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ABSTRACT In the wake of COVID-19, rising monkeypox cases pose a potential pandemic threat. While
less severe than COVID-19, its increasing spread underscores the urgency of early detection and isolation
to control the disease. The main difficulty in diagnosing monkeypox arises from its prolonged diagnostic
process and symptoms that are similar to those of other skin diseases, making early detection and isolation
challenging. To address this, the deployment of deep learning models on edge devices presents a viable
solution for the rapid and accurate detection of monkeypox. However, the resource constraints of edge
devices require the use of lightweight deep learning models. The limitation of these models often involves
a trade-off with accuracy, which is unacceptable in the context of medical diagnostics. Therefore, the
development of optimized deep learning models that are both resource-efficient for edge computing and
highly accurate becomes imperative. To this end, an attention-based MobileNetV2 model for monkeypox
detection, capitalizing on the inherent lightweight design of MobileNetV2 for effective deployment on
edge devices, is proposed. This model, enhanced with both spatial and channel attention mechanisms,
is tailored for rapid and early-stage diagnosis of monkeypox with better accuracy. We significantly improved
the Monkeypox Skin Images Dataset (MSID) by incorporating a broader range of classes for similar skin
diseases, thereby substantially enriching and diversifying the training dataset. This helps better distinguish
monkeypox from other similar skin diseases, particularly in its early stages or when a detailed medical
examination is unavailable. To ensure transparency and interpretability, we incorporated Gradient-weighted
Class Activation Mapping (Grad-CAM) and Local Interpretable Model-Agnostic Explanations (LIME)
to provide clear insights into the model’s diagnostic reasoning. Finally, to comprehensively assess the
performance of our model, we employed a range of evaluation metrics, including Cohen’s Kappa, Matthews
Correlation Coefficient, and Youden’s J Index, alongside traditional measures like accuracy, F1-score, pre-
cision, recall, sensitivity, and specificity. The attention-based MobileNetV2 model demonstrated impressive
results, outperforming the baseline models by achieving 92.28% accuracy in the extended MSID dataset,
98.19% in the original MSID dataset, and 93.33% in the Monkeypox Skin Lesion Dataset (MSLD) dataset.

INDEX TERMS Attention, channel attention, Monkeypox, skin disease classification, spatial attention,
MobileNetv2, ResNet, VGG.
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I. INTRODUCTION
In the current global health scenario, as the world continues
to emerge from the shadow of the COVID-19 pandemic,
there is growing concern regarding a new challenge: the
outbreak of monkeypox. Monkeypox arises from an infection
with the monkeypox Virus, a pathogen commonly found
in monkeys [1]. Discovered in 1958 and re-emerging in
the Republic of Congo in 2014, monkeypox, though less
known than Ebola or Zika, could escalate into a significant
global health concern [2]. The World Health Organization
(WHO) has raised the alarm over the monkeypox outbreak,
classifying it as a global health emergency [3]. Its spread is
ongoing, with an increasing number of cases reported daily.
Between January 1, 2022, and August 9, 2023, the WHO
reported a total of 89,308 laboratory-confirmed monkeypox
cases and 152 deaths across 113 countries in all six WHO
regions [4]. During this period, a noticeable 1.2% increase in
cases (1,020 new cases) and three new deaths were reported.
In the fortnight leading up to August 9, 2023, there was an
increase in reported cases in the Western Pacific, European,
and American regions [4].
The clinical diagnosis of monkeypox presents a significant

challenge due to its dermatological manifestations, which
closely resemble those of several other conditions. The
disease typically begins with a rash, progressing to pustules
and scabs. This rash is initially most prominent on the
face before spreading to other body parts. This presentation
is similar to chickenpox, another condition known for its
itchy, vesicular rash that transforms into fluid-filled lesions
and then scabs. However, chickenpox rashes are generally
more widespread across the entire body. Additionally, the
early stages of monkeypox can be confused with measles,
a contagious disease characterized by a red, blotchy rash.
Like monkeypox, the measles rash starts on the face and
then spreads downwards. Non-infectious skin conditions
such as eczema and lupus further complicate the diagnostic
process. Eczema, with its inflamed, itchy patches of skin,
could be mistaken for the early stages of monkeypox.
Lupus, known for its diverse range of rashes — including
the distinctive butterfly-shaped facial rash or disc-like
lesions — can also be confused with monkeypox during
certain stages of its presentation. Other diseases like mollus-
cum contagiosum, which manifests as tiny, firm bumps with
a central indentation, and scabies, characterized by intense
itching and a pimple-like rash from mite infestation, add to
the diagnostic confusion due to the similarity in their skin
lesions to those of monkeypox. Given these similarities, accu-
rately diagnosing monkeypox can be particularly challenging
for non-professionals. This underscores the importance of
medical consultation and expert evaluation for accurate
diagnosis, especially in these overlapping dermatological
features.

The primary challenge in diagnosing monkeypox lies
in its prolonged diagnostic timeline and the non-specific
nature of its symptoms, which often resemble those of

other skin diseases. This difficulty is further exacerbated by
the limited availability of polymerase chain reaction (PCR)
testing, a crucial component for the rapid diagnosis and
containment of the disease’s spread [1], [3]. Despite the
relatively low mortality rate of monkeypox, which ranges
from 1–10% [3], early detection remains critical. It plays
a pivotal role in preventing further transmission, managing
outbreaks, and implementing effective measures such as
isolation and treatment [5]. In this context, deep learning
emerges as a promising alternative, offering a viable solution
to overcome these challenges. By leveraging the advanced
pattern recognition capabilities inherent in deep learning
algorithms, it becomes possible to swiftly identify and
differentiate the visual characteristics of monkeypox from
other similar skin conditions through image analysis. This
approach can significantly reduce the diagnostic timeline,
providing rapid preliminary diagnoses that could lessen the
reliance on PCR testing for initial screenings. Furthermore,
deep learning models, trained on a diverse dataset of skin
disease images, including those specific to monkeypox,
enhance their accuracy and robustness in diagnosing across
a wide range of real-world scenarios.

Recently, deep learning (DL) techniques [6] have gained
recognition as an effectivemethod for image analysis and pat-
tern recognition [7], proving particularly useful in detecting
various diseases. As a branch ofmachine learning, DL utilizes
multiple layers of artificial neural networks (ANNs) to extract
features from images and make predictive analyses [8].
Convolutional Neural Networks (CNNs), a DL algorithm,
have been effectively employed in numerous medical imag-
ing applications. These include the classification of skin
lesions, detection of breast cancer, and identification of lung
nodules [9]. Automated systems leveraging machine learning
(ML) and deep learning to address these challenges offer
promising solutions. Various convolutional neural networks
(CNNs) have proven effective in differentiating images of
various diseases. This advancement implies that conditions
like thyroid [10] cancer, pneumonia [11], and COVID-19
[12] can now be identified autonomously, without the direct
involvement of a doctor [13].

In the context of infectious diseases like monkeypox, the
application of DL becomes even more significant [1], [14].
The ability of CNNs to discern patterns and features in
medical images offers a promising solution to the challenges
posed by diseases that manifest with visual symptoms. These
automated systems, based on ML and DL, have the potential
to transform the diagnostic process by providing accurate and
efficient disease identification. The effectiveness of CNNs in
differentiating images of diverse medical conditions suggests
a promising future for autonomous medical diagnostics. This
emerging trend underscores the potential of deep learning
in tackling public health challenges, particularly in detecting
emerging infectious diseases like monkeypox. By harnessing
the capabilities of advanced CNNs, it is possible to develop
robust diagnostic tools that enhance the accuracy of disease
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detection and contribute to faster and more efficient disease
management. However, for efficient early detection of
infectious diseases like monkeypox, deploying trained deep
learning models on edge devices (e.g., mobile phones and
tablets, etc,.) is essential. As this strategy offers several key
advantages: it enhances accessibility, enabling its widespread
application across various regions, including those that are
remote; it allows for rapid response capabilities by providing
immediate feedback on potential health concerns; and it
delivers significant relief to healthcare systems through
the automation of the initial stages of disease detection.
Crucially, by implementing these models directly on edge
devices, the privacy of patient data is robustly protected.
Local processing ensures that sensitive information is not
transmitted to external servers, maintaining confidentiality
and security. With DL integrated into everyday devices
like smartphones and tablets, patients gain tools for early
disease detection [15]. This patient-centric approach is
instrumental for diseases like monkeypox, where early
identification and self-quarantine are crucial to controlling
spread. These edge devices allow for convenient health
assessments, promoting early self-diagnosis and encouraging
timely medical consultation, thus reducing exposure risk
and relieving healthcare systems. However, employing deep
learning models in edge devices for medical diagnostics,
especially for infectious diseases like monkeypox, presents a
unique set of challenges. The primary obstacle lies in the lim-
ited computational resources and memory capacity of these
devices, which are insufficient for running sophisticated DL
models like VGG-16, VGG-19 or ResNet-152. Thesemodels,
while effective, demand substantial processing power and
memory—requirements that exceed the capabilities of most
edge devices [16], [17]. Moreover, the challenge is com-
pounded by the diversity of edge devices, each with varying
hardware capabilities. This heterogeneity necessitates the
development of adaptable and scalable lightweight deep
learning models. However, a further obstacle emerges when
these lightweight models are tasked with the early detection
of monkeypox, as distinguishing it from diseases with similar
symptoms is inherently challenging. The early signs of
monkeypox often mirror those of other infections, such
as chickenpox, measles or molluscum-contagiosum, making
accurate diagnosis critical yet difficult to achieve. This
necessitates not only the development of models that are
compact and capable of running on various devices but also
ones that are precise in their diagnostic abilities. However,
traditional lightweight models (i,e,. ShuffleNet, MobileNet,
GoogLeNet etc.) typically operate on simpler algorithms
that prioritize efficiency over accuracy. While this trade-off
is acceptable in applications with less critical outcomes,
it becomes a significant limitation in medical diagnostics,
where the stakes include human health and the potential for
widespread disease transmission. Thus, there’s a pressing
need for the development of models that not only offer the
high accuracy required for reliable disease diagnosis but

