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ABSTRACT Banana phenotypic parameters are one of the important elements in the study of banana growth
and development. Through the measurement of banana phenotypic parameters, we can obtain information
about the growth status, nutritional status and quality indexes of banana plants, and pseudo-stem parameters
are significant indicators in banana phenotypic parameters. This research proposes a two-stage approach
combining morphological features and deep learning point cloud segmentation to extract banana pseudo-
stem parameters. Specifically, in the first step, seed points are extracted using the DBSCAN clustering
algorithm, and banana individual plant segmentation is accomplished using the region growing algorithm
based on seed points. Its precision, recall and Fl-score were 97.73%, 97.36% and 97.54%, respectively.
This indicates that the DBSCAN clustering algorithm and the seed point based region growing algorithm
can effectively realize the plant count of banana plants and initially realize the individual plant segmentation
of banana. The second step is to use PointNet++, PointNet, and DGCNN for pseudo-stem and canopy
segmentation of individual banana plants. All three models perform well in segmentation, with PointNet++
performing the best. Its precision, recall, F1-score, Matthews correlation coefficient and Dice coefficient
reached 0.9956,0.9709, 0.9831,0.9670 and 0.983 1. This shows that deep learning has a better applicability in
segmenting banana plants. In the results of segmentation, we measure the banana pseudo-stem circumference
and pseudo-stem height. The correlation between the extracted pseudo-stem height and pseudo-stem circum-
ference compared to the measured values was 96.70% and 82.32%, respectively. The above two-stage method
of extracting banana pseudo-stem parameters overcomes the difficulties of point cloud individual plant
segmentation associated with intensive banana cultivation. It makes the management of individual banana
plants possible and provides accurate phenotypic parameter information for banana plantation management.
It lays the foundation for further assessment of banana growth and nutritional status.

INDEX TERMS Terrestrial LIDAR, individual segmentation, phenotypic parameter, deep learning.

I. INTRODUCTION

As one of the critical global cash crops, banana is
widely planted and consumed worldwide. In 2018, China’s
banana production was 112.21 million tons, and sustainable
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development and efficient management of the banana indus-
try has become a matter of close attention [1]. So, accurate
measurement of external parameters of banana plants has
been one of the challenges in agriculture. Traditional manual
measurement methods suffer from issues such as being time-
consuming, labor-intensive, subjective, and influenced by
environmental conditions and the skills of the measurer [2].
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Therefore, an efficient and accurate measurement method is
needed to extract the phenotypic parameters of banana plants.
The height and circumference of pseudo-stems are essential
indicators of banana plants’ growth and health status [3].
By monitoring the changes in the height and circumference
of pseudo-stems, growers can assess the growth rate, growth
stage, and possible growth anomalies of the plant. It helps
growers take timely and necessary measures, such as timely
fertilization, irrigation, and pest control, to maximize the
optimization of the banana plant’s growing environment and
improve yield and quality [4].

Currently, point clouds are widely used to measure plant
phenotypic parameters [5], and the way to obtain the plant
shape point cloud is mainly obtained by 3D reconstruction of
UAV (Unmanned Aerial Vehicle) images and LiDAR (Light
Detection and Ranging) scanning [6]. Song and Wang [7]
generated a point cloud model of winter wheat plants based
on UAV images to measure the canopy height of winter
wheat, and the predicted RMSE and MAE reached 6.37cm
and 5.07cm, respectively. Qi et al. [8] generated a point cloud
model of orange tree based on UAV images and combined
deep learning to segment the plant from the ground to cal-
culate the volume of the orange tree, and the experimental
results achieved R2 of 0.8215 and RMSE of 0.3186m3.
Although obtaining point cloud data through UAV provides
an efficient means to extract plant phenotypic parameters,
the resulting ground-plant point cloud often fails to accu-
rately capture ground-level vegetation’s detailed shape due to
camera resolution limitations. Additionally, foliage obstructs
the aerial view, preventing the UAV camera from capturing
certain information about tree trunks and the ground. Con-
sequently, the acquired point cloud data may suffer from
incompleteness or missing components [9].

