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ABSTRACT The experimental identification of an unknown system, and the blind system identifica-
tion (BSI) methods, allows engineers to establish mathematical models that represent the real system
behavior. However, when the system operates in a non-stationary environments influenced by external
disturbances, models with adaptive properties are required for predicting the real-time domain response.
This study defines and analyzes in detail two system identificationmethods. The first method, which operates
offline and requires post-processing, is mathematically defined to achieve the highest level of automation.
It is based on sine sweep theory and involves conducting long-term experiments on a real system to determine
its frequency domain properties. The secondmethod, which operates online, employs computational learning
theory and information theory to predict the system response through online learning. This modern approach
uses convex optimization to obtain the optimal parameters of a time-lagged recurrent network (TLRN) in
each iteration, which incorporates, among other features, a gamma filter as a mapper. This iterative online
method was mathematically described addressing stability, convergence, and disturbances issues.

INDEX TERMS Adaptive models, online learning, artificial neural networks, time-lagged recurrent
network (TLRN), recurrent neural network (RNN).

I. INTRODUCTION
The identification of electromechanical systems can be
approached through analytical or empirical methods. Ana-
lytical methods, based on the development of physical laws,
are particularly useful in the design stage. On the other
hand, empirical methods are employed by engineers when
the system has been constructed, and efficient extraction of
computational models is required for transient and stationary
response analysis. Within empirical methods, we pay special
attention to those executed offline and online, with the latter
allowing the designer to characterize the plant in real time and
extract the map that models the system.

Furthermore, the design of controllers for stable electrome-
chanical systems heavily relies on accurately mathematically
characterizing the system, especially when references, noise,
and perturbations are distributed across a wide frequency
spectrum. In the control design stage, the objective is to

The associate editor coordinating the review of this manuscript and
approving it for publication was Ikramullah Lali.

establish analytically either global exponential or global
asymptotic tracking (GET, GAT), or at least local exponential
or asymptotic reference tracking. Additionally, when adap-
tive controller designs require the asymptotic identification
of time-varying uncertainties, it is common to integrate
a machine learning model to automatically identify these
uncertainties

In this paper, we analyze the fundamentals of two system
identification (SI) techniques and discuss their respective
performances. These techniques serve as indispensable tools
for analyzing system responses, designing digital controllers,
and extracting the relevant information that allows the
characterization of a real system.

When an electromechanical system exhibits the proper-
ties of superposition and homogeneity, traditional system
identification techniques involve exciting the system with
input commands. Subsequently, the output states, measured
by sensors, are processed using offline linearization methods.
In contrast, in fields such as machine learning, which adhere
to the universal approximation theorem, system identification
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focuses on solving regression problems. Here, a mapping
function based on artificial neural networks (ANN) is
employed. These networks are trained using offline methods
(full-batch or mini-batch) or online learning techniques. This
approach allows replacing a black-box or unknown model
with a stable white-box model.

In this study, a stable electromechanical system was
identified using two SI techniques. The first method was
the sine sweep, which is based on sinusoidal experiments
and automatic offline data processing. The second was an
online learning approach where the parameters of the real
system are obtained in each iteration through stochastic
gradient descent. Additionally, the online iterative method
was evaluated in terms of disturbances, convergence, and
stability to demonstrate its real performance.

II. RELATED WORK
The rapid advancement of machine learning and control
systems has led to a proliferation of studies addressing
various aspects of system-identification techniques. In this
section, we review and compare key contributions and
highlight the evolution of research in this domain.

A. EXTRACTION OF LINEAR SYSTEMS MODELS
The identification of linear or linearizable systems at specific
operating points, based on the detailed extraction of the
frequency domain response through experimental methods,
is currently being addressed [9], [11], [24], [25], [26]. Accu-
rate extraction of the frequency domain response of a system
during the control design stage is often underestimated.
This underestimation is attributed to the robustness to para-
metric uncertainty demonstrated by closed-loop feedback
control, a characteristic that has made it popular in the
industry.

