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ABSTRACT Pedestrian re-identification aims to identify the same target pedestrian among multiple non-
overlapping cameras. However, in real scenarios, pedestrians often change their clothing features due to
external factors such as weather and seasons, rendering traditional methods reliant on consistent clothing
features ineffective. In this paper, we propose a Knowledge-Driven Cross-Period Network for Clothing
Change Person Re-Identification, comprising three key components: 1) Knowledge-Driven Topology
Inference Network: Leveraging knowledge graphs and graph convolution networks, this network captures
spatio-temporal information between camera nodes. Knowledge embedding is introduced into the graph
convolution network for effective topology inference; 2) Cross-Period Clothing Change Network: This
network aggregates spatio-temporal information for clothing generation. By utilizing overall pedestrian
clothing characteristics whthin logical topology cameras, it mitigates matching errors caused by external
factors; and 3) Joint Optimization Mechanism: A collaborative approach involving both the topology
inference network and cross-period clothing change network. Multi-camera logical topology offers auxiliary
information and retrieval order for the clothing change network, while pedestrian re-identification results
provide feedback to adjust the logical topology. Experimental analysis on datasets Celeb-ReID, PRCC, UJS-
ReID, SLP, and DukeMTMC-ReID, demonstrates the effectiveness and robustness of our proposed model in
addressing the challenges of pedestrian re-identification in scenarios involving changing clothing features.

INDEX TERMS Logical topology inference, knowledge graph, clothing change re-identification, graph
convolution network, intelligent surveillance application.

I. INTRODUCTION
Recent developments in computer vision models [1], [2],
especially the introduction of deep convolutional neural
networks, has extensively improved the accuracy and speed
of biometric identification. Pedestrian re-identification aims
to locate a specific individual in a network of non-
overlapping cameras. This technique is often regarded as
an extension of face recognition, and numerous scholars
have extensively investigated pedestrian re-identification [3],
[4], achieving commendable performance in controlled
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environments. However, current methodologies and datasets
are contingent on the assumption of clothing invariance.
In real-world scenarios observed by long-term surveillance
cameras, pedestrians are prone to alter their attire due to
external factors such as weather and season changes. This
renders methods relying on clothing consistency impractical
in these dynamic situations.

The task of clothing change presents a formidable chal-
lenge in pedestrian re-identification. Traditional approaches
to pedestrian re-identification primarily focus on matching
individuals with consistent clothing, where clothing con-
sistency implies that the clothing features of the target
pedestrian remain unchanged across different cameras.
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Previous methods for clothing change in pedestrian re-
identification have typically employed features other than
clothing as discriminative features, aiming to mitigate the
effects of clothing changes on pedestrian matching. While
these methods have demonstrated some success in reducing
the impact of clothing changes on pedestrian matching, they
often overlook the intricate interplay between external factors
and clothing alterations.

Although previous researches [5], [6], [7] have made
significant contributions to pedestrian re-identification in
scenarios involving clothing changes, there are still several
challenges that require attention: (1) Existing approaches
primarily focus on pedestrian area features and overlook
the intricate interplay between external factors and clothing
changes, resulting in inaccuracies in the predicted outcomes.
(2) They neglect the spatio-temporal relationships between
cameras and the auxiliary role of logical topology, leading to
generated clothing that deviates from reality. (3) Traditional
topology inference methods concentrate solely on spatial
information between cameras and fail to capture temporal
cues between nodes, hindering the dynamic prediction of
targets.

To tackle the aforementioned challenges, this paper
proposes a person re-identification model for clothing
changes based on a knowledge-driven cross-period network.
We construct a knowledge graph encompassing various
external factors, employ a knowledge embedding method to
capture semantic relationships between topology information
and external factors, and integrate this acquired knowledge
into spatio-temporal graph convolution for camera topology
inference. To enhance the precision of clothing generation,
we incorporate auxiliary information from the camera’s
logical topology. We devise a Cross-Period Clothing Change
Network (CPCCN) based on camera topology to generate
features for pedestrian clothing. Our contributions are
outlined below:
(i) We introduce a Knowledge-Driven Topology Inference

Network (KTIN), designed to utilize a knowledge
graph for capturing semantic relationships between
external factors and camera topology. The acquired
knowledge is then incorporated into spatio-temporal
graph convolution to enhance the precision of topology
inference.

(ii) A Cross-Period Clothing Change Network, based
on the aggregation of spatio-temporal information,
is developed for clothing generation. This network
utilizes camera logical topology information to extract
clothing details with robust associations and employs
auxiliary information to generate clothing features for
target pedestrians.

(iii) Our approach involves the joint optimization of the
Topology Inference Network and Cross-Period Cloth-
ing Change Network. The camera logical topology
serves as auxiliary information for CPCCN, and the
recognition results from CPCCN are fed back to KTIN
to refine the camera topology inference.

The remaining sections of the paper are organized as fol-
lows. Section II provided a brief history of research in person
re-identification and highlights representative methods that
have contributed to the advancement of the field. We delve
into the details of our proposed framework, including the
architecture and functionality of KTIN and CPCCN in
section III. Section IV described the experimental setup
and presents the results of extensive experiments conducted
on various datasets. Lastly, we concluded the manuscript
by summarizing the key findings and contributions of our
research in section V.

II. RELATED WORK
A. PERSON RE-IDENTIFICATION
Person re-identification has evolved significantly over the
years, driven by the increasing demand for robust and
accuratemethods [8], [9], for matching individuals across dif-
ferent camera views. Wu et al. [10] leveraged camera-aware
self-training to improve the performance of semi-supervised
person re-identification systems. Liu et al. [11] focused
on adaptive transfer learning techniques to improve cross-
domain person re-identification performance. Jin et al. [12]
separated global distance distributions to improve the dis-
criminative ability of unsupervised person re-identification
models. Chen et al. [13] emphasized deep credible metric
learning to address the challenges of unsupervised domain
adaptation in person re-identification tasks. Zhang et al. [14]
addressed the challenge of noise in unsupervised domain
adaptation for person re-identification, aiming to enhance
model robustness and generalization. Zhang and Hu [15]
emphasized unified domain learning techniques for unsu-
pervised person re-identification, aiming to achieve robust
performance across diverse datasets and domains. These
studies illustrate the evolution of person re-identification
research and highlight the diverse approaches and techniques
used to tackle this challenging problem.

