-attention layers, was
developed to overcome the drawbacks of these approaches.
The ViT architecture forms the basis of a visual transformer
originally developed for NLP tasks [34]. The transformer’s
capability to interpret coincident data sequences simulta-
neously is one of its prime - advantages, coveted for CV
applications [35]. The self-attention mechanism of ViT is
one of its primary characteristics. By doing so, the network
can discover fine-grained information necessary for object
detection and semantic segmentation tasks, by analyzing
smaller sections of an image instead of a complete image.
Besides, ViT is adept at managing enormous amounts of data,
which makes it suitable for sophisticated CV applications.
The detailed Network architecture and workflow of ViT is
shown in Figure 2. In this study, ViTs were utilized to handle
large datasets, enabling the learning of diverse features and
patterns. The ViT model was trained using a dataset obtained
from the previous phase, with a 20-epoch training schedule
and a batch size of 32 on the Adam optimizer with a learning
rate of 0.001. The dataset was partitioned into training,
testing, and validation sets in the proportions of 60:20:20;
evaluation metrics such as accuracy, log loss, ROC, and AUC
curves were employed to assess the neural networks’ efficacy.

The proposed strategy was evaluated using a separate test
set, and performance metrics such as accuracy, precision,
recall, and F1-score were calculated. Comparisons were
made with benchmark strategies, including ResNet152v2,
VGG16, and MobileNet. The model was trained using the
Stochastic Gradient Descent (SGD) optimizer with a learning
rate scheduler to prevent overfitting and improve generaliza-
tion. The training process wasmonitored using accuracy, loss,
and validation metrics, and early termination was applied to
avoid overfitting. The parameters were fine-tuned using the
validation set to optimize the hyperparameters of the model.
Overall, the proposed approach showed promising results,
and areas for further improvement were identified during
evaluation and the detailed analysis is explained in the results
and discussion section.

B. PSEUDO-CODE FOR VISION TRANSFORMER
ViT is a DL architecture for CV applications that manipulates
the transformer architecture, initially created for NLP. The
pseudocode for the ViT is described in Algorithm 1.

An input image is broken down into non-overlapping
patches, which are then linearly projected into flattened
feature vectors. These vectors are fed into a typical trans-
former encoder, where self-attention mechanisms capture
global relationships among the patches, allowing for effective
feature extraction. Relative positional embeddings are added
to patch embeddings to incorporate positional information.

The transformer encoder runs these embeddings through
successive layers, improving hierarchical representations,
and the final output of the last layer is used for classification
tasks through a conventional fully connected layer. During
training, the model is optimized, minimizing cross-entropy
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FIGURE 2. Network architecture of vision transformer.

loss, and the model’s parameters are modified through
backpropagation. The modular and self-attention-based
architecture of the ViT empowers it to achieve competitive
performance on many image recognition benchmarks, while
demonstrating flexible generalization capabilities.

V. EXPERIMENT RESULTS
A. EXPERIMENTAL SETUP
The proposed method compiled a diverse set of skin lesion
datasets from various sources, including dermoscopy and
high-resolution clinical photography, ensuring comprehen-
sive coverage of different skin lesions and imaging methods.
Before training neural network models, the images are
standardized by resizing them to a uniform resolution and
normalized pixel intensities for cross-modality compara-
bility. To improve model generalization, techniques like
rotation, flipping, and random cropping on the collected
images during preprocessing.

A pair plot is a powerful visualization tool, used in the
context of multimodal skin lesion classification, to examine
the relationships and distributions of various classes -
‘Actinic Keratosis’, ‘Basal Cell’, ‘Benign Keratosis-like
Lesions’, ‘Dermatofibroma’, ‘Melanoma’, ‘Nevus’, ‘Vascu-
lar Lesions’. Illustration of features against each other can
identify patterns, correlations, and potential outliers in the
data, providing significant insights on feature relevance,
data quality, and potential interdependencies [36]. This
aids in comprehending the dataset and undertaking critical
decisions, such as feature selection and preprocessing,
during the classification process, directed to improve the

accuracy and efficacy of the classification model. The pair
plots of the various features and classes are shown in
Figure 3.
The heatmap can be used to detect similarities and

differences between classes, which will help to improve the
classification model, as shown Figure 4. Strong positive
correlations emanate from similar image qualities instigating
classification problems, whereas negative correlations imply
distinct visual attributes. Heatmap data can be utilized to
influence feature selection and model architecture, leading to
enhanced classification performance and data augmentation
procedures. In addition, the heatmap reveals potential class
imbalances, prompting the imperative of data balancing
techniques [37].