also maintain the efficiency necessary for deployment on
edge devices, ensuring they are both effective in diagnosing
complex diseases like monkeypox and optimized for the
computational constraints of edge computing.

Building on this necessity, our study introduces an
attention-based lightweight deep learning model tailored
explicitly for detecting and classifying various skin diseases,
including monkeypox. This lightweight model ensures high
efficiency and broad deployability across diverse platforms,
including mobile devices. This aligns seamlessly with trends
in integrating DL into patient-operated devices, facilitating
widespread accessibility for early detection and timely
intervention. The contributions of this study are summarized
as follows:

• To significantly enhance the robustness of monkeypox
detection through image classification and to substan-
tially enlarge the training dataset, we meticulously
extended theMSID dataset. This enriched dataset is now
more harmonized, adeptly accommodating the diverse
array of data nuances such as labeling, lighting, image
quality, size, and resolution from various sources. The
Extended MSID (EMSID) dataset now encompasses
eight classes, thus elevating the intricacy and precision
of the detection process.

• We proposed an attention mechanism-based deep learn-
ing model to detect and classify monkeypox disease
more accurately. We utilized the MobileNetV2 archi-
tecture as the backbone for our model, enhancing it
with both spatial and channel attention mechanisms.
These attention modules allow the model to focus on the
most relevant features within the images, significantly
improving its ability to discern between monkeypox and
other skin conditions. Applying these attention mech-
anisms within the MobileNetV2 framework creates a
robust yet lightweight model ideal for deployment in
resource-constrained environments and edge devices.

• Through a rigorous series of tests and analyses, we deter-
mined the most effective configurations for applying
spatial and channel attention in MobilenetV2 Network
to detect monkeypox.

• To validate the efficacy of our approach, we conducted
extensive experiments comparing our proposed model
with several state-of-the-art deep learning models,
including ResNet-152, VGG-19, GoogLeNet, AlexNet,
ShuffleNetV2 and the standard MobileNetV2. The
performance of each model was evaluated using a com-
prehensive set of metrics: accuracy, precision, recall,
F1-score, specificity, sensitivity, Matthews Correlation
Coefficient (MCC), andYouden’s J Index. Thesemetrics
provided a holistic view of the models’ capabilities in
accurately classifying monkeypox images.

• To ensure the interpretability of the deep learning
model’s decision-making process, we used Gradient-
weighted Class Activation Mapping (Grad-CAM)
and Local Interpretable Model-Agnostic Explanations
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(LIME). These techniques allowed us to visualize the
areas within the images most influential in the model’s
classifications, thereby providing valuable insights into
the reasoning behind the model’s predictions.

• The results of our experiments demonstrated that our
attention-based MobileNetV2 model outperformed the
baseline models regarding accuracy, precision, and other
vital metrics. This superior performance highlights
the potential of our model in real-world applications,
particularly in the early detection of monkeypox, which
is crucial for timely treatment and containment of the
disease.

The other parts of this study are organized as follows: The
related works are presented in Section II. Themethodology of
the proposedmodel is presented in Section III. An operational
workflow has been described in section IV. Baseline methods
and performance matrices are discussed in Section V.
The experimental results and performance comparisons are
analyzed and discussed with its explanation in Section V-B.
Finally, the conclusion and future course of this work is
presented in Section VII.

II. LITERATURE REVIEW
Recent studies have increasingly employed deep learning
techniques to analyze and identify monkeypoxes from image
data. A variety of deep learning architectures, including
ResNet-50 [18], VGG-19 [19], InceptionV3 [20], and
MobileNetV2 [21], have been utilized in these investigations.
For instance, in one study [14], three deep learning models -
VGG-16, ResNet-50, and InceptionV3 - were adapted and
trained using theMonkeypox Skin Lesion Database (MSLD).
Due to limited data availability, data augmentation techniques
were applied, leading to varied accuracy results: ResNet-50
achieved the highest accuracy at 82.96 (±4.57%), followed
by VGG-16 with an accuracy of 81.48 (±6.87%), and
InceptionV3 showed lowest accuracy at 79.26 (±1.05%).
An advanced method for classifying monkeypox skin lesions
using transfer learning has been developed in the work
of [22]. They focused on providing a solution for areas with
limited PCR testing by using Deep Learning to automate skin
lesion detection. However, they only used three classes for
their study, which limits the model’s ability to differentiate
monkeypox from a wider array of skin conditions. This
raises concerns about the model’s generalizability and
effectiveness in real-world scenarios, where a diverse range
of skin lesions might be encountered. Also, the model
lacks interpretability. In their research, Yasmin et al. [5]
developed ‘PoxNet22’, a machine learning-based model
for diagnosing monkeypox with image analysis techniques.
Utilizing transfer learning and data augmentation, they
trained several deep learning models and found ‘PoxNet22’
to be the most effective, achieving 100% precision, recall,
and accuracy. This innovation marks a significant advance
in precise and reliable disease detection. However, this
model also lacks explainability. Additionally, they have
implemented a binary classification system, which, while

effective in distinguishing monkeypox from non-monkeypox
cases, limits the detection process’s ability to differentiate
between various skin conditions. This binary approach
could lead to less nuanced decision-making when facing a
broader dermatological disease spectrum. The authors of [23]
employed Local Interpretable Model-Agnostic Explanations
(LIME) to verify and interpret the performance of various
deep learning (DL) models. These models included VGG-16,
InceptionNetV2, ResNet-50, ResNet-101,MobileNetV2, and
VGG-19 and were evaluated using generalization and
regularization techniques. The objective was to enhance
the accuracy and reliability of these models for diagnosing
monkeypox. However, the study was again limited to only
two classes, which might impact the model’s capability to
handle more complex, real-world scenarios.

The authors of [24] introduced a novel deep feature engi-
neering architecture comprising multiple stages, including
nested patch division, deep feature extraction, and feature
selection using various analytical methods. The classification
was conducted using an SVM classifier with 10-fold cross-
validation, and results were consolidated through iterative
hard majority voting (IHMV) and optimized by a greedy
algorithm.The proposed model demonstrated a high classifi-
cation accuracy of 91.87% on the dataset, marking the highest
performance among 70 tested outcomes. This achievement
underscores the potential of the presented framework in
enhancing the detection and management of monkeypox
through advanced machine learning techniques.