B. MULTI-CAMERA LOGICAL TOPOLOGY INFERENCE
The application of multi-camera logical topology inference
in pedestrian re-identification aims to enhance system
performance by scrutinizing and modeling the logical topo-
logical relationships among multiple cameras. This method
underscores the significance of maintaining topological
consistency, thereby refining the accuracy of pedestrian
re-identification through optimized matching in multi-
camera systems and mitigating matching errors attributed
to topological variations. Moreover, logical topological
reasoning renders the system adaptable to intricate scenarios,
fortifies its resilience in multi-camera environments, and
strongly supports the ongoing advancement of pedestrian re-
identification tasks. In prior approaches [16], the topology of
multiple cameras is defined, and Loy et al. [17] introduced
an unsupervised method, eliminating the need for camera
calibration but inferring a logical topology with fixed
positions between cameras, deviating from reality. In many
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FIGURE 1. Diagram illustrating the approach for the joint optimization mechanism of the knowledge-driven cross-period network through
knowledge-driven spatio-temporal topology inference and the cross-period clothing change person re-identification network.

instances, camera topology should correlate with pedestrian
trajectories rather than remaining static. Javed et al. [18]
proposed a method to establish the correlation between
cameras based on pedestrian trajectories, yet it is susceptible
to factors such as occlusion and viewpoint orientation.
Cho et al. [19] concurrently train pedestrian re-identification
with multi-camera logical topology inference; however,
it faces limitations in dynamically updating the inferred
logical topology as it may undergo dynamic changes over
time.

C. CLOTHING CHANGE PERSON RE-IDENTIFICATION
Traditional pedestrian re-identification methods primarily
focus on matching individuals in short-term camera surveil-
lance, often relying on clothing color as the primary feature.
However, in widely used datasets like Market-1501 and
DukeMTMC, individuals wear identical outfits in both
QUERY and GALLERY, contrary to real-world scenarios
where people change attire within days. The significant
challenge in clothing change pedestrian re-recognition lies
in enabling the model to recognize detached clothing or
maintaining clothing consistency during the matching phase.

Clothing change pedestrian re-recognition tasks can be
broadly classified into three categories. The first involves
reconstructing pedestrians using depth information [20], [21],
[22]. Early research aimed to address clothing dependency
by leveraging non-clothing information for matching. For
instance, Barbosa [20] used RGB-D sensors to acquire depth
information, extracting soft biometric cues such as limb

size, and matching pedestrians based on limb information.
Munaro [21] expanded on this by incorporating facial infor-
mation and skeleton link orientation, making the point cloud
model more comprehensive. However, this sensor-based
biometric approach is sensitive to viewing angle changes and
highly reliant on device accuracy. Haque et al [22] applied
deep learning, abandoning RGB information and recognizing
pedestrians by extracting 4D spatio-temporal features, adding
the time dimension to 3D point cloud features. This method
requires substantial sample quality and is limited to single
pedestrian recognition scenarios.

The second category involves using human silhouette
information for re-recognition. To reduce reliance on clothing
appearance, Zhang et al [23] emphasized the motion charac-
teristics of pedestrians, using a Gaussian model for trajectory
alignment and motion pattern recognition. While effective,
this method is susceptible to clothing interference when
recovering discriminative features. Yang et al. [6] proposed
an SPT model to transform spatial polarity in pedestrian
contour maps, reducing clothing dependency but ignoring the
influence of clothing style on the silhouette.

The third category retains clothing information for re-
recognition. Xu et al. [24] introduced capsule networks [25]
to re-identify pedestrians changing clothes, utilizing the
vectorial property to store attributes. Huang et al. [26] added
training samples, removing consistent clothing from images,
but their provided celebrity snapshots differed significantly
from real scenes. Yu et al. [27] proposed a biometric
drows network (BC-Net) with separate branches for learning
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biometric and clothing features. However, the method relies
on third-party data and manual template searches, and the
target pedestrian’s clothing is unknown in real scenarios.

III. PROPOSED METHOD
In this section, we elaborate on the proposed cross-period
pedestrian re-identification model based on logical topology
inference. Initially, we establish the camera logical topology
using a Knowledge Graph (KG) and a Graph Convolution
Network (GCN), endowing it with the capability to furnish
retrieval order and clothing-assisted features. Subsequently,
we introduce a joint optimization mechanism for camera
topology inference and the cross-period clothing change
network. The latter leverages auxiliary information from
the camera logical topology to predict clothing features for
target pedestrians within the corresponding time frame. The
outcomes of pedestrian matching inform adjustments to the
camera topology through feedback to enhance its accuracy.
The detailed model structure is illustrated in Fig. 1.

A. KNOWLEDGE-DRIVEN TOPOLOGY INFERENCE
NETWORK
Utilizing knowledge graphs in topology inference for person
re-identification presents a novel and innovative approach.
Knowledge graphs offer a structured representation of
knowledge, facilitating effective reasoning and inference
over complex relationships among entities. In the context of
person re-identification, the application of knowledge graphs
can revolutionize the way camera topology is inferred and
utilized.

Knowledge graphs enable the representation of camera
topology in a structured format, capturing the spatial and
temporal relationships among cameras. By encoding these
relationships as graph edges and cameras as graph nodes,
representation learning techniques can be employed to learn
informative embeddings that capture the underlying topology.
And then, it can be enriched with semantic information about
camera attributes, such as location. This semantic enrichment
enhances the expressiveness of the topology representation,
allowing for more precise inference and reasoning about
camera relationships.

Moreover, knowledge graphs facilitate contextual rea-
soning by capturing rich contextual information about
the environment in which cameras are deployed. This
contextual information can include factors e.g., lighting
conditions, which influence camera observations and person
re-identification performance. Graph-based inference algo-
rithms can be applied to knowledge graphs to infer camera
topology relationships. Techniques such as graph neural
networks (GNNs) enable message passing and aggregation
over graph structures, allowing for effective propagation of
information and inference of camera connections. At the
same time, knowledge graphs provide a flexible framework
for dynamically adapting camera topology in response to
changes in the environment. By continuously updating the
graph structure based on new observations and contextual

FIGURE 2. Illustrative example of a knowledge graph.

cues, the re-identification system can adapt to evolving
conditions and maintain robust performance over time.

Last but not least, knowledge graphs can be seamlessly
integrated with person re-identification models to enhance
their performance. By incorporating graph-based features or
leveraging graph-based inference for candidate matching,
person re-identification models can leverage the rich contex-
tual information encoded in the knowledge graph to improve
accuracy and reliability.