Three well-known models, ResNet152v2, VGG16, and
MobileNet [38], were used to assess the adequacy of
neural network topologies. These architectures were selected,
endorsed by their record of success in divergent CV tasks like
the representation of sophisticated images. Implementation of
these models enabled the assessment of their relevance in the
intricacies of multimodal skin lesion categorization. The data
was systematically separated to secure equitable - evaluation
of the models. To preserve the class distribution throughout
the subsets, the two datasets were stratified into training,
validation, and testing sets. The training set was used to
calibrate and optimize the model parameters, during training,
thereby avoiding overfitting problems. Transfer learning is
used to take advantage of the pre-trained weights of the
selected NN architectures during model training. With this
technique, it can make use of the knowledge that these
models had already learned from large-scale image datasets,
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Algorithm 1 Pseudo Code for Vision Transformer
Input: Pre-trained model, HAMdataset
Output: Trained ensemble model with transfer learning and Vision Transformer
DataPreprocessing :

Image tensor of shape (batchsize, numofchannels, height,width)
Predicted class probabilities
Load the HAM dataset, including lesion images and corresponding labels.
Resizeall images to a consistent resolution.
Normalize pixel values to the range [0, 1]
Perform data augmentation techniques (random rotation, flipping) to enhance dataset diversity.

Transfer Learning :
Load the pre-trained model
Replace the final classification layer(s) for the new task
Freeze pre-trained layers. If FineTuningLayers is not None:
Model.FreezeLayersExcept(FineTuningLayers)
Train the model on the new data.
Evaluate the fine-tuned model

Training Procedure :
Settraining parameters, including the number of epochs, batch size, and early stopping criteria.
For each training epoch
Initialize training metrics
For each batch in the fine-tuning dataset
For each batch in the fine-tuning dataset :

Load a batch of lesion images and their corresponding labels.
Pass the images through the model to extract features.
Concatenate the feature maps
Pass the concatenated features through fully connected layers.
Compute the loss between predicted and true labels.
Backpropagate the loss to update the weights of the ensemble model.
Update training metrics.

Vision Transformer :
embeddings← convolutionallayer(input)
embeddings← reshape(embeddings, (batchsize, numofpatches, embeddingsize))
for i = 1 to numoflayers do

attentionoutput ← multiheadattention(embeddings)
attentionoutput ← layernorm(embeddings+ attentionoutput)
feedforwardoutput ← feedforward(attentionoutput)

embeddings← layernorm(attentionoutput + feedforwardoutput)
classtokens← learnableparametervector(shape = (batchsize, 1, embeddingsize))
Add learnable class tokens to embeddings
embeddings← concatenate([classtokens, embeddings], axis = 1)
output ← globalaveragepooling(embeddings)
output ← fullyconnected(output, numofclasses)
return softmax(output)

thus decreasing the training time and data needs for the
objective. On the last few layers of the network, fine-
tuning was performed thereby adapting them to a specific
skin lesion classification task. To further understand the
contributions of various imaging modalities to the overall

performance of the multimodal method, ablation tests were
conducted to examine how each imaging modality affected
the classification task.

By following this comprehensive experimental setup,
aimed to provide insight into the effectiveness of different
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FIGURE 3. Pairwise relationships between different skin lesion types.