In a recent study [3], researchers focused on developing
and validating deep learning models for the early detection
of monkeypox, a critical step in controlling its spread.
The study tested five standard pre-trained deep learning
models: VGG-19, VGG-16, ResNet-50, MobileNetV2, and
EfficientNetB3. Performance metrics such as accuracy,
recall, precision, and F1-score were employed to assess the
models’ efficacy. Results revealed that the MobileNetV2
model demonstrated superior performance, achieving a
notable accuracy of 98.16%, along with high recall, preci-
sion, and F1-score. Furthermore, validation using different
datasets affirmed themodel’s consistency, withMobileNetV2
showing the highest accuracy. These findings highlight the
potential of machine learning for early and accurate detection
of monkeypox, positioning MobileNetV2 as a highly effec-
tive tool for clinical diagnostics. The study’s comprehensive
approach to model evaluation and validation contributes sig-
nificantly to the growing body of research in medical image
analysis, particularly in infectious disease diagnosis. In their
work, Bala et al. [1] developed a specialized monkeypox
research dataset named the Monkeypox Skin Images Dataset
(MSID). This dataset is segmented into four distinct classes:
‘‘Monkeypox,’’ ‘‘Chickenpox,’’ ‘‘Measles,’’ and ‘‘Normal,’’
providing a comprehensive range for analysis. Building on
this, they introduced a tailored version of the DenseNet-201
CNN architecture, aptly named ‘MonkeyNet’. This model
underwent rigorous testing on the original and augmented
versions of the MSID, demonstrating its ability to accurately
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diagnose monkeypox with an impressive 93.19% and 98.91%
accuracy, respectively. A notable feature of ‘MonkeyNet’ is
its integration of Grad-CAM visualizations, highlighting the
model’s decision-making areas in each image. This aspect
not only confirms the model’s diagnostic precision but also
offers valuable insights for clinicians in identifying infected
regions, enhancing the utility of the model in clinical settings.
In [25], a Generalization and Regularization-based Transfer
Learning (GRA-TLA), was specifically designed for binary
and multiclass classification of monkeypox through image
analysis. The authors rigorously tested this approach on
ten different convolutional neural network (CNN) models
across three separate studies. The findings revealed that
the combination of GRA-TLA with the Extreme Inception
(Xception) model yielded an accuracy between 77% to
88% for binary classification, identifying individuals with or
without monkeypox. For multiclass classification, which is
inherently more complex, the Residual Network (ResNet)-
101 model stood out, achieving an impressive accuracy
range of 84% to 99%. The work of [26] used ViT to
distinguish between monkeypox and chickenpox. The ViT
model achieved 93% accuracy, precision, recall, and F1-score
in testing, showcasing the effectiveness of advanced deep
learning models in medical imaging. The combination of
transfer learning and image augmentation not only improved
detection of monkeypox and chickenpox but also mitigated
data scarcity issues, surpassing previous studies and CNN
models in accuracy. In [27], the authors investigate the use
of Deep Learning for detecting monkeypox (mpox) from
smartphone images, responding to its classification as a
global health emergency by the WHO. They utilize Transfer
Learning to address the lack of extensive mpox image
datasets, creating a refined dataset for analysis. Through rig-
orous evaluation of Convolutional Neural Networks (CNNs),
MobileNetV3Large emerged as the top model, achieving
an F-1 score of 0.928 in binary classification and 0.879 in
multi-class tasks. Post-quantization optimizations reduced
the model size by over two-thirds and decreased inference
time from 0.016 to 0.014 seconds, with only a minimal
reduction in the F-1 score of 0.004.

Most previous studies on monkeypox detection using
deep learning models have primarily focused on limited
classes and supplemented them with data augmentation
techniques to artificially expand the training data. Employing
a limited number of classes in previous studies onmonkeypox
detection using deep learning techniques introduces several
challenges and limitations. Primarily, a model trained and
tested on datasets with only a few classes may not adequately
capture the complexity and variability inherent in real-world
scenarios.

Furthermore, the reliance on data augmentation in many
of these studies can be a double-edged sword. While data
augmentation techniques like rotation, scaling, and flipping
can help increase the training dataset’s size and introduce
variability, they may also inadvertently introduce artifacts
or distortions that are not representative of actual clinical

FIGURE 1. Overview of the proposed deep learning-based diagnostic
framework for monkeypox detection.

conditions. This can result in models overly optimized for the
augmented data and may not perform as well when presented
with authentic, unmodified images.

In contrast, our approach to developing a model for
monkeypox detection has focused on creating a more
robust and generalizable system. By not relying on data
augmentation, we ensure that our model is trained on
authentic, unaltered images, which better represent clinical
cases’ true diversity and complexity. This approach enhances
the model’s ability to generalize to new data, making it
more reliable and effective in practical settings. Moreover,
the performance of our model in both the EMSID and
MSID datasets, achieving accuracy rates of 92.28% and
98.19%, respectively, further underscores its effectiveness.
These results are particularly noteworthy given that they were
obtained without data augmentation.

III. METHODOLOGY
This section provides a detailed overview of the research
methodology followed in this study. The process begins
with acquiring data from various sources, an essential
step for building a robust dataset representative of the
problem scope. This data is then subjected to prepossessing,
as illustrated in Fig. 1, to ensure data quality and remove
any inconsistencies or errors. Once the prepossessing stage
is completed, we obtain the finalized dataset. This dataset is
then divided into two subsets—a training dataset and a testing
dataset, following standard machine learning procedures.

This step is pivotal for ensuring the model’s transparency,
accountability, and interpretability. By employing XAI tech-
niques, we aim to make the model’s decisions understandable
to technical experts and non-experts alike, thereby enhancing
trust and facilitating broader adoption of the model in real-
world applications, especially in the medical field.

A. DATASET COLLECTION
In this research, our dataset was primarily sourced from
two premier databases: the Monkeypox Skin Images Dataset
(MSID) [1] and DermNet [28]. The MSID features four
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FIGURE 2. Instances of the EMSID.

categories of images: monkeypox, chickenpox, measles, and
normal skin conditions. The images in this dataset were
carefully curated from trustworthy online sources, including
recognized health websites, newspapers, and scholarly jour-
nals. While the MSID dataset already presents a complex set
of skin conditions, it is worth noting that some diseases may
appear similar to the naked eye. To further diversify the range
of skin diseases and increase the dataset’s complexity, we also
included images from Dermnet’s online public repository.
The final merged dataset is comprised of eight classes:

• Monkeypox: Presents with a rash that develops into
pustules and then forms a scab, which later falls off.
It often appears first on the face and then spreads.

• Chickenpox: Characterized by itchy red spots that turn
into fluid-filled blisters. They eventually scab over and
are usually seen all over the body. Like monkeypox,
chickenpox causes a vesicular rash.

• Measles: Manifests as a red, blotchy rash that usually
starts on the face and spreads downward. The red,
blotchy rash can be easily confused with monkeypox.

• Eczema: Appears as patches of inflamed, itchy skin,
whichmay be red in lighter skin tones or darker in darker
skin tones. It can occur anywhere but is often found
on arms and behind the knees. While generally easy to
distinguish from monkeypox by a medical professional,
to the untrained eye, any rash might be a cause for
concern.

• Lupus: Rash can be very diverse, including a
butterfly-shaped rash on the face or disc-like lesions

elsewhere on the body. The pimple-like rash could
potentially be confused with monkeypox.

• Molluscum: Presents as small, round, and flesh-colored
bumps that are usually smooth and firm. They often have
a small indentation in the center. Both the molluscum
and monkeypox produce skin lesions that could appear
similar at certain stages.

• Scabies: Characterized by intense itching and a pimple-
like rash. The condition is caused by mites burrowing
into the skin.

• Normal: The normal skin class contains no skin diseases
in the skin. This class helps to distinguish healthy skin
from pathological conditions.

While they may have similarities like redness, bumps,
or rash, each condition has unique characteristics that
trained healthcare professionals or a trained neural network
model can identify. However, identifying them, especially
to the untrained eye, is challenging, leading to potential
misdiagnoses. Some image instances of the collected dataset
have been given in Fig. 2. The figure shows that it is tough
for untrained people to distinguish between skin diseases.
In our collected dataset, there are a total of 1, 285 instances.
The individual instances and their ratio for each class are
shown in Fig. 3. Fig. 3 shows that the most prevalent
classes in our dataset are ‘‘Monkeypox’’ and ‘‘Normal’’,
comprising approximately 21.7% and 22.8% of the total
instances, respectively. This is followed by ‘‘Lupus’’ and
‘‘Chickenpox’’, each contributing to around 12% of the total
dataset. The other classes, namely ‘‘Eczema’’, ‘‘Scabies’’,
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FIGURE 3. Data distribution in the EMSID.

‘‘Measles’’, and ‘‘Molluscum contagiosum’’, have relatively
fewer instances, roughly 8% to 12% individually. It should be
noted that the presence of a ‘‘Normal’’ skin class is essential
for the model to correctly differentiate between pathological
and non-pathological conditions correctly, thereby reducing
the chance of false positives. The color-coded bar chart
(Fig. 3) serves as a visual summary of the distribution of
instances across different classes. The colors in the bar chart
are consistent with those in the pie chart, providing a cohesive
visual representation for easier interpretation.

B. DATA PREPROCESSING
Before model training, several preprocessing steps were
performed on the dataset to ensure that the data was
suitable for effective learning. Notably, no data augmentation
techniques were employed in this study to preserve the
genuine nature of the medical images. This approach was
chosen to ensure that the model learns from authentic
and real-world examples, which is crucial for accurately
diagnosing medical conditions. Additionally, by avoiding
artificial data manipulation, we aimed to enhance the
model’s generalizability and robustness and improve the
interpretability and trustworthiness of the model’s decisions,
particularly in the sensitive context of medical applications.
The following preprocessing techniques were applied:

• Resize: To standardize the input size, we resized every
image to 224 × 224 pixels. This resizing was accom-
plished with the PIL (Pillow) [29]. Adopting the 224 ×

224 pixel resolution aligns with the requirements of
well-known pretrainedmodels, including VGG, ResNet,
and MobileNet. Standardizing the image dimensions
is vital for maintaining consistent operation across
all images through uniform convolutional and pooling
steps. This uniformity is crucial for generating feature
maps of equal dimensions, a necessity for efficient batch
processing in model training.