1) KNOWLEDGE GRAPH
We formulate knowledge graphs to capture semantic rela-
tionships between external factors and camera topology
information. These knowledge graphs serve as repositories
for raw camera topology data and other data categories,
structured around triplets (heads, relations, tails). In the
context of a knowledge graph, the head refers to the subject
entity of a triplet, which is a fundamental unit of information
in the graph. It represents the entity about which information
is being stated. A relation in a knowledge graph connects the
head entity to the tail entity and represents the semantic link
between them. It describes the nature of the connection or
interaction between the entities. The tail represents the object
entity of a triplet. It is the entity to which the head entity is
related through the specified relation. In each triplet, there
exists both semantic information and a network structure,
with both the head and tail representing entities. The semantic
information characterizes the relationship between the head
and tail entities. An illustration of the designed knowledge
graph is presented in Fig. 2.

2) KNOWLEDGE REPRESENTATION
The Knowledge Graph (KG) comprises numerous triplets,
each not only expressing semantic relationships between enti-
ties but also facilitating themodeling of relationships between
attributes and entities. An attribute represents a characteristic
or property associated with an entity in the knowledge graph.
Attributes in our model, designed as external factors, exhibit
a many-to-one relationship with entities. To capture the
knowledge structure and semantic relationships between the
logical camera topology and external factors, we employ

53520 VOLUME 12, 2024



S. Zheng et al.: Cross-Period Network for Clothing Change Person Re-Identification

KR-EAR [28], a knowledge graph representation model
based on entity-attribute relationships. This model effectively
distinguishes between attribute and relationship information.
In this context, these terms are used tomodel the relationships
between different cameras (entities) and infer the logical
topology of the camera network. The head entities represent
the cameras, the relations capture the spatial and temporal
connections between cameras, and the tail entities represent
the neighboring cameras. Attributes include information such
as geographic location, field of view, or connectivity strength
between cameras, which are used to infer the topology of the
camera network. Camera nodes, attributes, and relations are
represented as the triplet KG = C,Catt .

C = {(ci, adj, cj), i, j ∈ {1, 2, . . . , n}},

C_att = {(ci, attl, attl_ci), l ∈ {1, 2, . . . ,L}} (1)

As depicted in Equation (1), C represents a relational triplet
where ci and cj denote non-overlapping camera nodes, adj
signifies the adjacency of camera nodes, and n represents
the total number of camera nodes. Catt forms a relation
triplet between camera nodes and attributes. Each camera
node encompasses multiple attribute categories, denoted
as attl , with corresponding attribute values represented
as attl_ci . For instance, (ci,weather ,sunny) indicates that
the current weather attribute value for camera node ci is
sunny. Utilizing KR-EAR, we learn the embedding XE of
the triplet, incorporating knowledge graph information into
spatio-temporal graph convolution. The objective function is
formulated as follows:

P(C,Catt |XE ) = P(C|XE )P(Catt |XE ),

P(C|XE ) =

∏
(ci,adj,cj)∈C

P((ci, adj, cj)|XE ),

P((ci, adj, cj)|XE ) =

exp (−||ciMr + adj− cjMr )L1/L2 + b1||)∑
ĉi∈Vc exp(g(ĉi, adj, cj))

,

P(Catt |XE ) =∏
(ci,attl ,attl_ci )∈Catt

P((ci, attl, attl_ci )|XE ),

P((ci, attl, attl_ci )|XE ) =

exp(−||f (ciUatt + batt ) − Eatt_c||L1/L2 + b2)∑
ĉi∈Vc exp(h(ci, attl, att̂ l_ci))

(2)

The conditional probabilities of the relation triplet, denoted
as P(C|XE ), and the attribute triplet, denoted as P(Catt |XE ),
are defined. Here, Vc = c1, c2, . . . , cn represents the
set of camera nodes, and g serves as the energy function
indicating the relevance of the relationship and entity. In the
equation, b1 is a bias term, Mr is a transfer matrix, and
L1 and L2 stand for the L1 and L2 norms, respectively. The
function f represents a nonlinear function, Eatt_c corresponds
to the embedding vector of the attribute value att_c, and
Uatt is a linear transformation. The terms b2 and batt are
bias terms. Ultimately, KR-EAR is employed to strengthen

FIGURE 3. Structure of the knowledge integration unit.

the association between entities and attributes, generating
representations of relationships and attributes, respectively.

3) KNOWLEDGE INTEGRATION UNITS
We have devised the Knowledge Integration Unit (KIU) to
seamlessly incorporate derived knowledge into the spatio-
temporal graph convolution network, enabling the capture of
spatio-temporal correlation cues between external factors and
camera topology. While primarily adopting the graph convo-
lution (GC) architecture, KIU enhances this by introducing
the Gated Recurrent Unit (GRU) or its enhanced version
(MOPGRU [29]). This integration allows for the capture of
dynamic temporal information within the logical topology,
complementing the aggregation of camera node features. The
specific structure of KIU is illustrated in Fig. 3. Leveraging
the knowledge embedding XE and the camera node features
Xt at time t as inputs, KIU produces updated node features X

′

t
after passing through the knowledge fusion module. External
factors, ranging from the physical location of the camera
(considered as static knowledge es) to time-varying elements
like weather (termed as dynamic knowledge ed ), are diverse.
Linear transformations ws and wd are applied, with bias
constants bd and bs completing the model.
We leverage Graph Convolutional Network (GCN) and

GRU or MOPGRU to capture the spatio-temporal correlation
among camera nodes. The adjacency matrix A and the
updated camera node features X ′

t serve as inputs to the GCN.
The process can be formalized as follows:

gcn(X ′
t ,A) = σ (D̃−

1
2 ∗ Ã ∗ D̃−

1
2 ∗ X ′

t ∗W ) (3)

Here, σ (∗) represents an activation function, Ã is the
adjacency matrix with self-connections, and D̃ is the degree
matrix of Ã. The weight matrix is denoted asW . Furthermore,
we employ GRU or MOPGRU to account for time depen-
dence, comprising a reset gate and an update gate ut . The
output at time t can be expressed as follows:

ht = ut ⊙ ht−1 + (1 − ut ) ⊙ ct (4)

where ct represents the state at the current time step.