B. ADAPTIVE DESIGNS WITH ARTIFICIAL NEURAL
NETWORKS (ANN)
The design of system state trajectory estimators, the utiliza-
tion of recurrent neural networks in control system structures,
and approaches involving reinforcement learning as well
as heuristic dynamic programming (HDP), are abundant
in the state-of-the-art [12], [17], [18], [19], [20], [27].
An interesting example in this field is the ‘‘truck backer-
upper’’ published in April 1990 [15].

C. ADAPTIVE NETWORK DESIGN AND PARAMETRIZATION
Adaptive control design, with a derived structure based on the
Lyapunov stability theorem, including real-time estimation of
both structured and non-structured parametric uncertainties
using neural networks, has been evaluated and published in
the last two decades [5], [6], [7]. The prediction based on
filters and plant estimation in stochastic control theory was
introduced in [30].
The parameterization of artificial neural networks for

use in control system architectures, as well as in online
system identification, can be carried out through analytical

resolution, or through non-linear iterative methods such as
Newton’s method or gradient descent and its variations [1],
[2], [3], [4], [8].

D. COST FUNCTION MECHANISM IN ADAPTIVE
SOLUTIONS
When pursuing an iterative adaptive solution, we recognize
that the heart of an adaptive system is the cost function.
In this study, the cost function mechanism is based on
the mean squared error (MSE), which is suitable when the
prediction error follows a Gaussian distribution. On the other
hand, researchers have proposed alternatives to MSE to
reduce prediction errors [14], [16]. Moreover, when reduced
memory and stationary parameters are required in non-linear
prediction, researchers tend to favor the new generation of
online learning algorithms defined in the reproducing kernel
Hilbert space (RKHS) [10].

E. ADAPTIVE FILTERING IN RECURRENT NEURAL
NETWORK ARCHITECTURES
The inclusion of adaptive filtering [21] as an activation
function in recurrent neural network (RNN) architectures is
a well-known practice and has been extensively discussed in
several studies [22], [23].

III. DESCRIPTION
In this section, two system identification methods (III-A
and III-B) were described in detailed mathematical terms.
The first method, sine sweep transfer function estima-
tion (III-A), was explained in four steps (III-A1, III-A2,
III-A3, and III-A4), while the secondmethod, online-learning
identification (III-B), was explained in three subsections
(III-B1, III-B2, and III-B3). Finally, computer simulations
were developed in section III-C.

A. SINE SWEEP TRANSFER FUNCTION ESTIMATION
1) SINUSOIDAL EXPERIMENTS OVER THE REAL SYSTEM
A Bounded-Input Bounded-Output (BIBO) stable electrome-
chanical linear system was subjected to an input u0(t0) =
A sin(αt0). The observable output state of the system was
measured using a sensor, and the output response took the
form y0(t0) = A|G(jα)| sin(αt0 + ̸ G(jα)) + ϵ. Here, G(jα)
represents the unknown transfer function of the system, and
ϵ denotes an error that tends to zero as t →∞. The parameter
α is defined as α = 2π f . This process was repeated for
various input frequencies αi, and each input-output pair was
recorded in matrices U0 and Y0, respectively, for different
input frequencies α.

2) EXPANDING OR INCREASING THE
DIMENSIONALITY OF DATA
When conducting long-term experiments on a real system
becomes infeasible due to operational limitations or because
the system response is influenced by non-constant random
variables over extended periods, it may be necessary to
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FIGURE 1. A radial basis artificial neural network (ANN) was employed to
predict y (t). The network was trained using the signals y0(t0) and u0(t0),
where t0 ≪ t .

enhance the dimensionality of the sensor data. This involves
transforming the original data from y0 ∈ RN0 to y ∈ RN ,
where N0 ≪ N .
The accuracy of the magnitude estimation, denoted as ĝ ≈
|G(jα)|, and the phase estimation, denoted as ϕ̂ ≈ ̸ G(jα)),
improves as the dimensionality increases converging to ϵ →
0 as t →∞.

The challenge of increasing dimensionality is a problem
addressed in fields such as machine learning [13]. The
solution involves selecting the network architecture, training
it using an iterative method, a direct method based on
cost function derivation, or a combination of both, and
then making predictions through the trained network. The
approach proposed in this study utilizes a radial basis
network (RBN) and evaluates its performance when the
network is fed with either the raw input data or with feature
extraction applied to the input domain.