• Normalization:Normalization is an important prepro-
cessing step in machine learning that adjusts the RGB
pixel values of images to a uniform range, enhancing
the efficiency of learning algorithms. To bring all RGB
pixel values to a standardized range, normalization was
applied. The general equation for min-max normaliza-
tion is [30]:

p′
=

p− min(p)
max(p) − min(p)

(1)

TABLE 1. Comparative distribution of training and testing instances
across MSID and EMSID datasets.

For 8-bit RGB images, where each color channel has
pixel values ranging from 0 to 255, this equation
simplifies to:

p′
=

p
255

(2)

Here, p represents the original pixel value in each color
channel, and p′ is the normalized value. Normalization
serves multiple purposes. Firstly, it scales all features,
in this case, RGB pixel values, to a common range,
facilitating more efficient learning. Secondly, many
activation functions like the sigmoid or hyperbolic
tangent (tanh) are designed to operate over a limited
range of input values, such as 0 − 1 or −1 to 1.
Normalization helps keep the activations and gradients
within a manageable range, aiding in faster and more
stable convergence during the training phase.

• Class Imbalance: Given the imbalanced nature of the
dataset, we carefully stratified the train-test splits to
ensure that each subset had a proportional representation
of each class.

These preprocessing steps were crucial in preparing the
dataset for effective training and evaluation of deep learning
models.

C. DATASET SPLITTING
We mainly evaluated our method using the MSID and
EMSID datasets. Both dataset were divided using the holdout
method [31]. Specifically, 80% of the instances from each
class were allocated to the training set, while the remaining
20% were used for the testing set.

The detailed distribution of instances of both dataset across
the training and testing sets are outlined in Table 1. This
division ensures that the model has a sufficient number of
examples for training while also providing an independent set
for performance evaluation.

D. APPLIED AND PROPOSED MODELS
In addressing the task of skin disease classification, we pro-
pose an attention-empowered MobileNetV2 architecture as
shown in fig 4. This architecture is particularly suited for
deployment on edge devices due to the lightweight nature of
MobileNetV2. Additionally, we have applied various state-
of-the-art architectures for comparison purposes. Table 2
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FIGURE 4. Proposed attention empowered MobileNetv2 architecture for skin diseases classification.

TABLE 2. Comparison of evaluated models based on total number of
default parameters.

displays the methods applied and compares their total
number of parameters. These models are recognized for
their effectiveness in image classification tasks. For each
deep learning model shown in table 2, we adopted a
transfer learning [8] approach. The transfer learning strategy
allows us to capitalize on the rich feature representations
these models have learned from extensive datasets. This is
particularly beneficial in addressing challenges such as data
scarcity and computational limitations. It also facilitates rapid
prototyping and ensures stable convergence during training.
Next, we discuss the detailed architecture of attention-
empowered MobileNetV2.

E. ATTENTION EMPOWERED MobileNetV2: A DETAILED
ARCHITECTURE
The MobileNetV2 empowered With attention architecture
is ingeniously designed to classify skin diseases into eight
distinct classes. This architecture leverages a combination
of a pre-trained MobileNetV2 model for initial feature
extraction. After that, an attention module is applied to
focus on the most vital features for distinguishing between
various skin conditions. The attention module is comprised
of a spatial attention block and a channel attention block.

The spatial attention module [38] emphasizes the most
significant regions within the image. Then, the channel
attention Module [39] is integrated to refine the model’s
focus further. This attention module concentrates on the
various feature channels, enhancing the model’s sensitivity
to important textural and pattern-based information that
might be critical for accurate disease classification. The
synergy of these attention mechanisms ensures that the
most relevant features are highlighted for the subsequent
classification stages. Finally, the architecture culminates in
a Fully Connected (FC) layer, synthesizing the extracted and
emphasized features to make the final classification decision.
In the following section, we provide a detailed description
of each architecture component, elucidating their roles and
contributions to the overall effectiveness of the model.

1) FEATURE EXTRACTION
MobileNetV2 serves as the feature extraction component
in the architecture, optimized particularly for efficiency in
mobile and embedded vision applications and edge devices.
This efficiency is paramount for real-time skin disease clas-
sification tasks where rapid diagnosis is essential, especially
for contagious conditions like monkeypox, chickenpox, and
measles. Given that some of these diseases are contagious,
there is a critical need for fast, accurate diagnosis to initiate
timely treatment and isolation procedures [40]. Deploying
this model on mobile or edge devices can serve as a frontline
diagnostic tool, enabling quick decision-making in various
settings, including clinics, schools, and remote locations
where computational resources might be limited. The archi-
tecture of MobileNetV2 includes two essential techniques:
depthwise separable convolutions and inverted residuals.
These techniques contribute to themodel’s efficiency,making
it well-suited for real-time analysis on resource-constrained
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devices. Next, we describe the two pivotal components of the
MobileNetV2.

a: DEPTHWISE SEPARABLE CONVOLUTIONS
MobileNetV2 enhances efficiency by using depthwise sepa-
rable convolutions, which separate the convolutional process
into two layers, reducing computations and parameters. The
first layer, depthwise convolution, independently applies a
filter to each input channel. The second layer, pointwise
convolution, combines these individual channel outputs into
new feature maps using 1 × 1 convolutional filters. This
process allows the network to mix information from the
different channels, enabling learning more complex features.
This process can be represented as follows:

1) Depthwise Convolution: Applies a filter fd indepen-
dently to each channel of the input X . For each channel
c, the output D is computed as [41]:

(Dc)i,j=
∑
m

∑
n

(fd,c)m,n · Xc,i+m,j+n, ∀c ∈ {1, . . . ,C}

(3)

Here, (Dc)i,j represents the output for channel c at
position (i, j). The filter fd is applied independently to
each channel c of the input.

2) Pointwise Convolution: Combines the depthwise out-
puts using a 1 × 1 convolution fp, resulting in the final
output Y as [41]:

Yi,j,k =

C∑
m=1

(fp)k,m · Di,j,m, ∀k ∈ {1, . . . ,C ′
} (4)

Here, Yi,j,k is the final output, combining the depthwise
outputs. C is the number of channels in the input, and
C ′ is the number of output channels from the pointwise
convolution.

The depthwise separable convolution effectively mini-
mizes computational load while retaining the ability to
process complex features. The overall operation can be
expressed as:

Yi,j,k =

C∑
m=1

(fp)k,m ·

(∑
a

∑
b

(fd )a,b · Xm,i+a,j+b

)
(5)

Fig. 5 represents the whole process of depthwise separable
convolutions.

b: INVERTED RESIDUALS IN MobileNetV2
MobileNetV2 introduces inverted residuals, contrasting with
traditional residual networks’ bottleneck design of con-
traction, transformation, and expansion shown in Fig. 6.
This approach follows a sequence of expansion, depthwise
convolution, and projection, enhancing themodel’s efficiency
and feature preservation. This process can be expressed as:

Expansion → Depthwise Convolution → Projection (6)

FIGURE 5. The overall architecture of depthwise separable convolutions
module.

FIGURE 6. The overall architecture of inverted residual module.

This sequence in MobileNetV2 inverts the conventional
residual block approach, focusing on first expanding and
then refining the feature channels for enhanced efficiency
and feature representation. The details of these processes are
described as follows:

1) Expansion The first layer in an inverted residual block
is responsible for expanding the number of channels
in the feature map. If C is the number of channels
in the input feature map X , then after the expansion
layer, the number of channels becomes α × C , where
α is the expansion factor (usually greater than 1). This
operation can be represented as:

X → Xexpanded (Shape: α × C × H ×W ) (7)

2) Depthwise Convolution A depthwise convolution
operation is performed on the expanded feature map.
This results in a new feature map D with the same
number of channels α × C but typically with reduced
spatial dimensions H ′

× W ′. The operation can be
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mathematically represented as [41]:

Di,j,m =

∑
a

∑
b

(fd )a,b · Xexpanded,i+a,j+b,m,

∀m ∈ {1, . . . , α × C} (8)

3) Projection Finally, a 1 × 1 convolution (pointwise
convolution) is applied to project the feature map back
to a lower-dimensional space with C ′ channels. This
operation can be represented as [41]:

Fi,j,k =

α×C∑
m=1

Di,j,m · (fp)k,m, ∀k ∈ {1, . . . ,C ′
} (9)

where F is the final feature map with dimensions C ′
×

H ′
×W ′.