B. CROSS-PERIOD CLOTHING CHANGE NETWORK
The model effectively handles the variability in cloth-
ing through the Cross-Period Clothing Change Network
(CPCCN), a crucial component of the proposed framework.
It achieves this by first extracting clothing features using a
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FIGURE 4. Structure of the cross-period clothing change network.

clothing appearance encoder, capturing colors, patterns, and
textures characteristic of different clothing styles. Incorpo-
rating temporal modeling techniques enables the CPCCN to
analyze sequences of pedestrian images, learning patterns
and trends in clothing variations over time. Additionally,
leveraging Generative Adversarial Networks (GANs), the
model generates realistic images of pedestrians with varying
clothing styles, augmenting the training data with synthetic
examples of clothing variations for improved generalization.
Integration of external knowledge, further refines predictions
of clothing variations. The joint optimization mechanism
between the Knowledge-Driven Topology Inference Network
(KTIN) and CPCCN ensures that predictions align with
inferred logical topology relationships between cameras,
enhancing contextual relevance. Overall, by effectively
leveraging clothing appearance features, temporal model-
ing, GANs, knowledge integration, and joint optimization,
the model robustly handles clothing variability, making it
highly applicable to real-world scenarios where individuals
frequently change clothing.

We delve into the intricacies of the devised cross-period
clothing change network. To enhance the precision of pre-
dicting clothing characteristics for target pedestrians during
specific time periods, we meticulously consider the spatio-
temporal relationships between cameras and the impact of
external factors on clothing changes. Firstly, we categorize
pedestrians’ clothing features based on the distinct time peri-
ods within each group of cameras. These features encapsulate
the overall clothing style under a specific camera and time

segment. Subsequently, we acquire the clothing features of
the source/target camera and other cameras exhibiting a
strong association during a particular time period, guided
by the camera logical topology relationship. Lastly, the pose
features of the pedestrian are seamlessly integrated with
specific clothing features using a Generative Adversarial
Network (GAN). This integration aims to generate images of
the target person under a specific camera and time period. The
detailed structure is illustrated in Fig. 4.

1) TIME PERIOD CLOTHING INFORMATION EXTRACTION
We comprehensively analyze pedestrian clothing information
from various cameras within each time period to establish
clothing templates for inferring the styles worn by the target
pedestrians during specific time intervals. Illustrated in Fig. 5,
we employ a clothing encoder to extract clothing features,
categorizing the clothing information based on distinct time
periods within each camera group. All pedestrian images
are segmented into M time periods, denoted as Time =

Time1,Time2, . . . ,TimeM . Each time segment is defined by
a time interval of T , with Timei = t1, t2, . . . , tT , where
1 ≤ i ≤ M . The clothing features extracted by the clothing
encoder are represented as:

ACiTm =

{(
aCirtj , yr

)
| 1 ≤ r ≤ NCi , 1 ≤ j ≤ T

}
(5)

where ACiTm represents the set of pedestrian clothing appear-
ance features for the current camera i at time period m, and
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FIGURE 5. Time period clothing information extraction.

aCirtj denotes the clothing feature of pedestrian r at moment tj,
extracted from the clothing appearance encoder Ea. In other
words, aCirtj = Ea(x

Ci
rtj
). Here, xCirtj represents the pedestrian

at moment tj, yr is the label for pedestrian r , and NCi is
the count of pedestrians captured by camera i. The clothing
characteristics of pedestrians in time periodm are denoted as:

CiTm =
1
NCi

NCi∑
r=1

T∑
j=1

Ea(x
tj
rci
) (6)

The ultimate collection of clothing features for each time
period is denoted as CT = {C1T1 . . .CiTm . . .CNTM }, where
CT ∈ RN×M×n. Here, N represents the number of cameras,
and M represents the number of time periods.

2) CROSS-PERIOD CLOTHING GENERATION
Our approach involves predicting the clothing features of
a target pedestrian in a specific environment based on the
camera and time period of the pedestrian in the gallery. This
aims to optimize the retrieval order of pedestrian images
in the gallery, mitigating the adverse effects of clothing
changes on pedestrian re-identification. As illustrated in
Fig. 4, CPCCN primarily employs a generative adversarial
architecture to forecast the clothing characteristics of the
target pedestrian. The input image pair, x

tj
uci

and x
tq
vcm ,

represents the target pedestrian captured by the source camera
ci at moment tj and the pedestrian from the gallery of
camera cm at moment tq. To extract the pose features p

tj
uci

and clothing features a
tj
uci

of the target pedestrian, we utilize
the pose encoder Ep and clothing appearance encoder Ea,
respectively. The extracted pose features typically encompass
more spatial geometric location information compared to
the clothing appearance features. To minimize the influence
of appearance information during pose feature extraction,
we convert the original image into a grayscale map,
effectively separating the pose features from the appearance
features. This ensures a reduction in the impact of appear-
ance details when employing the pose encoder for feature
extraction.

3) SELF-RECONSTRUCTION
A critical step in enhancing the reconstruction ability of
the cross-period clothing change network involves self-
reconstruction of the pedestrian x

tj
uci
. Specifically, KTIN

identifies the set of cameras strongly associated with ci
based on the environment CiTj (comprising camera ci and
time period Tj). The TPCIE module then extracts the group
clothing features of the corresponding environment from the
clothing feature set CT , leveraging the topology relationship
among cameras. This can be represented as CRcTj =

{CiTj,CR1Tj . . .CRcTj}, 1 ≤ c ≤ N , where Rc represents the
cameras associated with ci. The decoupled clothing feature
a
tj
uci

is seamlessly integrated with these features to obtain
the feature a′ucitj encompassing group clothing information.
Subsequently, a′ucitj is fed into the generator along with the
decoupled pose feature p

tj
uci

to predict the pedestrian image
x ′ucitj within the environment CiTj. The same operation is
iteratively applied to pedestrians in the gallery.

4) CROSS-PERIOD GENERATION
In contrast to self-reconstruction, the environmental informa-
tion for this step is sourced from pedestrians in the gallery,
denoted as CmTq. To mitigate interference from the original
clothing feature, the initial clothing feature a

tj
u′
ci
is directly

substituted with the group clothing information CRcTq,
extracted from CT based on the camera logical topology
relationship. Likewise, this information is amalgamated with
the pose feature to generate images of the pedestrian x ′tq

ucm
at the specific time period Tq. The identity of the generated
pedestrian is contingent upon the provider of the pose feature.

5) TRAINING LOSS FUNCTION
To enhance the realism of the generated images, we employ
the generative adversarial loss, denoted as Ladv, to align the
distribution of the generated images with the actual data
distribution.