Compared to UAV remote sensing image technology,
LiDAR can not only obtain a large amount of point cloud
data at a very high efficiency but also, the point cloud
obtained from its scanning has a high data accuracy and
density. Meanwhile, terrestrial LiDAR can also accurately
collect the point cloud information under the plant’s canopy,
which can accurately reflect the phenological details and
parameters of the plant [9], [10], [11]. LiDAR has an exten-
sive scanning range and can scan a large farmland or plant
population in a relatively short period. It allows LiDAR to
efficiently acquire plant phenotypic parameters and improve
data collection efficiency in large-scale agricultural pro-
duction [12]. Ao et al. [13] obtained a point cloud model
of maize plants based on terrestrial LiDAR and extracted
five phenotypic parameters of maize plants by combining
them with the PointCNN model, and the results had a low
error. Yang et al. [14] terrestrial LiDAR reconstructed the
forest stand in three dimensions, and the four canopy struc-
ture parameters obtained by virtual measurement estimation
were highly consistent with the field measurement data.
Miao et al. [15] collected a point cloud model of banana
plants based on terrestrial LiDAR and realized the count-
ing of banana plants and the measurement of morphological
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parameters. Fang et al. [16] obtained point cloud models of
wheat plants based on terrestrial LIDAR and proposed a new
algorithm, ALHC, for wheat tiller detection, which exploited
point clouds’ potential in extracting plant phenotypic param-
eters. LiDAR provides high-precision 3D point cloud data
that can capture plants’ spatial structure and morphologi-
cal characteristics. By analyzing the geometry of the plant,
parameters such as height, volume, and branch thickness can
be obtained, which helps to understand the plant’s growth
status and structural characteristics [17].

With computer science’s development and data accumula-
tion, deep learning has been widely used in agriculture [18],
[19]. Deep learning can automatically identify and classify
plants by analyzing and processing farmland images [20]
or farmland point clouds [21], which helps agricultural
producers and researchers better monitor and manage farm-
land. Li et al. [22] acquired point cloud data of maize
plants through the MVS-Pheno platform and introduced
PointNet++ algorithm to achieve stem and leaf segmen-
tation and organ instance segmentation of maize, and the
accuracy of stem and leaf segmentation reached 0.91 and
organ instance segmentation reached 0.94. Turgut et al. [23]
compared the segmentation accuracies of six deep learning
models for organ segmentation of roses based on 3D syn-
thetic rose point cloud model, and the experimental results
showed that PointNet++- had the highest segmentation accu-
racy. Deep learning in agricultural phenotyping provides
new avenues and technical tools for agricultural production
management, pest prevention and control, and agricultural
research, which helps to improve crop yield and quality and
promote sustainable agricultural development [24].

In this research, Individual plant segmentation and pheno-
typic parameter detection of banana plants are accomplished
by collecting point cloud data of bananas by terrestrial
LiDAR and combining it with deep learning technology.
It provides an efficient and accurate management method
for banana planting. We propose a method to extract
seed points as the basis for Individual plant segmenta-
tion using the DBSCAN clustering algorithm [25], [26]
and then complete Individual plant segmentation of banana
plants using the region growing algorithm [27]. For Indi-
vidual banana plant segmentation, PointNet++ [28], [29]
deep learning was used to perform semantic segmentation
to divide Individual banana segmentation into two parts,
pseudo-stem, and canopy, and measure the circumference
of the banana pseudo-stem and the height of the pseudo-
stem, to provide accurate information about the phenotypic
parameters for the management of banana planting. Finally,
we assessed the accuracy of Individual plant segmentation
at the level of number of plants and the accuracy of phe-
notypic parameter prediction at the level of number of point
clouds.

The main aims of this paper are:

(1) We propose a new method to overcome the problem of
Individual plant segmentation, which is difficult due to dense
plant cultivation, and to achieve Individual banana segmen-
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TABLE 1. Performance parameters of LiGrip H120.
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FIGURE 1. Experimental site location.

tation monitoring and management of the growth status of
banana plants.

(2) Verify the segmentation effect of the method under
different range thresholds and explore the factors affecting
the Individual plant segmentation effect of banana plants.