2) SPATIAL ATTENTION MODULE
The spatial attention module plays a vital role, focusing
specifically on enhancing the influence of significant spa-
tial regions within the feature map, which is particularly
beneficial for skin disease classification [42]. It generates
an attention map, effectively modulating the original feature
map F to highlight crucial areas for accurate disease
identification. In the context of skin disease classification,
certain regions of a skin image contain critical information
about the disease, such as the texture, color, or shape of a
lesion. The spatial attention module helps the network to
pay more attention to these informative regions, improving
the model’s ability to differentiate between various skin
conditions. This is especially important in cases where
the disease manifests with subtle visual cues, making it
challenging to diagnose without a focused examination of the
affected area. The spatial attention module operates through
several steps to achieve this enhancement of relevant spatial
features:

1) Feature Aggregation: The module first aggregates
information across the feature map F to generate a
descriptor that captures the global context of the input.
This is done using pooling operations. The aim is to
create a compact representation of the feature map
that highlights the most salient features for the task.
The spatial attention uses the following two pooling
operations.
a) Average Pooling: The average pooling aims to

capture the central tendency of the activations
across the channel dimension for each spatial
location (h,w). Mathematically, for each spatial
location (h,w), the average is computed as
follows:

ξ
avg
h,w =

1
C ′

C ′∑
c=1

Fc,h,w (10)

This operation condenses the multi-channel fea-
ture map F into a single-channel feature map
ξ
Avg
1,H ,W , effectively emphasizing areas where the

average activation is high. Note that, the notation
ξ
avg
h,w and ξ

Avg
1,H ,W are different. ξ

avg
h,w represents a

single value whereas ξ
Avg
1,H ,W represents the whole

whole feature-map.
b) Max Pooling: The max pool operation, on the

other hand, captures the peak activations across
the channel dimension for each spatial location
(h,w). This is expressed mathematically as:

αmaxh,w =
C ′

max
c=1

Fc,h,w (11)

Similar to the average computation, this operation
produces a single-channel feature map αMax1,H ,W
that emphasizes regions of the original fea-
ture map where at least one channel has high
activation.

The rationale for using both average and maximum
computations is to capture both the general and extreme
characteristics of the feature map, thereby providing a
more robust basis for the attention mechanism. After
computing the average ξ

Avg
1,H ,W and maximum αMax1,H ,W

feature maps, they are concatenated along the channel
dimension to form a new tensor ϒconcat. This tensor
has a shape of 2 × H × W , combining both average
and maximum statistics for further processing. The
concatenation is defined as:

ϒconcat
2,H ,W = [ξAvg1,H ,W , αMax1,H ,W ] (12)

This succinctly captures the process of creating a
comprehensive feature representation by combining
average and max pooled maps.

2) Attention Map Generation: The attention map is
generated using the concatenated feature map ϒconcat

2,H ,W
through a convolution operation, resulting in 9.
This convolution integrates both average and max
activations for spatial emphasis, using a k × k kernel
to produce an output of dimensions 1 × H × W . The
convolution operation is defined as:

9h,w =

k−1∑
m=0

k−1∑
n=0

(f )m,n · ϒconcat
h+m,w+n, ∀h,w (13)

A sigmoid activation function σ normalizes the convo-
lution output, resulting in the attention map 8h,w with
values between 0 and 1:

8h,w = σ (9h,w) =
1

1 + exp(−9h,w)
, ∀h,w (14)

3) Feature Modulation: The original feature map F is
modulated by the attentionmap,8h,w through element-
wise multiplication, enhancing important regions and
suppressing others. This can be defined as [43]:

Fnew
c,h,w = Fc,h,w × 8h,w, ∀c, h,w (15)

After the spatial attention, wewill get the featuremapFnew
C,H ,W

from the input feature map F . This feature map Fnew
C,H ,W will

be further focused by using the channel attention module.
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3) CHANNEL ATTENTION MODULE
The channel attention module is a critical component
specifically aimed at enhancing the model’s sensitivity to
pivotal channel-wise features in the featuremapFnew

C,H ,W . This
is particularly relevant in skin disease classification, where
distinct channel characteristics may encode vital diagnostic
information such as color variations and texture details.
By amplifying the significant channels in the feature map,
the channel attention module aids the network in focusing on
these critical aspects, thus improving its ability to distinguish
between different skin conditions.

The channel attention module operates through a series of
steps to augment the relevant channel features:

1) Channel-Wise Feature Aggregation: Initially, the
module computes channel-wise statistics across the
spatial dimensions of the feature map Fnew

C,H ,W . This
process involves pooling operations to condense the
spatial information into a channel-wise descriptor. The
goal here is to distill the essential spatial features
of each channel into a compact form. The module
employs two pooling strategies:
a) Global Average Pooling: This operation com-

putes the average of spatial features for each
channel c, capturing the essence of each channel’s
contribution. Mathematically, the global average
for channel c is defined as [44]:

γ avgc =
1

H ×W

H∑
h=1

W∑
w=1

Fnew
c,h,w (16)

This results in a vector 0
Avg
C,1,1, emphasizing the

channels based on their average spatial activation.
b) Max Pooling: This pooling captures the maxi-

mum activation across the spatial dimensions for
each channel, focusing on the most prominent
features. The mathematical expression is [44]:

βmaxc =
H

max
h=1

W
max
w=1

Fnew
c,h,w (17)

It produces a vector �Max
C,1,1 that highlights chan-

nels with peak spatial activation.
The combination of both average and max pooling
provides a comprehensive view of each channel’s
spatial features, serving as the basis for the attention
mechanism.

2) SharedMLPNetwork: The spatial context descriptors
are processed through a shared Multi-Layer Perceptron
(MLP) network. This network has one hidden layer
with an activation size of RC/r×1×1, where r is
the reduction ratio. The MLP weights are W0 ∈

RC/r×C and W1 ∈ RC×C/r , with ReLU activation
followingW0.

3) Channel Attention Map Generation: The channel
attention map Mc ∈ RC×1×1 is formulated by
element-wise summation of the MLP outputs for both

descriptors [44]:

MC,1,1 = σ (W1(W0(0
Avg
C,1,1)) +W1(W0(�Max

C,1,1))),

(18)

where σ is the sigmoid function. This map dynamically
scales the channels in Fnew

C,H ,W , thereby emphasizing
those most relevant for the task of skin disease
classification. Then the MC,1,1 could be element wise
multiplied to Fnew

C,H ,W to generate the enhanced features
denoted byFEnhanced

C,H ,W . The details of the whole attention
module are given in fig. 7.

Integrating the Channel Attention Module into our
architecture significantly improves the model’s ability to
discern crucial channel-wise features, thereby boosting its
performance in diagnosing various skin conditions.

4) GLOBAL AVERAGE POOLING AND CLASSIFICATION
The enhanced attention map FEnhanced

c,h,w is first processed by a
convolution layer, yielding χc,h,w. This is followed by global
average pooling:

Zc =
1

H ′ ×W ′

H ′∑
h=1

W ′∑
w=1

χc,h,w ∀c ∈ {1, . . . ,C ′
} (19)

The pooled vector Z is then fed into a fully connected layer
for classification:

3 = W · Z + b (20)

Table 4 shows the details of each layer, including the input-
output dimensions, in the proposed model.

5) LOSS FUNCTION: CROSS-ENTROPY LOSS
We have employed cross-entropy loss as the loss function of
the classification model, particularly because it is well-suited
for multi-class classification problems such as skin disease
diagnosis [1], [14]. The cross-entropy loss L for a single
sample is defined as [21]:

L = −

C∑
c=1

yc log(ŷc) (21)

where y is the true label vector, ŷ is the predicted probability
distribution, and C is the number of classes. The loss is
calculated for each sample and averaged over the entire batch
to update the model parameters.

6) OPTIMIZER: ADAM OPTIMIZER
The Adam optimizer is used to adaptively adjust the learning
rates during training. This optimizer is particularly useful
for medical diagnostic tasks where a balance between fast
convergence andmodel stability is critical. The weight update
rule in Adam can be mathematically represented as [45]:

θnew = θold − η ×
mt

√
vt + ϵ

(22)
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FIGURE 7. Detail architecture of attention module.

Here, θold and θnew are the old and new weights,
respectively. η is the learning rate, mt and vt are the first
and second-moment estimates, and ϵ is a small constant to
prevent division by zero. mt and vt can be represented by the
following equations [45]:

mt = β1mt−1 + (1 − β1)∇θL (23)

vt = β2vt−1 + (1 − β2)(∇θL)2 (24)

where β1 and β2 are the exponential decay rates for the first
and second moment estimates, and ∇θL is the gradient of
the loss function with respect to the weights. This optimizer
is well-suited for problems that are large in terms of data
and/or parameters, making it an excellent choice for complex
architectures used in medical diagnostics.

IV. OPERATIONAL WORKFLOW
This section delineates a systematic description of the
operational workflow for the early detection of monkeypox.
A comprehensive overview of the entire framework is
depicted in Figure 8.
1) Step 1: Model Acquisition

Initially, patients are required to download the
pre-trained model from a designated server. The key
parameters governing the training of the proposed
model are detailed in Table 3.

2) Step 2: Image Capture
Subsequently, patients have to capture images of the
affected areas. This step is crucial for ensuring that the
input data to the model is of high quality and relevance.

3) Step 3: Image Processing and Classification
The captured images are then processed and input
into the trained model for classification. This process

TABLE 3. Summary of the key parameters of attention-based
MobileNetV2.

involves the model making a diagnostic decision based
on the visual evidence presented in the images.