neural network architectures and their suitability for
multimodal skin lesion classification. This study contributes
to advancing the accuracy and reliability of skin lesion
diagnosis, potentially improving early detection and patient
outcomes. In this proposed model, a segmentation process
is employed to delineate regions of interest within the
HAM10000 dataset. This crucial step involved isolating skin
lesions from the background, enabling precise analysis of
the lesion’s characteristics. To accomplish this, it leveraged
a combination of traditional image processing techniques
and domain-specific heuristics, which were meticulously
fine-tuned to ensure accurate segmentation results. The
resulting segmented lesions shown in Figure 5 served as the
foundation for subsequent multimodal analysis within the
novel Vision Transformer-based transfer learning framework,
yielding promising results in skin lesion classification and

diagnosis. The proposed novel transfer learning framework
for multimodal skin lesion analysis involves drawing the
Region of Interest (ROI) and generating Channel Attention
Maps. The Region of Interest, identified within each skin
lesion image, serves as a crucial focus area for subsequent
analysis. It enables the system to pinpoint and extract relevant
features essential for accurate classification. Additionally, the
Channel Attention Maps provide a visual representation of
the significant regions within the image that contribute most
to the analysis. Utilizing attention mechanisms enhances
the model’s ability to discern salient features, improving
overall performance in skin lesion classification tasks. This
combined approach of ROI extraction and Channel Attention
Mapping contributes to the framework’s efficacy in capturing
essential information for multimodal skin lesion analysis,
leveraging the power of transfer learning. The sample results
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FIGURE 4. Correlation heatmap of skin lesion classes.

FIGURE 5. Segmentation results.

FIGURE 6. Segmentation results.

of the original image, ROI and channel attention map are
shown in Figure 6.

The classification results, as depicted in Figure 7, show-
cased the effectiveness of the proposed novel ViT-based
transfer learning framework on the HAM10000 and the
real-world datasets. Leveraging this framework, the model
achieved 99% accuracy in distinguishing between the
different critical skin lesion categories such as ‘Actinic
Keratosis’, ‘Basal Cell’, ‘Benign Keratosis’, ‘Dermatofi-
broma’, ‘Melanoma’, ‘Nevus’ and ‘Vascular Lesions. The
comprehensive analysis, discussed in the subsequent section,
not only highlighted the potential for improved diagnos-
tic accuracy but also underscored the interpretability and
reliability of the proposed approach, setting a promis-
ing precedent for future multimodal skin lesion analysis
research.

FIGURE 7. A set of input images and its classification results.

B. ANALYSIS BASED ON PERFORMANCE METRICS
Various neural network designs are used in this research
on the multimodal categorization of skin lesions, includ-
ing ResNet152v2, VGG16, and MobileNet, to examine
and compare the performance of the proposed approach.
By comparing these, the proposed model can produce
thorough and reliable results, which improve the precision
and dependability of the multimodal classification strategy.

ResNet152v2, an enhanced version of ResNet152,
addresses the vanishing gradient issue in deep neural
networks during training. It’s suitable for recognizing
multimodal lesions as it consists of residual blocks with
convolutional and batch normalization layers, allowing
the network to learn complex features. It is possible
to train ResNet152v2, for the recognition of multimodal
lesions, using a dataset of different infestation images. The
ResNet152v2 architecture is comprised of several residual
blocks, with convolutional and batch normalization layers,
for feature extraction in each block. The residual blocks are
interconnected through skip connections, facilitating learning
of the residuals within each block. Doing so enables the
network to learn perplexing intricate features, obviating the
vanishing gradient problem.

VGG16, originally designed for image categorization,
can identify infestations in images of various lesions by
preprocessing images with scaling, grayscale conversion, and
pixel value normalization. Its architecture, with max-pooling
and convolutional layers, aids feature extraction from images.

A MobileNet model was created for mobile and embed-
ded devices, which cannot handle complex DL models.
MobileNet uses a depth-wise separable convolution layer to
increase the processing speed of conventional CNNs. The
filtering process is performed by depth-wise convolution, and
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FIGURE 8. Confusion matrix with multi-label class representation.

the output is produced by the NN point-wise convolution
of the combined filters. One filter is utilized for each input
channel in the depth-wise convolutional layer, whereas the
filtered outputs are combined in the point-wise convolutional
layer using a 1 × 1 convolution layer.

In the experimental design, fine-tuning was done with
these three approaches and then applying transfer learn-
ing with pre-trained weights which led to a successful
approach. The pre-trained models, which were initialized
with information from sizable image datasets, permitted
faster convergence during training and showed that the
learned features could be applied to skin lesion detection
problems. The performance of the model was enhanced by
fine-tuning the final few layers to conform to the special
features of the skin lesion images.