The training process involved using the input-output
matrices as features and targets, denoted as X0 = U0 ∈

RK×N0 and T0 = Y0 ∈ RK×N0 , respectively, to train the
network when K is the number of experiments with each
frequency α, N0 and N represents the dimensionality before
and after the dimensionality expansion. These matrices were
recorded during the experimental stage (section III-A1).
Subsequently, the network was used to predict the matrix
Y ∈ RK×N when the input matrix X = U ∈ RK×N was
introduced (Figure 1).
The optimal radial basis network parameters, denoted byw,

minimize the cost function in Eq. 2, can be derived and solved
in only one iteration.

The hidden layer of the network was implemented with
Gaussian radial basis functions, defined as: φRBFj =

exp
(
−

(x−µj)2

2s2

)
, where s is a hyperparameter, and x repre-

sents the input feature.

The output y is defined as the weighted sum, that is:

yj =
L∑
i=1

wi8RBF
ij (1)

where ‘L’ represents the total number of µ centers and the
optimal parametersw are derived from a cost function (2) that
includes both the Lasso and Ridge regression terms.

E(w) =
1
2
∥φRBFw− ttarget∥22︸ ︷︷ ︸
data dependent convex cost

+β∗(λ1∥w∥1 + λ2∥w∥22)︸ ︷︷ ︸
elastic net regularization

(2)

Denote the RBF features φRBF as φ for simplification.
Then, the optimal parameters w will be:

(φTφ + 2β∗λ2)w+ β∗λ1sgn(w)− ttargetφT =
∂E(w)
∂w

= 0

(3)

The last equation Eq. 3 reveals that ∂E(w)
∂w depends on

the term sgn(w). This implies that the parameter resolution
is affected by the initialization dependence issue, leading
to three possible initial values for obtaining the optimal
parameters:

1) If w < 0, then sgn(w) = −1

(φTφ + 2β∗λ2)w− β∗λ1 − ttargetφT

= 0

w = (φTφ + 2β∗λ2)−1(β∗λ1 + ttargetφT) (4)

2) If w = 0, then sgn(w) = 0

(φTφ + 2β∗λ2)w− ttargetφT

= 0

w = (φTφ + 2β∗λ2)−1(ttargetφT) (5)

3) If w > 0, then sgn(w) = +1

(φTφ + 2β∗λ2)w+ β∗λ1 − ttargetφT

= 0

w = (φTφ + 2β∗λ2)−1(ttargetφT − β∗λ1) (6)

In addition, two hyperparameters are adjusted by designers
λ1 and β∗, considering λ2 = 1 − λ1. Finally, the parameter
vector w that minimized the identification error across all
possible initializations was selected as the optimal set.

3) MAGNITUDE AND PHASE ESTIMATION
This section describes the process of determining both
the magnitude (amplitude) and the phase of a signal or a
component within a signal. This estimation is commonly
performed in various fields, such as signal processing,
control systems, and electrical engineering [9]. The method
described here allows for magnitude and phase estimation
even when sensor measurements are noisy.
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FIGURE 2. The magnitude ĝ and phase ϕ̂ estimation for one experiment,
denoted as αi , involved short-term experiments with ζ0 = 5000,
increasing their dimensionality with ANN to ζ > 107. The estimation
reached steady-state when ζ ≫ ζ0, that means a large number of
cycles NP .

Then, the magnitude g = |G(jα)| and phase ϕ = ̸ G(jα)
could be estimated as:

ĝ ≜
2
A

√
I2p + I2q (7)

ϕ̂ ≜ tan−1
(
Iq
Ip

)
(8)

where Ip =
∫ NP
0 y(t)s(t) dt and, Iq =

∫ NP
0 y(t)c(t) dt .

Additionally, the in-phase term s(t) and quadrature term c(t)
are defined as follows:

s(t) ≜ sin(αt) (9)

c(t) ≜ cos(αt) (10)

The accuracy of estimation requires that NP = 2π
αi
ζ .