4) Step 4: Interpretability and Verification
Utilizing techniques such as Gradient-weighted
Class Activation Mapping (Grad-CAM) and Local
Interpretable Model-agnostic Explanations (LIME),
patients can verify whether the model’s focus aligns
with the clinically relevant areas. If the focus is
misaligned, patients are advised to recapture the image.

5) Step 5: Decision Support
Upon confirmation that the model is focusing on
the correct areas, patients can then proceed to make
informed decisions based on the model’s diagnosis.

V. BASELINES AND EVALUATION METRICS
A. BASELINE MODELS
We have used the following baselines for comparing the
performance and efficiency of various deep learning models
in the context of skin disease classification, ensuring a com-
prehensive evaluation against state-of-the-art architectures.
The baselines are as follows:
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FIGURE 8. Detailed operational workflow for the early detection of monkeypox.

TABLE 4. Layer-wise architectural overview of the enhanced MobileNetV2 with attention modules.

1) VGG-19: VGG-19, a deep convolutional neural net-
work, performs excellently across various image clas-
sification tasks.With its 19-layer architecture, VGG-19
can capture intricate patterns in image data, making it
a robust choice for our task. We employed the VGG-19
model pre-trained on the ImageNet dataset. Then,
it was subsequently fine-tuned with initial weights
specifically for classifying skin diseases, including
monkeypox, using the EMSID dataset.

2) ResNet-152: ResNet-152 introduces the concept of
residual learning, which facilitates the training of

deep networks by addressing the vanishing gradient
problem. This 152-layer network ensures a deep
understanding of the image data, which is vital for
distinguishing between the various skin conditions
present in our dataset. Our study used ResNet-152 pre-
trained on ImageNet.

3) MobileNetV2: MobileNetV2 is renowned for its effi-
ciency and lightweight nature. It utilizes depthwise sep-
arable convolutions, significantly reducing the number
of parameters without compromising performance as
we have discussed earlier. Given the computational
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constraints we aim to adhere to, this feature makes
MobileNetV2 particularly suitable for our study.

4) AlexNet: AlexNet, a deep convolutional neural
network, marked a significant advancement in deep
learning for image recognition tasks. With its
8-layer architecture, AlexNet is known for its
breakthrough performance in large-scale image clas-
sification challenges. In our study, we incorporated
AlexNet pre-trained on the ImageNet dataset. This
established a robust base for extracting features as
we fine-tuned the network to specifically cater to the
intricacies of classifying skin diseases from the EMSID
dataset.

5) GoogleLeNet (Inception v1):GoogleLeNet, or Incep-
tion v1, introduces the inception module, an innovative
approach that concatenates feature maps produced
by varying-size filters. This architecture allows the
network to capture spatial hierarchies in images at
different scales, making it highly effective for complex
image classification tasks. In our research, we utilized
GoogleLeNet pre-trained on the ImageNet dataset.
This provided a strong foundation for feature extraction
while we fine-tuned the network to align with the
nuances of skin disease classification.

6) ShuffleNetV2: ShuffleNetV2, an advancement in
efficient neural network design, is renowned for
its unique approach that optimizes computational
efficiency through the use of channel shuffling and
pointwise group convolutions. This architecture is
specifically engineered to maintain high accuracy
while significantly reducing computational complexity
and memory usage, making it ideal for deployment on
devices with limited resources such as mobile phones
or edge devices.
Table 2 presents the weights of the various models used
in this study, offering insights into their complexity and
resource requirements.

B. EVALUATION METRICS
Traditional metrics such as accuracy, precision, recall,
specificity, and F1-Score are commonly used to evaluate
classification models. These metrics provide a foundational
understanding of model performance, particularly regarding
error type (e.g., false positives vs. false negatives). However,
they only sometimes offer a complete picture, especially in
class imbalances or when the cost of different types of errors
varies. To address these limitations and gain a more nuanced
understanding of model performance, we supplement these
traditional metrics with the following measures:

1) Cohen’s Kappa [46]: In skin disease classification,
accurate and reliable diagnosis is crucial due to the
conditions’ potential severity and treatment costs. Tra-
ditional evaluation metrics such as accuracy, precision,
and recall are commonly used but may not suffice
due to class imbalances and the varying consequences
of misclassification errors. Therefore, we also employ

Cohen’s Kappa score to provide a more nuanced
measure of our model’s performance. The measure is
defined as:

κ =
po − pe
1 − pe

(25)

where po is the proportion of observed agreements, and
pe is the expected proportion of chance agreements.
The kappa statistic is indicative of a classifier’s ability
to discern between conditions accurately, which is
especially important given the similarity in presenta-
tion among various skin diseases. A higher value of κ

suggests that the classifier’s performance is due to its
predictive ability rather than chance.

2) Matthews Correlation Coefficient [47]: The
Matthews Correlation Coefficient (MCC) is a reliable
statistical rate that produces a high score only if
the prediction obtained good results in all of the
four confusion matrix categories (true positives (TP),
false negatives (FN), true negatives (TN), and false
positives (FP)), proportionally both to the size of
positive elements and the size of harmful elements
in the dataset. It is particularly informative in binary
classification tasks, even when the classes are very
different sizes. The MCC is defined as:

MCC

=
TP × TN−FP × FN

√
(TP+FP) · (TP+FN) · (TN+FP) · (TN+FN)

(26)

An MCC of +1 represents a perfect prediction, 0 is no
better than a random prediction, and -1 indicates total
disagreement between prediction and observation.

3) Youden’s J Index [48]: Youden’s J Index is a single
statistic that captures the performance of a diagnostic
test, summarizing the ROC curve. Unlike accuracy,
which does not differentiate between the types of
errors, Youden’s J incorporates both sensitivity (true
positive rate) and specificity (true negative rate) to
provide a more robust measure of class imbalance. The
index is defined as:

J = sensitivity + specificity − 1 (27)

where sensitivity is the probability that a test result will
be positive when the disease is present (true positive
rate), and specificity is the probability that a test result
will be negative when the disease is not present (true
negative rate). A higher Youden’s J Index indicates a
better performance of the test to identify positive cases
without misclassifying negative cases.

VI. RESULTS ANALYSIS, DISCUSSION AND
EXPLAINABILITY
A. PERFORMANCE ON MSID DATASET
We also evaluate the proposed attention-based model on the
MSID dataset. Fig. 9 shows the confusion matrix of the
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TABLE 5. Evaluating classification efficacy: A detailed metrics analysis of various deep learning models on EMSID.

FIGURE 9. Confusion matrix of proposed model on MSID dataset.

proposedmodel on theMSID dataset. From the figure, we can
see that with an overall accuracy of 98.19%, the model shows
exceptional capability in correctly classifying the images.
It maintains high precision (97.39%), indicating a solid
ability to minimize false positives, which is critical in medical
diagnostics. The recall or sensitivity of 96.59% reflects the
model’s proficiency in correctly identifying positive cases,
ensuring that few cases are missed. The F1-score, at 96.97%,
indicates a balanced performance between precision and
recall. The specificity of 99.42% further underscores the
model’s strength in accurately identifying negative cases,
which is essential for reducing false alarms.

B. RESULT ANALYSIS ON EMSID
After completing the training and evaluation, the results show
that the proposed model can accurately classify different skin
lesions. The proposed model’s performance was satisfactory,
showing it can tell the difference between different types of
skin lesions. These results confirm that the model is reliable
and effective in correctly identifying and classifying skin
lesions.

Fig. 10 presents the confusion matrices for different
models. The analysis of these matrices reveals that all models
exhibit proficiency in detecting monkeypox alongside other
skin lesions. However, the proposed attention-based model
correctly classified all the 56 monkeypox instances from
the test dataset. The class-wise performance of each model
is presented in Fig. 11. Table 5 compares precision, recall,
F1-score, sensitivity, specificity, and accuracy among the
baseline models given in table 2.

We can see from table 5, the proposed model achieved
a remarkable precision (0.9048), outshining other baselines.
This high precision indicates the model’s robustness in
accurately identifying positive instances among various
skin conditions. In terms of specificity (0.9890) and accu-
racy (0.9228), the proposed model again led the field,
demonstrating its ability to correctly classify negative
instances and maintain overall accuracy across diverse
conditions.

In contrast, while ResNet-152 showed commendable
performance, particularly in recall (0.9040), it slightly lagged
behind from the proposedmodel in other critical metrics. This
highlights the nuanced differences in model performance,
where some excel in recognizing true positive cases while
others balance precision and recall more effectively.