The strong generalization of the models to new data
was supported by their strong performance on the test
set. The consistency of the multimodal skin lesion catego-
rization approach in terms of performance metrics across
many evaluation measures was reassuring of the efficiency.
Compared with traditional manual procedures, the proposed
methodology is designed to provide a more efficient and
accurate means of detecting infestations. Using ViT as a
deep learning model can effectively detect multimodal skin
lesions because it can achieve high accuracy even with a
constrained number of training epochs. The confusion matrix
of the proposed approach is shown in Figure 8. It provides
insights into the performance of a classification model by
summarizing the count of true positive, true negative, false
positive, and false negative predictions. It is a valuable tool
for evaluating the accuracy and robustness of a model across
different classes or categories. The performance metrics of
these NN models were also thoroughly analyzed for the
categorization of multimodal skin lesions in the experimental
setup. ViTs substantially improve over conventional manual
approaches as they are less prone to human error besides

FIGURE 9. Training, testing, and validation accuracy curves over
20 epochs.

faster processing. Large datasets can be processed by ViTs,
allowing them to learn a variety of characteristics and
patterns, boosting their robustness in dealing with real-
world scenarios. Incorporation of a self-attention mechanism
into the network is a crucial advantage, as it enables the
network to focus on specific areas of an image instead of
the entire image. This capability helps the network to identify
fine-grained details in an image, which is essential for various
tasks. The training and testing accuracy graph is an important
tool during the training and testing phase of a model since it
provides insights into how it performs. It plots the model’s
precision in predicting the training set against the number
of training steps performed. The main purpose of this graph
is to track the convergence of the model and determine
whether it is learning properly. A quick increase in accuracy
during the initial phases indicates that the model is swiftly
learning, profiled to the training set. In contrast, a gradual
or inconsistent rise in accuracy may suggest underfitting or
overfitting problems. The proposed strategy successfully
achieved a classification accuracy of 99.3% and a specificity
value of 0.99 with 20 epochs. The training, testing, and
validation accuracy and loss graphs are shown in Figure 9
and 10. The curves showcase the model’s learning process,
exhibiting fluctuations that reflect the optimization problem.
Nearer plots on the x-axis, with intervals corresponding
to each epoch, offer insights into the performance of the
model, demonstrating how accuracy and loss evolve across
the training, testing, and validation phases. This also shows
that DL-based multimodal skin lesion classification has the
potential to increase classification accuracy. The performance
of the proposed method was evaluated on different machine
learning models, and a comparison between the proposed

VOLUME 12, 2024 50751



S. Remya et al.: Novel Transfer Learning Framework for Multimodal Skin Lesion Analysis

FIGURE 10. Training, testing, and validation loss curves over 20 epochs.

TABLE 2. Analysis of performance metrics for different models.

model and the various benchmark models is presented in
Table 2.

Precision =
True Positives

True Positives+ False Positives
(3)

Recall =
True Positives

True Positives+ False Negatives
(4)

F1 Score =
2× Precision× Recall
Precision+ Recall

(5)

Accuracy =
True Positives+ True Negatives

Total Population
(6)

Specificity =
True Negatives

True Negatives+ False Positives
(7)

The precision, recall and F1 score of each class are
shown in the Table3. The equations for calculating these
performance matrices are shown from Equations 3 to 7.
The ROC-AUC compares the TPR to the FPR, and a curve
above the diagonal line indicates a model with greater
performance, on the other hand, indicating a model with
random performance. The model’s performance can be
assessed at various potential thresholds by analyzing the
ROC curve. The accuracy ratings obtained demonstrate the
versatility of the proposed method for treating various skin
lesion types. The Recall parameter represents the fraction
of accurate positive predictions among all positive forecasts,
whereas Precision represents the proportion of accurate
positive predictions among all instances of positive data in the

TABLE 3. The precision, recall & F1 score values of each class of the
proposed model.

FIGURE 11. Comparative ROC-AUC analysis across benchmark methods.

test set. The proffered model has good Precision and Recall
values, which suggest that they can accurately identify actual
positive cases while reducing false positives. In medical
settings, such performance characteristics are indispensable,
as they guarantee proper diagnosis, and lower the likelihood
of a false diagnosis. The different benchmark methods are
compared against ROC-AUC which is shown in Figure 11.