Ladv = E
[
logD

(
x
tj
uci

)
+ log (1 − D (G (p, a))]

]
(7)
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where D and G represent the discriminator and generator,
respectively, while p and a denote the pose feature and
clothing appearance feature of the pedestrian. During the
self-reconstruction stage, we employ the reconstruction
loss, denoted as Lselfrec , to constrain the pedestrian images
before and after reconstruction, as well as the associated
clothing features. This constraint aims to enhance the feature
extraction capability of the encoder. The loss function is
formulated as follows:

Lselfrec = E
[∥∥∥x tjuci − G

(
p
tj
uci

, a
tj
u′
ci

)∥∥∥
1

]
+ E

[∥∥∥a′tj
u′
ci

− Ea
(
x ′tj
uci

)∥∥∥
1

]
(8)

Moreover, directly matching pedestrians may result in
larger intra-class differences, potentially disrupting ID con-
sistency. To address this, we employ ResNet-50 to extract
global features from x ′tq

ucm and x ′tq
vcm . The similarity between

images is then evaluated using the distance metric d :

d
(f ′

tq
ucm ,f ′

tq
vcm )

=

exp
(
f
∥∥∥f ′tq

ucm − f ′tq
vcm

∥∥∥
1

)
1 + exp

(
f
∥∥∥f ′

tq
ucm − f ′

tq
vcm

∥∥∥
1

) (9)

where f denotes the fully connected layer, f ′tq
ucm and f ′tq

vcm
represent the global features of x ′tq

ucm and x ′tq
vcm respectively.

The distance loss is applied to constrain x ′tj
uci

and x
tj
uci
:

Ld =


y log d + (1 − y) log(1 − d)
y = 1; if f ′tq

ucm
= f ′tq

ucm
y = 0; otherwise

(10)

We employ cross-entropy loss to maintain identity consis-
tency, expressed as Lcls = − log

(
Fg

)
.

C. JOINT ITERATIVE PROCESS
The proposed method in this paper necessitates the collab-
oration of the camera topology inference network and the
cross-period clothing change network to derive the ultimate
pedestrian re-identification results. In essence, the final
recognition outcomes are influenced by both the camera
topology inference network and the cross-period clothing
change network. During the training process of KTIN, the
initial topology weights are determined by the geographic
location of the cameras. However, these initial weights
lack information about the walking direction, necessitating
continuous updates and convergence during the iterative
process to achieve a stable topology. In the joint iteration
process of the topology inference network and cross-period
clothing change network, KTIN provides CPCCN with the
pedestrian clothing features under the associated cameras,
aiding the cross-period clothing change network in predicting
the clothing features of the target pedestrians at a specific
time period. Concurrently, the recognition results of CPCCN
are reordered based on the provided camera logical topology
relationships. Conversely, the camera logical topology is

updated based on the recognition results, and the optimized
iterative strategy is outlined in Algorithm 1.
With the conclusion of the iteration process, the logical

topology of the camera undergoes continuous convergence,
resulting in a stable camera topology relationship. Simul-
taneously, more accurate clothing features of the target
pedestrians are predicted, thereby enhancing the precision
of pedestrian re-identification. The time complexity of the
algorithm we designed is O(n2), and the total loss function
of the joint iteration process can be expressed as:

Ltotal = λ1Lcls + λ2Ladv+λ3Lselfrec +λ4Ld (11)

In our experiment, the values of λ1, λ2, λ3 and λ4 are set
to 0.5, 0.3, 0.3, and 0.2, respectively.

Algorithm 1 Process of Joint Iterative KTIN and CPCCN
Require: Video sequence data; einit -the initial epochs of

stable training; b-the optimal batch group in an epoch;
efinal-the total epochs of training

Ensure: Camera logical topology and pedestrian re-
identification results

1: while epochs < efinal do
2: if epochs = einit then
3: Person re-identification based onCPCCN is training
4: else
5: while batchs%b = 0 do
6: Multi-camera topology network is training
7: end while
8: The whole joint optimization mechanism is

trained. The weight of GCN will be updated and multi-
camera logical topology is inferred.

9: end if
10: end while
11: Return Multi-camera logical topology and pedestrian re-

identification results.

IV. EXPERIMENT
Our experiments are conducted on two public large-scale
datasets, namely SLP and UJS-ReID, which provide multi-
camera topology information and timestamps. To assess the
performance of our model in scenarios where pedestrians
change clothes, we conduct comparative experiments on
clothing change person re-identification datasets. Addition-
ally, we perform comparison experiments on traditional
pedestrian re-identification datasets to validate the feature
extraction capability of our model.

A. DATASETS
The selection of datasets for testing encompasses five
diverse datasets, each offering unique challenges and rep-
resenting various real-world scenarios. The Celeb-ReID
dataset provides a large-scale collection of pedestrian images,
enabling comprehensive evaluation of re-identification algo-
rithms. PRCC dataset, known for its long-term person
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FIGURE 6. Comparison of dynamic logical topological structures on UJS-ReID inferred from different models.

re-identification scenarios, features individuals wearing
different clothing across cameras, simulating real-world
scenarios. UJS-ReID dataset captures pedestrians’ diverse
walking trajectories in different scenes, offering realistic
representations of pedestrian movement. The SLP dataset
offers synchronized large-scale person re-identification data
with comprehensive annotations and camera synchronization,
providing valuable insights into real-world surveillance
scenarios. Finally, the DukeMTMC-ReID dataset, captured
by multiple cameras at Duke University, presents diverse
pedestrian appearances and environmental conditions, con-
tributing to the evaluation of algorithm robustness across
varied settings.

Celeb-ReID: The dataset comprises 34,186 pedestrian
images, each with dimensions of 256 × 128, featuring a
total of 1052 unique IDs. It is segmented into three subsets:
training, query, and gallery. The training set consists of
20,208 pedestrian images representing 632 IDs. The testing
set includes 420 IDs, with 2,972 images in the query subset
and 11,006 pedestrian images in the gallery subset.

PRCC: This dataset is a large-scale, long-term person re-
identification dataset featuring 221 unique IDs. Pedestrians
are captured by three cameras, wearing identical clothing in
cameras A and B, and different attire in camera C. Each
individual has approximately 152 images, totaling 33,698
pedestrian images. The training set includes 150 IDs, and the
test set comprises 71 IDs.

UJS-ReID: In this dataset, we strategically deploy several
non-overlapping field-of-view cameras across the campus
to capture the diverse walking trajectories of pedestrians
during different time periods. The real-scene data used in our
experiments is recorded at a frame rate of 15 FPS, providing a
realistic portrayal of pedestrians with dynamically changing
walking patterns in various scenes.