(3) Based on the PointNet++ algorithm to achieve the
segmentation of pseudo-stems and canopy of banana and
extract the circumference and height of banana pseudo-stems
according to the segmentation results by analyzing the size of
banana pseudo-stems, it achieved the prediction and manage-
ment of the nutritional status of banana growth.

Il. MATERIAL AND METHODS

A. SITE DESCRIPTION

The experimental site of this research was located in
a commercial banana plantation in Chengmai County,
Hainan Province (Figure 1), with geographic coordinates of
109°55°11”E, 19°51°30’N, and an altitude of 88 m above sea
level. The region has a tropical oceanic monsoon climate with
abundant sunshine and rainfall, an average annual tempera-
ture of 23.8°C, and an average yearly rainfall of 1786.1 mm,
making the climate and soil conditions suitable for banana
plant growth. This research was conducted on 18 April 2023,
when banana plants in the study area were mainly in the late
nutritive growth period when the size of the pseudo-stems of
the banana plants could reflect the health of banana growth.

B. DATA ACQUISITION

1) TERRESTRIAL LIDAR ACQUISITION OF POINT CLOUD
DATA

The point cloud data was acquired on 18 April 2023 using
terrestrial LIDAR (LiGrip H120, GreenValley, China), which
has the performance parameters shown in Table 1. The
weather on the day of the experiment was sunny, and the
temperature was between 32°C and 35°C. The equipment
used and the planned route are shown in Figure 2. Terres-
trial LIDAR was held to walk and scan along the planned
route (1) to (13) at a speed of 1m/s. The LiGrip H120
terrestrial LiDAR integrates a high-performance laser and a
panoramic camera. The high-performance laser can quickly
acquire high-precision point clouds, while the panoramic
camera acquires the image information and renders the point
clouds with colors. The LiGrip H120 LiDAR system can
automatically measure the banana forest experimental area,
which combines LiDAR and SLAM (Simultaneous localiza-
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Specifications Parameters
Handheld Size 204x130%385 mm
Handhold weight 1.74 kg
Laser XT-16

Laser class Class 1 eye-safe

Lidar accuracy +3 cm
Scan distance 120 m
Laser wavelength 930 nm
Scanning frequency 320,000 pts/s
Field of view 360°x280°
Data storage USB, TD

FIGURE 2. Terrestrial LIDAR planning scanning route. (a) and (b) show the
LiGrip H120 terrestrial LiDAR and the use method; (c) represents the
scanning planning route; only a part of the route is represented in the
figure, and the route is scanned in the order of (1) to (13) until the
planning area is scanned.

tion and mapping). A high-density point cloud for the banana
experimental area can be generated rapidly.

2) DATA PREPROCESSING

Data preprocessing includes the following steps: point cloud
registration, point cloud denoising, ground point classifica-
tion, and point cloud normalization. Point cloud registration
was performed using LiFuser-BP software, which combines
2D panoramic images and 3D Lidar data for fast point cloud
registration processing. The generated point cloud data pro-
duces noise point clouds due to environmental factors and
jitter interference caused during data acquisition. Therefore,
we use the radius outlier removal method to perform denois-
ing operation on the point cloud data. Then, we implement
ground point classification based on the Progressive TIN
densification filtering algorithm [30]. In order to facilitate
the subsequent point cloud processing, it is also necessary to
normalize the point cloud data according to the DEM (Digital
Elevation Model). We first matched the point cloud data with
the DEM, and the elevation value of each point cloud data
is subtracted from the corresponding DEM elevation value to
achieve normalization.

3) GROUND DATA ACQUISITION

To ensure that the measurements are not affected by changes
of the weather during the day, the collection of the point
cloud data and the measurement of the ground-truth param-
eters occur on the same day. To verify the accuracy of
individual plant segmentation, we manually counted the
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FIGURE 3. Schematic diagram of the clustering process of the DBSCAN
algorithm. The points in all circles connected by arrows on the left side
form a point cloud cluster, the points in all circles connected by arrows on
the right side form another point cloud cluster, and the rest of the points
are the noise points.

number of banana plants in the study area. We used a soft
ruler to measure the banana pseudo-stem circumference data
at a height of 1.5m from the ground. At the same time,
we used a tower ruler to measure the height of the banana
pseudo-stem. We measured 27 banana plants for pseudo-stem
circumference and pseudo-stem height. We used a D-RTK
2 high-precision GNSS mobile station to accurately locate
the measured 27 banana plants with a positioning accuracy
of 0.01m.