The standard MobileNetV2, without the attention mecha-
nisms, also demonstrated solid performance but was clearly
outperformed by the proposed model in terms of precision
and accuracy. This underlines the significant impact of incor-
porating attention mechanisms into the network architecture.
VGG-19 and AlexNet, while moderately effective, were
outclassed by the more advanced models, particularly in
terms of specificity and accuracy. The ShuffleNetV2, which
has the lowest number of parameters, also showed the worst
performance across all evaluated metrics. This underscores
the trade-off between model complexity and efficiency,
with ShuffleNetV2’s streamlined design not capturing as
much detailed information as its more complex counterparts,
leading to reduced effectiveness in this specific task of skin
disease classification.

This comparative analysis highlights the importance of
attention mechanisms in enhancing the diagnostic capabil-
ities of neural networks, especially in skin disease images.
Integrating spatial and channel attention modules in the
MobileNetV2 model has facilitated a more focused and
nuanced analysis of dermatological images, leading to more
accurate classifications. This advancement is crucial in
medical imaging, where the accurate diagnosis of skin
diseases can be challenging due to the subtle variations in
visual features across different conditions.

Fig. 12 compares the performance of different clas-
sifiers for the monkeypox class. The figure shows that
the attention-based MobileNetV2 model has demonstrated
superior performance for detecting the instances from the
monkeypox class from the test dataset. The model has
achieved an impressive accuracy of 98.07%, with perfect
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FIGURE 10. Confusion matrices for skin lesion classification: (a) Proposed model, (b) AlexNet, (c) MobileNetV2, (d) ShuffleNetV2 (e) VGG-19,
(f) ResNet-152 and (g) GoogLeNet models, highlighting comparative performance.

FIGURE 11. Comprehensive class-wise evaluation of skin lesion detection models: (a) Proposed model, (b) AlexNet, (c) MobileNetV2, (d) ShuffleNetV2
(e) VGG-19, (f) ResNet-152, and (g) GoogLeNet - A comparative analysis highlighting accuracy, precision, recall, F1-score, specificity and sensitivity.

sensitivity, indicating its ability to detect all true monkeypox
cases without any false negatives. The precision of the model
stands at 91.8%, which, combined with a recall (sensitivity)
of 100%, yields an F1-score of 97.39%. Furthermore, the
specificity of 97.53% ensures that the model is highly effec-
tive at correctly identifying non-monkeypox cases, thereby
minimizing the risk of false positives. In comparison, other

models like the MobileNetV2, VGG-19, and ResNet-152
have shown commendable results; however, they fall short of
the benchmarks the attention-basedMobileNetV2model sets.
Notably, the standard MobileNetV2 and ResNet-152 models
have recorded an accuracy of 98.06%, with F1-scores nearing
95.50%. VGG-19, while still performing well, lags slightly
behind in recall and F1-score, indicating a greater tendency
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FIGURE 12. Comparative analysis of different models for monkeypox
classification, evaluating accuracy, precision, recall, F1-score, specificity,
and sensitivity.

FIGURE 13. Cohen’s kappa score comparison across models for enhanced
reliability assessment.

to miss actual monkeypox cases compared to the proposed
model.

Fig. 13 shows Cohen’s kappa scores for each evaluated
model, illustrating the degree of agreement between the
models’ predictions and the ground truth for the classification
of dermatological diseases. The proposed attention-based
MobileNetV2 model demonstrated a remarkable Cohen’s
kappa score of 0.91, reflecting a substantial agreement
with the ground truth. This score underscores the model’s
precision in discerning the nuances of dermatological imag-
ing. Traditional architectures like ShufflenetV2, GoogLeNet,
MobileNetV2, and ResNet-152 yielded kappa scores of 0.80,
0.89, 0.89, and 0.90, respectively. These scores, while indica-
tive of high agreement, still leave room for improvement,
which the attention mechanisms seem to address effectively.
Notably, VGG-19 and AlexNet, despite their depth and
complexity, obtained a kappa score of 0.83 and 0.84,
respectively, suggesting that their performance, in terms of

FIGURE 14. Comparison of Youndu’s J score among different models.

FIGURE 15. Comparison of MCC score among different models.

agreement with clinical diagnoses, is less reliable compared
to the other models in the context of this study.

Fig. 14 shows Youden’s J scores for each evaluated
model. The figure shows that ResNet-152 leads the pack
with a score of 0.892, indicating its superior ability to
identify positive and negative cases accurately. However,
the proposed model stands out with a high score of 0.883,
highlighting its specialized features’ effectiveness in accu-
rately diagnosing skin diseases. The Matthews Correlation
Coefficient (MCC) scores for all the classifiers have been
shown in Fig. 15. The figure illustrates that AlexNet, VGG-19
and ShuffleNetV2, with an MCC of 0.807, 0.811 and
0.784 show reasonable capability yet indicate potential for
improvement in balanced classification accuracy. VGG-19
marginally surpasses AlexNet and ShuffleNetV2 with an
MCC of 0.811, reflecting a slightly better balance between
true and false positives and negatives. ResNet-152 stands out
with an MCC of 0.887, showcasing its superior performance
in making balanced and accurate predictions. MobileNetV2,
with an MCC of 0.870, demonstrates robust performance,
balancing efficiency and accuracy, while GoogLeNet scores
0.863, suggesting competent performance albeit slightly
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FIGURE 16. Detailed comparative analysis of sequential
spatial-to-channel and channel-to-spatial attention mechanisms versus
singular attention models on precision, recall, F1-score, specificity,
sensitivity, and accuracy in skin diseases classification.

outperformed by more advanced models. The Proposed
model, enhanced with specialized features, achieves the
highest MCC of 0.888, underscoring the effectiveness of
its design in accurately classifying diverse skin conditions.
These scores highlight the importance of model architecture
and specialized features in achieving a balanced and accurate
classification in complex tasks like skin disease diagnosis.

C. ABLATION STUDY
We conduct an ablation study to assess the impact of different
combinations of spatial and channel attention. The outcomes
of this study, illustrating the effects of varying spatial and
channel attention combinations, are presented in figure 16
and table 6. A summary of the findings derived fromfigure 16
is as follows:

• Spatial → Channel Attention (Proposed): Achieving
the highest scores across all metrics, with an accuracy
of 0.923, precision of 0.905, recall of 0.894, F1-score
of 0.898, specificity of 0.989, and sensitivity of 0.894.
This configuration excels in performance, likely due to
its sequential focus on spatial and then channel-wise
information, leading to effective classification.

• Only Spatial Attention: Shows a slight decrease in
performance compared to the full model, indicating that
while spatial attention is crucial for focusing on relevant
image regions, the lack of channel attention results in a
reduced ability to distinguish similar diseases.

• Only Channel Attention: This configuration sees
further drops in performance metrics, suggesting that
while channel attention is important for emphasizing
features, it is less effective than spatial attention in
isolating key image areas.

• Channel Attention → Spatial Attention: Exhibits the
lowest performance among the configurations, possibly
because prioritizing channel features before spatial
features lead to less effective initial analysis, which
spatial attention struggles to rectify.

These results indicate that the combination and sequence
of spatial and channel attention mechanisms significantly
impact the model’s accuracy in classifying skin diseases.
With spatial followed by channel attention, the proposed
model provides a balanced focus on relevant image areas
and crucial features, leading to superior performance. Table 6
presents a comparative analysis utilizing three crucial metrics
for evaluation: the Matthews Correlation Coefficient (MCC)
Score, Youden’s J Score, and Cohen’s Kappa Score.

The proposed model emerges as the most effective
configuration, applying spatial attention followed by channel
attention. This model excels across all metrics, achieving
an average MCC score of 0.91, Youden’s J score of 0.88,
and Cohen’s Kappa score of 0.91. This superior performance
accentuates the advantage of first focusing on spatial features
to identify relevant areas within the images, followed by
an in-depth analysis of channel-wise details, enhancing the
model’s diagnostic accuracy.

On the other hand, models employing a singular type
of attention mechanism, either ‘‘Channel Attention’’ or
‘‘Spatial Attention,’’ demonstrate commendable performance
but do not reach the heights of the combined approach.
With MCC scores of 0.89 and 0.90, respectively, and
closely matching Youden’s J and Cohen’s Kappa scores,
these models underscore the significant contributions of
each attention mechanism. However, they simultaneously
suggest that a synergistic approach is more conducive to
achieving heightened accuracy. Intriguingly, reversing the
attention application (Channel → Spatial) sequence records
the lowest scores across all metrics. With an MCC of
0.88, Youden’s J of 0.85, and Cohen’s Kappa of 0.89, this
configuration’s relatively diminished performance indicates
that prioritizing channel features before spatial features may
be less efficacious for skin disease classification.

We perform another ablation study to see the effects
of the attention mechanism (spatial → channel attention)
at different layers of the MobileNetV2. Table 7 shows
the result comparison. According to this table, applying
attention after the 17th layer yields the best performance
across all metrics. This is likely because layer 17 is the
final inverted residual layer, followed by just a convolutional
layer (see fig 4). The concluding convolutional layer in
architectures like MobileNetV2 plays a pivotal role in the
final feature refinement prior to classification. By introducing
attention right before this layer, the network is enabled
to concentrate on and enhance the most vital features for
distinguishing between various skin conditions. This strategy
proves particularly effective as it precedes the ultimate
decision-making stage in the process.