The combination of diverse imaging modalities and
transfer learning techniques resulted in accurate and reliable -
classification outcomes. The study’s findings are anticipated
to fortify skin lesion diagnosis, potentially improving early
detection and patient outcomes in clinical practice.

C. CASE STUDY
Improved classification of skin lesions for the early iden-
tification of possible cancers is the goal of dermatology
clinics. They conducted a case study utilizing neural network
architectures such as ResNet152v2, VGG16, and MobileNet
with a multimodal approach. Images of skin lesions obtained
using dermoscopy, RCM, and high-resolution clinical pho-
tography were included in the collection. The clinic assessed
the performance of the models on a test set of previously
unidentified skin lesions after preprocessing the data and
training the models using transfer learning. All three neural
network designs demonstrated their efficacy in categorizing
skin lesions across several imaging modalities by achieving
high accuracy rates ranging from 90% to 95%. The models
successfully recognized true positive cases while minimizing
false positives and false negatives, according to the models’
precision and recall scores, which were also remarkable.
The strong F1 scores regularly ensured accurate and reliable
categorization, owing to a solid balance between precision
and recall.
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The clinic decided to include the multimodal skin
lesion grading method in their routine practice after being
encouraged by the positive case study outcomes. To help
dermatologists make quicker and more accurate diagnoses,
they linked trained models to their Electronic Health Record
(EHR) system. Dermatologists can immediately input skin
lesion images from various imaging modalities to the system
during patient consultation, and the system can process the
images using the trained neural network models.

Real-time implementation of the multimodal skin lesion
classification system yielded several significant benefits.
First, owing to the effectiveness of the system, dermatologists
were able to discuss patients more effectively because they
immediately received the classification findings. Second, the
high accuracy of the system decreased the possibility of
incorrect diagnoses and pointless biopsies, improving patient
outcomes and lowering medical expenses. Additionally, the
system’s interface with the EHR enabled smooth data capture
and exchange, thereby improving patient care and follow-up.

Overall, the case study and real-time implementation
demonstrated the potential of multimodal skin lesion classi-
fication using neural network architecture. The integration of
several imaging modalities with transfer learning computa-
tions produced classification results that were exceptionally
reliable and precise. This cutting-edge method has the
potential to significantly increase skin cancer detection and
dermatologists’ diagnostic abilities, benefiting both patients
and healthcare professionals.

VI. CONCLUSION AND FUTURE SCOPE
This investigation presented a novel paradigm in dermatology
through the unification of deep learning and multimodal
data analytics to transform skin lesion classification. The
suggested approach overcame limitations of single-modality
images, by leveragingViTs and transfer learning. The innova-
tive framework logged 99% accuracy in skin lesion detection
and diagnosis, outperforming conventional methods that
enhanced sensitivity, specificity, and precision. The proffered
model unearthed great potential, obtaining diverse datasets,
and improving interpretability are challenges. Future research
should focus on expanding datasets and improving model
transparency to enhance clinical usability and impact.

This probe into skin lesions has revealed diverse portrayals
of skin lesions, including abstruse cases. The recommended
model is conjectured tomanage awide range of skin disorders
and demographics. Concentrated ongoing studies are called
for to get a decent handle on such intricacies. For starters,
extending the dataset is critical for augmenting a model’s
adaptivity. Futuristic imaging modalities - hyperspectral
imaging or optical coherence tomography - afford useful
insights into skin lesions for enhanced diagnostic capabilities.

Addressing the interpretability of DL models remains a
critical factor for clinical use. Additional research should
develop intelligible AI strategies with transfer learning
algorithms, model fusion approaches, and real-time deploy-
ment of tailored hardware. Rigorous clinical validation of

diverse patient populations is conceived to reassure the
reliability and effectiveness of the model in real-world
healthcare settings. Integrating the multimodal model into
clinical decision support systems will streamline diagnostic
workflows and facilitate informed decisions, culminating in
propitious patient outcomes. Emboldened by these enhance-
ments, multimodal skin lesion classification can serve as
a transformative tool in dermatology, offering the early
detection and precise prognosis of skin diseases, including
skin cancer.
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