C. INDIVIDUAL BANANA SEGMENTATION

1) EXTRACTION OF SEED POINTS

The region segmentation based on seed points starts by select-
ing multiple seed points, starting from these seed points, and
gradually forming point clustering by adding the neighbor-
hood points of seed points. The selection of the number and
location of seed points usually affects the efficiency and qual-
ity of subsequent segmentation algorithms, and we propose a
method to automatically extract seed points for subsequent
Individual plant segmentation. Firstly, we cropped the nor-
malized point cloud data with elevation values between 1m
and 1.2m, and then the cropped point cloud data were seg-
mented using the DBSCAN clustering algorithm. DBSCAN
clustering [25], [26] algorithm is a clustering algorithm based
on the density of the point cloud, such as Figure 3 represents
the clustering process of the DBSCAN algorithm. A neigh-
borhood with a number of MinPts within the radius of a
neighborhood is considered a cluster. MinPts was set to 4,
is the circle’s radius in the figure, and the red points are
core points. The set of all points in the neighborhood of core
points forms a point cloud cluster [31]. After the point cloud
clustering, the number of clustered point cloud clusters was
calculated, and the coordinates of the central point cloud of
each point cloud cluster were also calculated. The central
point cloud was the average of the coordinates of all the point
clouds in the point cloud cluster, and then the coordinates of
the central point were the coordinates of the seed points.

2) INDIVIDUAL PLANT SEGMENTATION BASED ON REGION
GROWING ALGORITHM

Point cloud region growing algorithm segments the point
cloud based on the similarity of euclidean distances and
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normal vector angles between neighbouring points, it aggre-
gates similar points into regions in the point cloud [27].
Specifically, the extracted seed points are used as the starting
point of the segmentation, and for each seed point, the neigh-
bouring points that are similar to its euclidean distance and
normal vector angle are calculated, and the euclidean distance
d from p; to p; is:

d = |pi = pj o)

The normal vector angle 6 from p; to p; is:
6 = arccos )annj‘ 2)

where n; and n; denote the normal vectors of p; and pj,
respectively.

Since banana plants are grown in dense planting, dense
planting leads to intersection of canopy leaves between
banana plants. The result of segmentation by region grow-
ing algorithm will be over-segmented. Therefore, we add a
new parameter called range threshold to the region growing
algorithm. The range threshold represents the segmentation
range of each banana plant point cloud, centered horizon-
tally at the seed point, and point clouds beyond the range
threshold will not be grouped together. Under the specified
range threshold, for each newly added point, the points with
similar Euclidean distances and normal vector angles to its
neighboring points are computed and added to the set in
which the point is located until all the points are assigned to
a certain set. At this point, each point cloud set represents a
segmented banana plant.

D. DEEP LEARNING BASED POINT CLOUD
SEGMENTATION OF BANANA PLANTS

Point cloud semantic segmentation is to assign a semantic
label to each point in the point cloud data, with the aim
of distinguishing different objects or scenes in the point
cloud data, so as to achieve semantic understanding and
classification of the point cloud data. We use deep learn-
ing point cloud semantic segmentation to segment banana
plant canopy and pseudo-stem. We selected the PointNet++-
[28], [29] classical point cloud deep learning algorithm for
testing, to verify the feasibility of point cloud deep learning
for segmentation between banana plant canopy and pseudo-
stem. The PointNet++- schematic is shown in Figure 4. Since
PointNet++ fully considers the point cloud’s local features
through multi-level point cloud learning.