D. DISCUSSION ON COMPARATIVE EFFECTIVENESS AND
EFFICIENCY WITH EXISTING LITERATURE
Table 8 highlights the competitive accuracy of our attention-
based MobileNetV2 model in detecting monkeypox from
skin lesion images. It is noteworthy that certain methods

VOLUME 12, 2024 51959



A. D. Raha et al.: Attention to Monkeypox: An Interpretable Monkeypox Detection Technique

TABLE 6. Detailed comparative analysis of sequential spatial-to-channel and channel-to-spatial attention mechanisms versus singular attention models
on MCC score, Youden’s J score and Cohen’s kappa score in skin diseases classification.

TABLE 7. Performance metrics comparison for attention mechanism applied after various layers.

FIGURE 17. Visualizing the influence of features on the proposed model’s predictions with LIME for enhanced
interpretability.

have achieved marginally higher accuracy rates. Specifically,
the study in [25], which employs ResNet-101, demonstrates
an accuracy of 99% on the MSID dataset. Additionally, the

ensemble approach detailed in [49] achieves an accuracy of
98.7%, slightly edging out our model’s performance on the
same dataset.
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TABLE 8. Comparative analysis of monkeypox detection techniques.

These surpassing methods, however, come with inherent
trade-offs, particularly in terms of model complexity and
computational requirements. ResNet-101, for instance, is a
deep convolutional network with over 44.5 M parameters,
which significantly increases the computational load and
memory requirements. Similarly, the ensemble technique
that combines multiple deep learning models, including
DenseNet-121, ResNet-152, and EfficientNetv2, further mul-
tiplies the computational complexity due to the aggregation of
several heavyweight models. These methods are not suitable
for the edge devices.

In contrast, our proposed method capitalizes on the
lightweight architecture of MobileNetV2, enhanced with
attention mechanisms, to offer a more resource-efficient
solution. Despite using a considerably lesser number of
parameters (3.7 M), our approach achieves an accuracy of
98.19% on the MSID dataset, which is remarkably close to
the top-performing methods. This efficiency becomes par-
ticularly critical when deploying models on edge devices or
in resource-constrained environments, where computational
resources and power are limited.

E. EXPLAINABILITY
Explainability in machine learning, especially in high-stakes
domains like healthcare, is not a luxury but a necessity. It is
crucial for validating model decisions, ensuring reliability,
and facilitating trust among practitioners. For this study,
we have used two models for the interpretability of the
decisions of the deep learning models. We have used
LIME [52] and Grad-CAM [53]. LIME and Grad-CAM are
prominent interpretability techniques that provide comple-
mentary insights into model predictions. Combining these
methods can offer a more comprehensive understanding of
model behavior. In medical diagnostics, where interpretabil-
ity is paramount, employing both LIME and Grad-CAM
offers a multifaceted view of model decisions. LIME’s
local, feature-based explanations complement Grad-CAM’s
visualization of influential regions within the input space,
providing both the ‘why’ and ‘where’ aspects of a model’s
prediction. This combination enhances trust in AI-assisted

decision-making by ensuring that both local and global
features are accounted for and also aids in validating the
model’s focus on clinically relevant areas of an image.
Therefore, the synergy between LIME and Grad-CAM leads
to a more transparent, comprehensible, and reliable machine
learning model, bolstering its acceptance among healthcare
professionals. Next, we describe the working procedure of
LIME and Grad-CAM briefly:

1) CONCEPT OF LIME
LIME is premised on the notion that while complex models
can be inscrutable, their predictions can be locally approx-
imated by more straightforward, comprehensible models.
It generates an interpretable model that is locally faithful
to the classifier’s behavior, providing insights into the
decision-making process for individual predictions. The
LIME methodology encompasses several key steps:

1) Sample Generation: This involves the creation of a
neighborhood dataset around a particular instance x
by introducing minor perturbations. This new dataset
serves as a basis for understanding the model’s
behavior near x.

2) Model Prediction: The original, complex model is
then applied to this neighborhood dataset to predict
outcomes for these perturbed samples.

3) Weight Assignment: Each sample in the neighborhood
is assigned a weight based on its similarity to the
original instance x, effectively quantifying its relevance
to the instance under investigation.

4) Surrogate Model Training: A simpler model, like
linear regression, is trained on this weighted dataset.
This surrogate model aims to mimic the complex
model’s behavior in the vicinity of x.

5) Interpretation: The final step involves interpreting the
surrogatemodel, particularly its parameters, to infer the
complex model’s reasoning for the specific instance x.

a: MATHEMATICAL FORMULATION
The core of LIME lies in its mathematical formulation,
represented as follows: Let f be the original complex model
and g the simpler, interpretable model. Let x ′ represent a
transformed version of x for the interpretable model. LIME
aims to find a g that minimizes the locality-aware loss
function L, defined as [54]:

L(f , g, πx) =

∑
z∈Z

πx(z)
(
f (z) − g(x ′)

)2 (28)

where:

• Z is the set of perturbed samples.
• πx(z) denotes the proximity weight for each per-
turbed sample z, calculated using an exponential kernel
function:

πx(z) = exp
(

−
||x − z||2

2σ 2

)
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FIGURE 18. Activation map of the proposed model using GradCam.

with σ being a parameter controlling the neighborhood’s
scope.

Through this optimization process, LIME elucidates the
features most influential in the model’s prediction for a
given instance x. Fig. 17 represents a graphical depiction
illustrating how the LIME algorithm identifies and weights
the most relevant features for specific predictions. This
visualization aids in understanding the local interpretability
provided by LIME, highlighting the areas or features in the
input data that impact the model’s prediction most. As can be
seen in the figure, the most important areas are marked in a
yellow-colored region.

2) CONCEPT OF GRAD-CAM
Grad-CAM, or Gradient-weighted Class Activation Map-
ping, leverages the gradients of the target output from a
convolutional neural network to produce a heatmap that
highlights the important regions for making a predic-
tion. This technique provides visual explanations for the
network’s decisions, enhancing the model’s interpretabil-
ity. The Grad-CAM algorithm includes the following
steps:

1) Forward Pass: Conduct a forward pass through the
network to obtain the class scores.

2) Compute Gradients: Calculate the gradients of the
score for the target class with respect to the feature
maps of a convolutional layer.

3) Neuron Importance Weights: Apply global average
pooling to the gradients to derive the neuron impor-
tance weights.

4) GenerateGrad-CAMHeatmap: Produce the heatmap
by weighting the feature maps with the neuron
importance weights, summing them, and applying the
ReLU function.

a: MATHEMATICAL FORMULATION
The mathematical formulation for Grad-CAM is as follows.
Given Ak as the k-th feature map of a convolutional layer, and
yc as the score for the target class c before the softmax layer,
the neuron importance weight αck is calculated by [55]:

αck =
1
Z

∑
i

∑
j

∂yc

∂Akij
(29)

where Z is the total number of pixels in the feature map Ak .
The Grad-CAM Lc for class c is then computed as [55]:

Lc = ReLU

(∑
k

αckA
k

)
(30)
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The ReLU function is applied to the weighted combination
of feature maps to ensure that only the features that positively
influence the score of the target class contribute to the
heatmap. This application of ReLU effectively filters out the
negative values in the feature maps, highlighting areas of
importance that positively impact the class prediction. Fig.18
shows the activation map of some instances, demonstrating
how different regions in the input images are activated for
the target class. These activation maps visually represent
the areas and features in the image most influential in
determining the model’s classification decision, providing
insights into the model’s focus and decision-making process.

VII. CONCLUSION
In conclusion, our study delves into leveraging artificial
intelligence for early detection of monkeypox, a public
health issue that has become increasingly significant post-
COVID-19. The complexity of themedical diagnosis process,
particularly regarding early-stage infections, presents a
notable challenge. Our study focuses on the MobileNetV2
model, characterized by its lightweight structure and low
parameter count, making it suitable for operation on
mobile phones and other intelligent edge devices. We have
improved accuracy by incorporating spatial and channel
attention mechanisms, effectively distinguishing monkeypox
from similar dermatological conditions. Compared with
different established architectures like ResNet-152, VGG-19,
GoogLeNet, etc., our model’s performance demonstrates
superior accuracy and efficiency, making it particularly
valuable in resource-constrained settings.We further enhance
our model’s applicability in medical settings by integrating
Grad-CAM and LIME, ensuring the interpretability and
reliability of the AI-driven recommendations for healthcare
professionals. Extensive evaluation using metrics such as
Cohen’s Kappa, MCC, and Youden’s J Index confirms the
model’s proficiency, with it achieving impressive accuracies
of 92.28% on the EMSID dataset and 98.19% on the MSID
dataset. These results underscore the proposedmodel’s poten-
tial in aidingmonkeypox diagnosis, contributing significantly
to public health efforts.
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