Denote NP0 = 2π
αi
ζ0 as the actual number of periods used

in each real short-time sinusoidal experiment. As explored in
this paper, an alternative to unfeasible long-term experiments
is to introduce a small value ζ0, indicating short-time duration
experiments using u0(t) and y0(t) when ζ0 ≪ ζ . Subse-
quently, the long-term output y(t) can be estimated using a
trained radial basis artificial neural network (as discussed
in Section III-A2). It is necessary that the integer ζ be
significantly greater than the integer ζ0 to ensure estimation
accuracy as has been demonstrated in Figure 2.

4) TRANSFER FUNCTION IDENTIFICATION
Using the experimental magnitude and phase determined
by the sine sweep method explained in Section III-A, and
applying the dimensionality-increasing technique detailed
in Section III-A2, it is possible to determine the transfer
function or state-space model that minimizes the error
between the target magnitude-phase (mt , pht ) and, the
transfer function magnitude-phase response (m, ph) across
a range of frequencies denoted by α with a total of K

FIGURE 3. Several transfer functions (TF) have been proposed to identify
the experimental data magnitude and phase. The relative degrees (r.d)
evaluated were 1, 2 and 3.

frequency points. The error function is represented by Eq. 11.

E =

∑K
i=1[m(αi)− mt (αi)]

2
+ [ph(αi)− pht (αi)]2

K
(11)

The transfer function that minimizes Eq. 11 has the form
of Eq. 12:

H (s) =
B(s)
A(s)
=

b1sz + b2sz−1 + . . .+ bz+1s0

a1sp + a2sp−1 + . . .+ ap+1s0
(12)

If we define h(k) = mt (k)ejpht (k), and let A(α(k)) and
B(α(k)) denote the Fourier transforms of the polynomials a
and b at the frequency α(k) respectively, and n be the number
of frequency points, it is possible to find the best stable model
H (s) for a and b with a relative degree r .d = p − z that
minimizes Eq. 13 and 14, as demonstrated in [28], [29].

min
a,b

n∑
k=1

αt(k) |h(k)A(α(k))− B(α(k))|2 (13)

min
a,b

n∑
k=1

αt(k)

∣∣∣∣h(k)− B(α(k))
A(α(k))

∣∣∣∣2 (14)

Figures 3 and Table 1 show the linearization sensitivity
analysis. Finally, we can conclude that transfer functions 3, 4,
and 9 produced accurate results compared to the magnitude
and phase of the real system in the analyzed frequency
interval.

It was demonstrated that it is possible to obtain a
reduced-order linear model that identifies the stationary
frequency response of the studied system. During this
process, it was necessary to increase the dimensions of the
experimental dataset through the resolution of a regression
problem using a radial basis ANN that was trained with
a reduced dimension. The dimensionality-increase method
allowed us to minimize the time spent in the experimental
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TABLE 1. Transfer function (TF) and relative degree (r.d) versus the
normalized system identification mean-squared error (MSE) in terms of
magnitude and phase (eq. 11). In general, increasing the relative degree
minimizes the identification error. Transfer function TF3,
(−0.6509s2 + 7.13s + 0.1684)/(s3 + 3.63s2 + 8.215s + 0.01086),
minimized MSE and r.d..

FIGURE 4. Regression analysis involves predicting a curved trajectory in
the input-output plane. When the feature is the normalized raw input
X = u(t)n, the network prediction is a straight line in the input-output
plane. However, when feature extraction X = f [u(t)] is applied using
Equation 15, the prediction closely resembles the curve of the dataset.

stage on the real system and improve themagnitude and phase
estimation, reaching steady-state values.

When discussing feature extraction, several common tech-
niques can be applied, including statistical shape descriptors
and time-series features. However, in this case, a tailored
strategy was employed, as outlined in Eq. 15:

X =
sin(tαu(t) + η1)+ . . .+ sin(tαu(t) + ηn)

max[sin(tαu(t) + η1)+ . . .+ sin(tαu(t) + ηn)]

=

∑n
i=1 sin(tαu(t) + ηi)

max[
∑n

i=1 sin(tαu(t) + ηi)]
=

ψ(t, αu, η)
max[ψ(t, αu, η)]

(15)

where ηi is a hyperparameter defined in radians, αu(t) is the
frequency in radians of the input signal u(t), and t is the time
vector.