In this research, based on individual plant segmentation,
the individual point cloud of a banana plant was used as a
training sample, and the point cloud of each banana plant
was labeled using manual labeling to divide it into canopy
and pseudo-stem sections. In the preprocessing stage of the
point cloud data, the dataset was augmented by randomly
rotating the original samples by 0 to 180° in both vertical
and horizontal directions, and randomly scaling them by a
multiplicity of 0.8 to 1.2, to improve the robustness of the
model. After data enhancement, the number of datasets was
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FIGURE 4. PointNet++ network architecture.

boosted to 960. Among them, 80% of the samples were
randomly selected as the training set, 20% were randomly
selected as the validation set, and 27 banana plants measured
on the ground were selected as the testing set.

The experimental hardware configurations include an Intel
19-12900K CPU (3.20 GHz), a memory of 64 GB, and an
RTX 3060 graphics card. In order to avoid overfitting, the
initial learning rate was set to 0.00001, the learning rate decay
was set to 0.5, the batch size was set to 4 according to the GPU
memory size, and the Adam optimizer was used to minimize
the loss function. To ensure the accuracy of the point cloud
shape, 20480 point clouds were randomly selected for each
sample data to train and test the model. 500 epochs of iterative
training ensured the final convergence. Cross entropy loss
function, which is commonly used in segmentation tasks, was
used as the loss function in the training process. Figure 5
shows the framework for detecting phenotypic parameters of
banana plants in this study.

E. ACCURACY EVALUATION METHOD

1) INDIVIDUAL PLANT SEGMENTATION ACCURACY
EVALUATION

We assessed individual plant segmentation accuracy using
precision, recall, and Fl-score. For the Individual plant
segmentation task, precision is the proportion of samples
predicted by the algorithm to be positive that are actually
positive, and it measures the accuracy and reliability of the
algorithm in predicting positive cases. Recall is the proportion
of samples that are actually positive cases that are correctly
predicted by the algorithm as positive cases, which measures
the algorithm’s coverage of the positive case samples and the
detection rate. F1-score is the reconciled average of precision
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and recall, which is used to comprehensively evaluate the
accuracy and detection rate of the algorithm [32]. These three
evaluation indexes are calculated as follows:

TP )

P=TpIFpP
P

- @)
TP+ FN
2Xpxr

_ixpxr )
p+r

where p denotes precision, r denotes recall, F denotes
F1-score, TP denotes the number of banana plants correctly
segmented by the algorithm, FP denotes the number of
banana plants incorrectly segmented by the algorithm, and
FN denotes the number of banana plants not segmented by
the algorithm.

2) ACCURACY EVALUATION OF DEEP LEARNING
ALGORITHMS
We evaluate the partial segmentation results of PointNet++,
PointNet and DGCNN on the basis of the number of point
clouds. Segmentation results are evaluated by precision,
recall, F1-score, Matthews correlation coefficient (Mcc) and
Dice coefficient.

Mcc is a metric used to evaluate the performance of binary
classification models, which is especially suitable for dealing
with imbalanced datasets. The Mcc is calculated as follows.

Mcc

_ TP x TN — FP x FN

N V(TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)
(6)
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FIGURE 5. Framework for detection of phenotypic parameters in banana
plants based on terrestrial LiDAR.

The dice coefficient is a set similarity measure that is com-
monly used to calculate the similarity of two samples. The
dice coefficient is calculated as follows.
. 2x TP
Dice = )
2x TP+ FN + FP

The formulas for calculating Precision, recall and F1-score
refer to (3), (4) and (5). The meanings represented by TP, FP,
TN and FN in the above four indicators are different from
those in the individual plant segmentation. For the point cloud
segmentation task, we define it at the level of the number
of point clouds. TP denotes the number of point clouds
correctly predicted by the algorithm as positive instances.
TN denotes the number of point clouds correctly predicted by
the algorithm as negative instances. FP denotes the number of
point clouds incorrectly predicted by the algorithm as positive
instances. FN denotes the number of point clouds incorrectly
predicted by the algorithm as negative instances.