SLP: The SLP dataset stands out as a synchronized large-
scale person re-identification dataset, offering not only a
substantial number of person IDs and cameras but also

supplementary information like comprehensive annotations,
camera synchronization, and camera parameters.

DukeMTMC-ReID: The dataset, captured by 8 cameras
at Duke University, boasts a training set comprising 16,522
pedestrian images and a test set containing 17,661 images,
with 2,228 images designated for query purposes. Both the
test set and the training set encompass 702 unique IDs.
We will evaluate the model’s effectiveness on this dataset for
traditional pedestrian re-identification.

B. EVALUATION METRICS
The choice of evaluation metrics is crucial for assessing the
performance of the proposed model accurately. In person re-
identification tasks, both mean average precision (mAP) and
Rank-k accuracy are commonly used metrics, each providing
valuable insights into the model’s performance from different
perspectives.

1) MEAN AVERAGE PRECISION (MAP)
mAP is a widely used metric in object detection and
re-identification tasks. It takes into account the precision-
recall curve across all possible thresholds, providing a
comprehensive measure of the model’s performance across
different levels of recall. In the context of pedestrian re-
identification, mAP is particularly suitable as it accounts for
the varying levels of difficulty in matching pedestrians across
different camera views and conditions.

2) RANK-K ACCURACY
Rank-k accuracy measures the percentage of correct matches
within the top-k retrieved results. This metric is essential as
it reflects the practical utility of the system in real-world
scenarios, where users are typically interested in retrieving
the correct match within the top few results. Rank-k accuracy
provides insights into the effectiveness of the model in
retrieving relevant pedestrianmatches, especially considering
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FIGURE 7. Topology and re-identification accuracy based on average search range.

the challenges posed by changing clothes and variations in
camera viewpoints.

By using mAP and Rank-k accuracy as evaluation metrics,
the effectiveness of the proposed person re-identification
system can be comprehensively assessed, capturing both
the overall performance across all matches (mAP) and the
practical utility of the system in retrieving relevant matches
within the top-k results (Rank-k accuracy).

C. IMPLEMENTATION DETAILS
We employed ResNet-50 as the backbone network, removing
the fully connected layer and global average pooling layer.
The clothing appearance encoder (Ea) underwent pre-training
on ImageNet using ResNet-50, incorporating an adaptive
max pooling layer to produce appearance features in the
dimensions of 2048×4×1. The structural characteristics of
the Ep output are 128 × 64 x 32, primarily comprising four
convolutional layers of residual blocks. Since the existing
methods all use ResNet-50 as the backbone network in
the comparison experiments, using ResNet-50 allows for
a consistent benchmark across different methods, and to
highlight the contribution of our model in the clothing
change. While ResNet-50 may serve as a backbone network
for fair comparison, we also integrated a better backbone
CMSFL [30] to further improve the performance of our
framework. The knowledge embedding configuration used
in our model is based on the pretraining module described
in KST-GCN [31]. We leveraged the findings from KST-
GCN to inform our hyperparameter choices and training
configurations, ensuring robustness and effectiveness in our
person re-identification framework. Our training batch size
was set to 64, activation function was ReLU or WIB-
ReLU [32] (clothing change Person Re-ID on Celeb-ReID
and PRCC), and the training epoch spanned 60. Adam

TABLE 1. Comparative Re-identification test results on datasets SLP and
UJS-ReID.

TABLE 2. Multi-dimensional comparative analysis results.

optimizer was utilized, with an exponential decay rate of
0.5 for first-order moment estimation, 0.99 for second-
order moment estimation, and an initial learning rate of 0.1.
Our model is implemented using the PyTorch framework
(PyTorch 1.1) based on the Python language (Python 3.6).
The deep learning setup utilizes a server configuration
with CentOS 7 operating system, Intel(R) Xeon(R) E5-2630
v4 CPU, 256GB of memory, and TITANRTX×4 GPUs, with
each GPU having 24GB of graphics memory.

D. COMPARATIVE EXPERIMENTS
1) COMPARISON OF LOGICAL TOPOLOGY INFERENCE AND
PERSON RE-IDENTIFICATION ACCURACY
We conducted comparative experiments on the SLP and UJS-
ReID datasets, presenting the results in Table 1. Our method,
along with Distance-based [33], ODPR [34], PGFA [35] and
HOReID [36], participated in the experiments on UJS-ReID.
The comparison table provides a comprehensive view of the
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TABLE 3. Performance comparison on clothing change person Re-ID.

TABLE 4. Performance comparison on traditional person Re-ID.

performance of various methods, and it is evident that our
method stands out among the competitors. The subsequent
discussions will delve into specific aspects of the results.

For KTIN, the rationale behind topology inference can
be made interpretable by visualizing the inferred logical
topology relationships between cameras. This visualization
can include graphical representations of the camera network,
showing the connections and relationships between different
cameras over time. The inferred logical topology is visualized
in Fig. 6. The outcomes illustrate that our method’s inferred
topology aligns well with the actual dynamic topology
across different time periods. The visual representation of
the inferred topology is crucial in understanding the model’s
ability to adapt to dynamic changes. The alignment observed
in the figure supports the effectiveness of our approach
in capturing the evolving relationships between cameras.
Overall, by incorporating interpretability into the knowledge-
driven components of the model, users can gain a deeper
understanding of how the model operates and can trust
the decisions it makes in the context of pedestrian re-
identification.

For a more intuitive understanding of the performance of
knowledge-driven logical topology inference and the overall
person re-identification network, we present the retrieval rate
curve in Fig. 7(a). The retrieval rate signifies the accuracy
of matching candidates derived from the camera network
topology. The retrieval rate curve provides insights into
how well the network is leveraging the inferred topology
for accurate person re-identification. Analyzing the curve
helps in understanding the network’s effectiveness in lever-
aging topological information. Additionally, we assessed the

accuracy of our person re-identification framework based
on the cross-period clothing change network, depicted in
Fig. 7(b). Evaluating the accuracy of person re-identification
in the context of clothing changes is a crucial aspect. The
results depicted in the figure will be further discussed to
understand how well our model handles challenges related
to changing clothing appearances over time.