Figure 4 shows in the input-output space, the predictions
of the radial basis network during the training process for
the frequency αi. Two cases were considered: first, when the
features are equal to the raw input u(t), and second, when
Equation 15 is applied for feature extraction.

B. ONLINE-LEARNING IDENTIFICATION
1) INTRODUCTION
In this case, and considering the linear scenario with
a discrete input u(k) = A sin[αt(k)] and the plant
output feedback obtained from the sensor measurement
y(k) = A|G(jα)| sin[αt(k) + ̸ G(jα)] + ϵ, it is possible

FIGURE 5. An M=k order Gamma Type II Time-Lagged Recurrent Network
is used to predict the plant response ŷk based on the past input uk−1.
The iterative method for updating the parameters involves computing the
reward based on the error ξ and then applying the stable update law.

FIGURE 6. The z discrete domain Gamma Type II architecture is employed
in the TLRN to identify ŷ . Two hyperparameters, µ and γ , are utilized. This
configuration is equivalent to a Finite Impulse Response (FIR) filter when
µ = 1 and γ = 0. Stable ∀γ, µ ∈ R : |1 − µ ± µ

√
γ | < 1

to determine the TLRN parameters that predict the sensor
measurement y(k).
Three essential tools are necessary: first, the cost function,

mapper, and an online stable update law.
In this study, we explore the architecture of a TLRN

mapper (Figure 5). Specifically, we delve into a TLRN and
its integration with Type II Gamma Filters. This architecture
presents two additional hyperparameters that improve per-
formance and enhance gradient descent compared to simpler
architectures such as TLRNs based on FIR filters. FIR filters
represent a special case of the Gamma Type II architecture
when µ = 1 and γ = 0. Notably, a combination of these
architectures is considered an online deep learning algorithm
(Figure 6). The filter hyperparameters γ, µ have the next
stability condition defined in Eq. 16.

∀γ, µ ∈ R : |1− µ± µ√γ | < 1 (16)

The ability of the online learning RNN to predict the plant
output yk using past information from the input uk−1 was
tested with a swept-frequency cosine input signal, or an up-
chirp signal. The mapper can learn both plant transients and
stationary responses, enabling it to adapt to dynamic changes
in the system behavior and accurately model its steady-state
characteristics (Figure 7).

2) ONLINE PARAMETERS ESTIMATION
Consider random variable yk , and its estimator ŷk . We defined
the expected value of the squared L2 norm of the prediction
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FIGURE 7. Upper Figure - Up-Chirp Test: Evaluation of RNN performance.
The graph illustrates the RNN’s predictive ability during the up-chirp test.
The plot compares the RNN’s predicted plant output (ŷk =

∑
wφ) against

the actual plant responses yk , showcasing its capacity to adapt to rapid
variations in input frequencies. Bottom Figure - Recurrent Network
Parameters This figure visualizes the key architectural components and
parameters of the RNN, including weights and biases. The network order
is denoted as M=27.

error as J (w) = E[ξ2] = E[∥yk − ŷk∥22], where
ŷk = wTφTLRN . Denote RNN features φTLRN as φ

for simplification. The parameters that minimize the cost
function w are determined as follows:

∂J
∂w
=
∂E[∥yk − wTφ∥22]

∂w
= 0

−2ξφ = −2(yk − wTφ)φ = 0

w∗ = (φTφ)−1φyk (17)

The Eq. 17 leads to the most fundamental concept
in control systems, where the optimal parameters of the
predictor are the product of the inverse autocorrelation of
the feature and the cross-correlation between the feature and
target yk .

Using as iterative method the gradient descent, we will
have:

wk+1← wk − µ∇J (w)

wk+1← wk + µ2ξφ

wk+1← wk + ηξφ (18)

where the learning rate is denoted by η and the convex cost is
represented by J , based on the expected value of the squared
error ξ2. The iterative equation Eq. (18) was derived using the
Least Mean Square method LMS, which in practice shows a
noisy response in the gradient estimation.