3) ACCURACY EVALUATION OF BANANA PHENOTYPIC
PARAMETERS

As shown in Figure 6, we automatically measured the height
of the segmented resultant pseudo-stems, and intercepted
the point cloud data with elevation values between 1.45m
and 1.55m, and fitted the banana pseudo-stem circumference
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FIGURE 6. Schematic diagram of the extraction method for the
phenotypic parameters of banana plants.

using the least squares method to obtain the banana pseudo-
stem circumference. RMSE and R2 were used to evaluate
the accuracy of phenotypic parameter extraction. These two
evaluation indexes were calculated as follows:

n R Y
RMSE — z,‘:] i —yi) (8)
n
Rz —1— Z?zl (Yi - )A’i)z (9)
> i — i)

where n denotes the number of samples to be compared;
y; denotes the value of the ground-truth measurement; y;
denotes the value of the phenotypic parameter extracted from
the segmentation result by the algorithm; and y denotes the
average value of the ground-truth measurement.

Ill. RESULTS

A. ACCURACY OF INDIVIDUAL PLANT SEGMENTATION
The range threshold in the region growing algorithm is the
main factor affecting the effect of single plant segmentation,
and the different range threshold is related to the efficiency
and effect of clustering. Setting a range threshold that is too
large or too small will affect the number of banana plants
that are eventually correctly divided, as well as the efficiency
of the segmentation. Four range threshold parameters were
selected for study and comparison, namely 1m, 2m, 3m and
4m. The segmentation accuracy of single plant with different
range thresholds is shown in Table 2.

When the range threshold is greater than 2m, the seg-
mentation accuracy index decreases rapidly. When the range
threshold is 4m, Precision, Recall and Fl-score are only
81.32%, 65.16% and 72.35%. This range threshold is man-
ifested in the actual segmentation as banana plants planted
close to each other are classified into one category. When the
range threshold is between 1 and 2, the algorithm maintains
a high segmentation accuracy. When the range threshold is
2m, Precision, Recall and F1-score reach the highest values,
which are 97.73%, 97.36% and 97.54%, respectively. This
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FIGURE 7. Normalized confusion matrix diagrams of the three deep learning algorithms.

TABLE 2. Individual plant segmentation accuracy of banana
segmentation under 4 range thresholds. RT stands for the range
threshold.

RT (m) precision recall Fl1-score
1 97.72% 96.98% 97.35%
2 97.73% 97.36% 97.54%
3 91.34% 87.55% 89.40%
4 81.32% 65.16% 72.35%

means that when the range threshold is 2m, the number of
correctly divided banana plants is more, and the possibility
of misjudgment is less. Under this range threshold, the whole
banana field can be covered more completely, which is more
suitable to reflect the overall situation. Through comprehen-
sive comparison of various evaluation indicators, the range
threshold was set to 2m for single plant segmentation, so as
to count the number of plants.

B. SEGMENTATION ACCURACY FOR DEEP LEARNING

We evaluated the accuracy of the point cloud of banana
plants in the testing set by five quantitative indexes: precision,
recall, Fl-score, Mcc and Dice. As shown in Table 3, the
semantic segmentation accuracy results of the three deep
learning algorithms are presented. PointNet++ has the high-
est performance in the five indicators, and its precision, recall,
F1-score, Mcc and Dice are 0.9956, 0.9709, 0.9831, 0.9670,
0.9831 respectively. Figure 7 illustrates the ability of three
semantic segmentation models PointNet++, PointNet and
DGCNN to accurately label and segment the point cloud
model of banana plants. All three models can identify the
pseudo-stem point cloud well. Among them, PointNet++
has better segmentation effect on banana pseudo-stem, and
its normalized TP reaches 0.9709. Figure 8 illustrates the
segmentation results for four random banana plant point
cloud sets in the testing set. By visualizing the images, the
PointNet++ segmentation came out highly consistent with
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TABLE 3. Segmentation accuracy of three deep learning algorithms.

precision recall Fl-score Mcce Dice

PointNet++ 0.9956 0.9709 0.9831 0.9670 0.9831
PointNet 0.9713 0.9473 0.9591 0.9186 0.9591
DGCNN 0.9749 0.9629 0.9688 0.9636 0.9688

the manually annotated labeled samples, with no extensive
false or missed segmentation.