2) COMPARISON OF BACKBONE NETWORKS AT THE
EFFICIENCY LEVEL
The proposed model is compared with methods such as
BUFF [37], TCTS [38], BINet [39], and NAE+ [40] in
terms of network layers, model parameters, identification
accuracy, and test time dimensions. Table 2 shows that
while our method may not achieve the highest recognition
accuracy, it delivers comparable accuracy with significantly
fewer model parameters. The comparative analysis in Table 2
highlights a crucial trade-off between model complexity and
recognition accuracy. Our model demonstrates efficiency by
achieving competitive accuracy with a reduced number of
parameters, indicating its potential for resource-constrained
scenarios. Additionally, the proposed model exhibits the
shortest time cost for recognition, making it more suitable
for deployment on terminal devices. The efficiency of
our proposed model in terms of test time is a critical
advantage, especially for real-world applications where
rapid and resource-efficient recognition is essential. This is
particularly relevant for deployment on devices with limited
computational capabilities. The primary contributing factor
is our method’s utilization of logical topology for searching
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pedestrian targets in video feeds, improving the efficiency
of the recognition process. Leveraging logical topology for
target search demonstrates a novel and effective approach to
enhance the efficiency of the recognition process. This aligns
with the practical considerations of real-world deployments,
emphasizing the importance of not only achieving high
accuracy but also optimizing resource utilization.

3) ROBUSTNESS COMPARISON OF THE OVERALL MODEL
The proposed model is rigorously compared with other cloth-
ing change re-identification methods, such as HACNN [41],
PCB [42], DG-Net [43], ReIDCaps [24], SPT [6], CASE-
Net [44] and IRANet [45], on Celeb-ReID and PRCC
(Cross-clothes). The results presented in Table 3 affirm the
effectiveness of our model in addressing clothing changes.
This is particularly crucial in scenarioswhere individualsmay
undergo variations in clothing over time, as demonstrated by
its superior performance compared to specialized clothing
change re-identification methods. Additionally, traditional
re-identification methods are compared with our model on
DukeMTMC-ReID and PRCC (Same clothes), as depicted
in Table 4, showcasing the efficacy of our model when
contrasted with traditional re-identification approaches. The
comparison against traditional re-identification methods
emphasizes the versatility of our model, excelling not only
in scenarios with clothing changes but also in traditional
re-identification contexts. This versatility positions our
proposed model as a robust solution applicable across various
real-world scenarios. Table 3 indicates a notable disparity in
the results between traditional re-identification methods [41],
[43], [46] and those designed for changing clothes re-
identification. This observation underscores the inadequacy
of relying solely on clothing appearance for identifying
individuals over time. It underscores the need for a compre-
hensive approach, as adopted by our model, that considers
multiple factors for robust and accurate re-identification. Our
CPCCN achieves an accuracy of 69.1% at rank-1 and a mAP
of 22.6%, demonstrating superior performance compared to
traditional re-identification methods in scenarios involving
clothing changes. These metrics underscore the practical
viability of our proposed model in real-world applications
where individuals may exhibit variations in clothing over
time. The proposed model excels in addressing the traditional
re-identification problem with changes in clothing, thanks
to the incorporation of classification and reconstruction
losses that effectively constrain features. This dual-focus
approach enhances feature robustness by considering both
global and local features. Our model may also generate
erroneous classification results under various circumstances.
Firstly, when individuals undergo clothing changes over
time intervals, the model may misclassify them as different
entities. Additionally, if multiple pedestrians wear similar
clothing during the same time period, the model may
erroneously identify them as the same individual. Variations
in pose, occlusions, and changes in illumination can further
contribute to misclassification. Moreover, inadequate or

TABLE 5. Ablation study results on Celeb-ReID and PRCC (Cross-clothes).

non-representative training data may limit the model’s
ability to capture diverse variations, leading to erroneous
classifications.

E. ABLATION STUDY
To showcase the effectiveness of each proposed component,
we conducted ablation experiments. Table 5 presents the
results of our proposed method using DG-Net as the
baseline, validating the effectiveness of KTIN and CPCCN
on Celeb-ReID and PRCC (Cross-clothes), respectively. The
results underscore the significance of each component in
enhancing the overall model performance, highlighting their
complementary roles in addressing the challenges of re-
identification under various conditions. The symbol ‘‘+’’
indicates the inclusion of the following components. The
experiments demonstrate that all our proposed components
contribute significantly to the overall model performance.

After comparing with other existing pedestrian re-
identification models, we also explored the various com-
ponents of the model in ablation experiments. In the pose
encoder module, we utilize generative adversarial networks
to swap the poses of the target pedestrian and candidate
pedestrians, ensuring consistency in poses between them
during the pedestrian matching stage, thereby achieving pose
normalization. This approach effectively reduces intra-class
differences and the influence of pose variations. Unlike
previous pose-based pedestrian re-identification methods,
ourmodule does not require additional pose feature extraction
tools but directly uses a pose encoder for pose extraction.
To prevent interference from other features, we grayscale
the images before pose extraction to ensure the robustness
of pose features. We conducted visual analysis of the pose
encoder module. As shown in Fig. 8, we use a pose
encoder to extract pose features from the original image
of the target pedestrian and different pose providers. Then,
using generative adversarial networks, we perform pose
normalization based on the provided pose features. The
results demonstrate that our pose encoder module accurately
swaps the poses of the target pedestrian based on different
pose features while ensuring that the clothing features of the
target pedestrian are not affected by pose features. This is
achieved by incorporating reconstruction loss into the pose
encoder module to enhance feature decoupling capability,
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FIGURE 8. Posture normalization effect.

ultimately maintaining the same pose as the pose provider
during the pedestrianmatching stage to avoidmatching errors
caused by misalignment of features.

To further demonstrate the effectiveness of our approach,
we conducted visual analysis by Style Erasure Method [47].
As shown in Fig. 9 (a), the input pedestrian image is first
subjected to style erasure using instance normalization to
obtain features (F) that exclude style features. It can be
clearly observed from the figure that some discriminative
features of the pedestrian are lost during the style erasure
process. To address these lost features (Di), we use content
attention mechanism to separately extract discriminative
features (D+

i ) and task-irrelevant features (D−

i ), and finally
integrate them with the style-erased features. From the
visual results, it can be seen that if the erased features are
integrated with task-irrelevant features, it cleverly avoids the
discriminative features of the pedestrian, resulting in noise
unrelated to the pedestrian. Conversely, if integrated with the
lost discriminative features, it produces images focusing on
the discriminative features of the pedestrian. On the other
hand, we also conducted visual ablation experiments on
our approach, as shown in Fig. 9 (b). We visualized the
attention regions of pedestrians in environments of original,
contrast ratio change, and illumination change, and compared
them with the baseline. In the original environment, there
is little difference in performance between our approach
and the baseline, as both can focus on the discriminative
features of the pedestrian. In the contrast ratio change
environment, our approach can focus on more discriminative
features compared to the baseline, which is affected by
background noise. In the illumination change environment,
the performance difference between our approach and the
baseline is more significant. This is because our model can
effectively erase style differences in the images, while the
baseline is heavily affected by background noise, leading to
its inability to focus on the discriminative features of the

pedestrian and thus affecting the recognition performance of
the model.