In [1], a method to improve the gradient estimation
called NADAM was demonstrated. However, this study

explores a solution aimed at minimizing weight disturbances
while maintaining convergence. Therefore, two terms were
defined: the first term for reducing the weight disturbances
(see Eq. 19), which means that a small error is maintained
between the parameter calculations in iteration k + 1 com-
pared to k . The second term is for convergence (see Eq. 20),
where the product of the parameters in k+1 multiplied by the
feature φ equals the random value yk produced by the sensor.

∥1wk+1∥
2
2 = ∥wk+1 − wk∥

2
2 (19)

wk+1φk = yk
yk − wk+1φk = 0 (20)

Improving the parameter optimization leads to a cost
definition in which the Lagrange multiplier method is
utilized.

J = ∥1wk+1∥
2
2 + λ(yk − wk+1φk )

∂J
∂wk+1

= 2(wk+1 − wk)− λφk = 0

wk+1 = wk +
λφk

2
(21)

Replacing the Eq. 21 in Eq. 20.

yk = wk+1φk = wkφk +
λ∥φk∥

2
2

2

λ =
2(yk − wkφk)

∥φk∥
2
2

=
2(ξ )

∥φk∥
2
2

(22)

The iterativemethod that minimizes theweight disturbance
while maintaining convergence, called the normalized least
mean square (NLMS), is (see Eq. 23):

wk+1 = wk +
1

∥φk∥
2
2

φkξ

wk+1 = wk +
ηφkξ

∥φk∥
2
2 + σ

(23)

where the constant 1 is replaced by the learning rate η, and
σ is a gain to avoid stability problems (regularization). The
iterative method is normalized by the feature autocorrela-
tion φφT , which contains a maximum eigenvalue λmax .

3) NLMS STABILITY ANALYSIS
Assuming a radially unbounded positive definite Lyapunov
candidate (see Eq. 26), it was possible to demonstrate
the stability of the algorithm using Lyapunov. Two error
parameter functions were introduced (Eq. 24-25), where w∗

represents the optimal filter parameters.

1wk = w∗ − wk (24)

1wk+1 = w∗ − wk+1 = 1wk −
ηφkξ

∥φk∥
2
2 + σ

(25)

Vk =
1
2
∥1wk∥

2 (26)
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TABLE 2. In general, increasing the RNN order M reduces the MSE
between the target yk and the predicted value ŷk .

The time derivative of the Lyapunov candidate ( Eq. 27) is
calculated as the difference between two iterations as follows:

V̇k = 1Vk = Vk+1 − Vk

V̇k =
1
2
∥1wk+1∥

2
−

1
2
∥1wk∥

2 (27)

Substituting Eq. 25 in Eq. 27:

V̇k =
1
2
∥1wk −

ηφkξ

∥φk∥
2
2 + σ

∥
2
−

1
2
∥1wk∥

2

V̇k =
η

2(∥φk∥22 + σ )

[
−21wkφkξ +

η∥φk∥
2
∥ξ∥22

∥φk∥
2
2 + σ

]
V̇k =

η̄

2

[
−21wkφkξ + η̄∥φk∥

2
∥ξ∥22

]
(28)

Because an asymptotic solution implies a negative-definite
Lyapunov candidate time derivative (Eq. 28), where V̇k < 0,
then the normalized learning rate η̄ for an stable NLMS will
be within the next interval (see Eq. 29):

0 < η̄ <
2E[1wkφkξ ]

E[∥φ∥22∥ξ∥
2
2]

(29)

where η̄ = η

∥φk∥
2
2+σ

, φk represents the feature, ξ is the

prediction error yk − ŷk and 1wk is defined in Eq. 24. The
algorithm is less sensitive to the selection of the learning rate
η because of the normalization term, where η̄ normalization
is related to the maximum eigenvalue λmax of the feature
autocorrelation ∥φk∥22.
The prediction in this case was calculated as

∑M
i=1wiφi =

wTφ. Table 2 shows the prediction accuracies for the different
TLRN orders.

C. COMPUTER SIMULATIONS
In this section, we compare the performance of the simulation
models. Additionally, we introduce and demonstrate the
combination of online learning with the transferred knowl-
edge into our learning system scheme. Finally, a comparison
between established approaches and the solution proposed in
this paper is depicted in terms of learning curves.