C. ACCURACY OF BANANA PHENOTYPIC PARAMETERS
Figure 9 demonstrates the correlation between the pheno-
typic parameters extracted based on PointNet++ point cloud
segmentation and the comparison of the ground-truth values.
In the comparison results of pseudo-stem height, R2, and
RMSE were 0.9670 and 0.079, respectively. In the compar-
ison results of pseudo-stem circumference, R2, and RMSE
were 0.8232 and 0.0296, respectively. Among these two
phenotypic parameters, the extracted pseudo-stem height has
a higher correlation with ground truth, while the extracted
pseudo-stem circumference has a slightly lower correlation
with ground truth. However, their accuracy satisfies banana
plants’ growth monitoring and nutritional management.

IV. DISCUSSION

A. ACCURACY OF POINT CLOUD SEGMENTATION

In this research, Individual plant segmentation is mainly
implemented by the region growing algorithm based on seed
points. When extracting seed points, intercepting point cloud
data with different elevation values will affect the generated
seed points differently. As shown in Figure 10(a), if the
point cloud with too low elevation value (0.6m-0.8m) is
intercepted, this will result in the intercepted point cloud
containing some redundant point clouds, such as weeds and
residual shadows. In the DBSCAN clustering algorithm, the

VOLUME 12, 2024
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comparison graph from left to right is thus: the original banana plant point cloud samples, the manually labeled banana plant point cloud samples, and
the banana plant point cloud samples segmented by the PointNet++ algorithm.
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FIGURE 9. Correlation of phenotypic parameters extracted based on PointNet++ point cloud segmentation with ground-truth values. (a) Pseudo-stem
height correlation. (b) Pseudo-stem circumference correlation.

partially redundant point clouds may be segmented into a high elevation value (1.4m-1.6m), as shown in Figure 10(c),
separate class, which results in a higher number of seed sagging leaf point cloud could be segmented and recognized
points generated. When intercepting the point cloud with too as part of pseudo-stem point cloud. It affects the extraction of
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seed points and causes the generated seed points to deviate
from the pseudo-stem center position. Finally, we cropped
the point cloud data with elevation values between 1m and
1.2m for seed points extraction, as shown in Figure 10(b).
It avoided as much as possible the weed noise points that were
too low and the sagging leaf point cloud that was too high
while ensuring that the density of the point cloud clusters was
suitable for clustering.

Better seed points extraction led to Individual plant
segmentation with higher accuracy. In Individual plant seg-
mentation based on the number of plants level, the range
threshold reached its highest Fl-score at 2 m, with a value
of 97.54%. Although the method accurately detected the
number of plants, the plants were poorly segmented in the
canopy region. It is because locally grown bananas are habit-
ually planted densely, and the leaves of mature banana plants
usually cross and overlap each other. As a result, some of
the segmented plants have broken leaves. At the same time,
because the banana canopy leaves are too dense, terrestrial
LiDAR can only scan the pseudo-stems and features in the
middle and lower layers of the canopy when scanning the
banana field, and there is a small portion of the point cloud
acquisition in the upper part of the canopy is missing. In the
following research step, the growth characteristics of banana
leaves can be combined with the banana plant skeleton to
subdivide the canopy segmentation further. In addition, air-
borne LiDAR can also be introduced to try to obtain higher
quality point cloud data with air-ground cooperation mode
by matching and fusing the point cloud data collected on the
ground and in the air.

In the comparison results for pseudo-stem height, the R2
and RMSE are 0.9670 and 0.0791, respectively. The seg-
mentation results maintain a high degree of fit and low
error. However, the overall position of the fitted straight line
is slightly lower than the standard line, which means that
the overall pseudo-stem height predicted by PointNet++
is slightly smaller than the ground-truth measurement. This
situation is because there is a transition region where the
pseudo-stem meets the canopy, and this transition region
consists mainly of the petiole and pseudo-stem. As the
pseudo-stem gets smaller towards the top until it merges with
the petiole, the algorithm does not segment the petiole and
pseudo-stem well, resulting in a slightly smaller predicted
pseudo-stem height than the ground-truth measurement. This
can be corrected by expanding the dataset to obtain higher
accuracy or by using empirical formulas.