As depicted in Fig. 10, ablation experiments were con-
ducted on the CPCCN to assess the network’s performance
in recognizing pedestrians undergoing clothing changes,
offering a comprehensive understanding of how each com-
ponent influences the model’s ability to handle clothing
changes. Visualizations of the generated images depicting
clothing changes and an example of cross-period clothing
change generation are presented in Fig. 11. Examining
specific examples of cross-period clothing change generation
enhances our understanding of the model’s performance in
scenarios where clothing characteristics evolve over time.
These visual results complement the quantitative evaluation,
providing a more holistic assessment of the proposed
approach.

F. DISCUSSION OF SCALABILITY OF CPCCN
Scalability is a crucial aspect to consider when evaluat-
ing the effectiveness of a person re-identification model,
especially in environments with diverse and large-scale
camera networks. The scalability of CPCCN can be enhanced
by leveraging graph-based representations of camera net-
works. Graph structures provide a flexible and scalable
framework for representing complex relationships among
cameras in diverse environments. As the number of cameras
increases, graph-based representations can efficiently capture
and model the topology of large-scale camera networks.
To handle large-scale camera networks, the model can
employ distributed processing techniques. By distributing
computation across multiple nodes or processing units, the
model can effectively scale to accommodate the compu-
tational demands of analyzing data from diverse cameras
distributed across a wide geographic area.

CPCCN can support incremental learning techniques to
adapt and scale to changing environments. By continuously
updating its parameters based on new data from additional
cameras or evolving conditions, the model can maintain
its performance and adaptability in dynamic environments
with diverse camera networks. Scalability also involves
efficient utilization of computational resources. The model
can be optimized to minimize resource consumption while
maximizing performance, enabling it to scale effectively in
resource-constrained environments or scenarios with limited
computational resources. Amodular architecture can enhance
scalability by allowing for the integration of additional
components or modules as needed. The model can be
designed in a modular fashion, with well-defined interfaces
between components, making it easier to scale and adapt to
different environments or requirements.

The model can leverage parallel processing techniques to
expedite computation and analysis across multiple cameras
simultaneously. By parallelizing tasks such as feature extrac-
tion, inference, or graph traversal, the model can efficiently
handle the computational load associated with large-scale
camera networks. In environments where real-time operation
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FIGURE 9. Ablation experiments via style erasure in different environments.

FIGURE 10. Results of clothing change generation.

FIGURE 11. Example of cross-period clothing change generation.

is critical, the model can be optimized for low-latency pro-
cessing. By prioritizing efficiency andminimizing processing
delays, the model can effectively handle the demands of
real-time re-identification in diverse and large-scale camera
networks.

Overall, the scalability of the model is essential for its
practical applicability in environments with diverse and
large-scale camera networks. By adopting strategies such
as graph-based representation, distributed processing, incre-
mental learning, resource efficiency, modular architecture,

parallel processing, and optimization for real-time operation,
the model can effectively scale to meet the challenges
of the person re-identification in complex and dynamic
environments.

V. CONCLUSION
This paper introduces a comprehensive framework that
effectively addresses the intricate challenges associated
with changing clothes in the context of pedestrian re-
identification. The variability introduced by clothing changes
can significantly disrupt the consistency of identity rep-
resentation. In response to this, our proposed framework
comprises two key components: the Knowledge-Driven
Topology Inference Network (KTIN) and the Cross-Period
Clothing Change Network (CPCCN).

The Knowledge-Driven Topology Inference Network
(KTIN) is specifically designed to counteract the influence
of external factors and clothing appearances. By capturing
logical topology relationships among cameras, KTIN pro-
vides a robust foundation for understanding the spatial and
temporal connections between different camera nodes. This is
a crucial aspect in maintaining accurate identity consistency
amidst changing clothing. TheCross-Period ClothingChange
Network (CPCCN) serves as a pivotal element in predicting
the clothing characteristics of target pedestrians at distinct
time intervals. This network is tailored to accommodate
the challenges posed by temporal variations in clothing,
offering a nuanced understanding of how clothing styles
evolve over time. To synergize the capabilities of KTIN and
CPCCN, a joint optimization mechanism is introduced. This
strategic combination aims to boost the overall performance
of pedestrian re-identification. By jointly refining the log-
ical topology relationships and enhancing clothing change
predictions, the framework achieves a comprehensive and
integrated solution. Extensive experiments were conducted
on diverse datasets, encompassing both traditional pedestrian
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re-identification scenarios and datasets specifically tailored
to clothing change scenarios. The results of these experiments
provide compelling evidence for the effectiveness of the
proposed framework. The framework not only demonstrates
proficiency in handling conventional re-identification chal-
lenges but also excels in scenarios where clothing changes
pose additional complexities.

In real-world deployment, the use of person re-
identification technology raises significant ethical concerns
regarding privacy, surveillance, and potential misuse of
personal data. The proposed model should prioritize the
protection of individuals’ privacy by ensuring that personal
data, such as images and biometric features, are handled
securely and anonymously. It should implement techniques
such as anonymization, data encryption, and access control
mechanisms to safeguard sensitive information. To minimize
the risk of privacy breaches, the model should only collect
and retain data necessary for its intended purpose. It should
avoid unnecessary data collection and implement data
minimization techniques to reduce the potential impact on
individuals’ privacy. The proposed model should encourage
public engagement and dialogue on the ethical implications
of Re-ID technology. It should facilitate discussions among
stakeholders, including policymakers, researchers, industry
experts, and civil society organizations, to develop ethical
guidelines, regulations, and best practices for the responsible
deployment of Re-ID technology. By addressing these ethical
considerations, the proposed model can help ensure that
Re-ID technology is deployed in a manner that respects
individuals’ privacy, rights, and dignity, while also promoting
public safety and security.

In conclusion, our proposed framework presents a holistic
and effective approach to tackle the multifaceted chal-
lenges associated with changing clothes in pedestrian
re-identification. The integration of KTIN and CPCCN,
coupled with joint optimization, showcases the adaptability
and robustness of the framework across various scenarios,
making it a valuable contribution to the field of person
re-identification research.
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