FIGURE 8. Upper Figure: The output of the plant yk is affected by
saturation and additive noise; saturation dynamically changes after
t = 14 s. The TLRN estimation ŷk learns the plant online. The output of
the linear system ŷk lacks adaptability. The middle figure shows the
mean square error and the learning curve. The bottom figure shows the
response of the maximum eigenvalue λmax for Gamma Type II.

1) ANALYSIS OF THE RESPONSE TO PREDICTIONS
The models of the system determined using the methods
described in Sections III-A and III-B were compared in
a dynamic environment characterized by the presence of
noise and saturation within a specific time interval, and the
performance was depicted in Figure 8.

In this study, the TLRN demonstrated its adaptability
functionality, in contrast to the linear model transfer function
number 3 TF3 (see Table 1), which maintains its expected
behavior in response to chirp-up signal input. Accurately
determining the system trajectories in the presence of
dynamic variations requires adaptive models, particularly
when linear dynamic constraints are not guaranteed.

2) ONLINE-LEARNING AND PREDICTIONS
Another important insight derived from this work is the
architecture that combines online learning executed at each
iteration with a system to which the learning is transferred.
We will refer to the feature determined by the RNN when
the input is uk−1 as φRNNuk−1 , and when the input is the actual
iteration uk as φRNNuk . Then, if the information was learned,
ŷk+1 is predictable; otherwise, it will be a learning iteration
(Figure 9 for clarification). When the transfer has been
completed, the map of the system will be determined, and it
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FIGURE 9. The architecture that facilitates online learning, depicted in
Figure 5, has been integrated into a system where relevant information
from the learning process is transferred online.

FIGURE 10. The upper figure shows the input uk−1, sensor output yk , and
the predicted value y(k) hat = ŷk during the online learning. The lower
figure shows the growth of the information transferred to our learning
system and how the steady state was reached after 200,000 iterations.

will not be necessary to learn any new samples, as the growth
of the network will be in a steady state Figure 10. The
predicted values using the transferred learning system are
depicted in Figure 11.

3) COMPARATIVE EVALUATION OF NLMS-BASED RNN
AGAINST ESTABLISHED APPROACHES
In this paper, an RNN based on the NLMS search algorithm
is developed when the mapper is a Type II Gamma
filter. However, although this configuration offers promising
results for linear electromechanical systems affected by
saturations and noise, there are other methods that have
proven highly effective for nonlinear systems and are also
efficient in computational terms. Consequently, the perfor-
mance of the proposed method has been evaluated against
two widely recognized approaches in the literature. Firstly,
it is compared with the affine projection algorithm (APA).
Additionally, it is contrasted with the kernel least mean
square method (KLMS), known for its ability to effectively

FIGURE 11. Upper figure: The transferred learning system was tested with
the flipped input used during the training process. Lower figure: The dot
product between parameters and features extracted by the RNN.

FIGURE 12. Learning curve comparison: NLMS RNN with Gamma type II
mapper versus established approaches such as APA and KLMS.

address nonlinear problems in an adaptive learning context
(see Figure 12).

IV. SUMMARY AND CONCLUSION
In conclusion, this study presents two strategies for identi-
fying the linear dynamic response of a black-box electrome-
chanical system.

The first strategy involves conducting long-duration
sinusoidal experiments, which can be replaced with short-
duration experiments by applying a dimensionality expansion
technique, evaluated in this study using a radial basis artificial
neural network (RBFANN). Finally, the frequency properties
of the steady states of the system are extracted to introduce
stable reduced-order linear models with equivalent frequency
response. This approach improves data quality, optimizes
accuracy, and reduces experimental time.
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The second strategy employs online learning techniques
to train a TLRN recurrent network integrated with Type II
Gamma filters. This autonomous, robust, and adaptive
approach accurately models the response of the system
in both linear and nonlinear scenarios, even in situations
with saturation. Online learning enables engineers to use
analytical methods to develop autonomous systems capable
of extracting the optimized mapper that defines the real
response of a system. Subsequently, through dimensionality
reduction techniques, it becomes possible to develop com-
putationally efficient self-determined models online with the
real information extracted from the sensors.

These significant findings not only contribute to the field
of system identification but also have practical implications
for the development of autonomous systems.
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