However, in the comparison results of pseudo-stem cir-
cumference, its R2 and RMSE are 0.8232 and 0.0296,
respectively. Compared with pseudo-stem height, the fit of
pseudo-stem circumference is slightly worse. However, its
final fitted straight line was very close to the standard line,
and its error was kept within 10cm. The performance of its
prediction results meets the efficient prediction management
model of the banana industry, which is of guiding significance
in understanding the growth and development of banana
plants, assessing the growth potential and physiological status
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(a) Elevation value:
0.6m - 0.8m

(b) Elevation value:
Im - 1.2m

(c) Elevation value:
1.4m - 1.6m

FIGURE 10. Point clouds in different elevation value ranges.

(a) represents the point cloud with elevation values ranging from 0.6m to
0.8m. (b) illustrates the point cloud with elevation values ranging from
1m to 1.2m. (c) illustrates the point cloud with elevation values ranging
from 1.4m to 1.6m.

of plants, and determining the growth stage and maturity of
bananas.

B. ADVANTAGES EVALUATION

Terrestrial LIDAR acquired the raw point cloud data for this
research. The advantage of using terrestrial LIDAR is its high
throughput characteristics, which enables it to acquire a large
amount of point cloud data in a short period of time. In this
research, it took 15 minutes to complete the initial acquisition
of data under the planned route. Terrestrial LIDAR enables
the acquisition of phenotypic parameters over a larger area
and at a faster rate than manual measurements.

Currently, the accuracy of most studies using LiDAR for
Individual plant segmentation is usually affected by under-
story shrubs and herbaceous plants [33]. We extracted the
seed points of each plant based on the morphological struc-
ture of banana plants, effectively avoiding the shrub and
weed point clouds with low elevation values. The precision
reached 97.73% in the final result, and the method has high
feasibility in the number of plants detection, which provides
new possibilities for Individual plant segmentation directions.

In a related research, Miao et al. [15] accomplished the
plant counting of banana plants with k-means clustering
algorithm, and the precision reaches 97.32% at the highest.
In this research, we not only realize the plant count of banana
plants, on the basis of which, we also preliminarily realize
the individual plant segmentation of banana plants. In this
case, the precision of plant counting reached up to 97.73%.
In addition, we found that PointNet++ model has better
effect on organ segmentation of banana plants, and the final
segmentation result has an R2 of 0.9670, RMSE of 0.0791.
The method in this research has a high degree of fit and a
small error in the measurement of pseudo-stem height.

Although the method proposed in this research can effec-
tively realize banana individual plant segmentation, it is still
difficult to accurately segment the banana canopy region.
On the one hand, because the point clouds of the banana
canopy region have large-scale overlap or complete over-
lap, and on the other hand, the point clouds are acquired
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in the field environment, and it is inevitable that there will
be the influence of wind disturbance and other weather
causes during the acquisition process, which will result in
errors in the acquisition of the point clouds. Therefore,
future work will focus on acquiring higher precision point
cloud data, while involving algorithm improvement and the
combination of new technologies to improve segmentation
accuracy and computational efficiency. In addition, the fusion
of multi-source data is also very valuable for plant seg-
mentation and phenotypic parameter extraction, for example,
the combination of high-precision remote sensing imagery,
multi-spectral remote sensing imagery and airborne LIDAR
will result in more accurate plant modeling data. This will be
more conducive to the development and progress of precision
agriculture technology.

V. CONCLUSION

We propose a two-stage approach to extract the parameters
of banana pseudo-stems: the first stage is the individual
plant segmentation stage, and the second stage is the seg-
mentation of pseudo-stems and canopies. In the first stage,
the DBSCAN clustering algorithm is used to extract seed
points as the basis for individual plant segmentation, and
then the region growing algorithm based on seed points is
used to segment banana plants individually. In the second
stage, three semantic segmentation models are compared to
segment the pseudo-stem and canopy. The results show that
both individual plant segmentation and pseudo-stem param-
eter measurement have high accuracy. This study provides
an efficient, accurate and non-contact method for growth
monitoring and agricultural management of banana plants.
Future studies could further optimize the ground-based lidar
technology in combination with other biological parameters
to gain a more complete understanding of the dynam-
ics and physiological characteristics of banana growth and
development.
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