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ABSTRACT Precise positioning will play a key role in future 5G/6G services. The upcoming location-
based services drive the necessity of high-precision positioning to indoors. In fingerprinting, which is the
most commonly used location algorithm indoors, comprehensive radio maps are essential for a precise
localization service and highly influence on the result of the final position of the user. A Machine
Learning (ML) algorithm that supports missing reference points information when maps are incomplete
that are used during the training phase may improve the robustness and reliability of the localization
service. In this work, we compare the performance of the classical fingerprinting technique and different
Decision Tree Regressor (DTR)-based algorithms that are Decision Tree Adaboost (DTA), Linear Tree
Adaboost (LTA) and Random Forest (RF). The experiments were carried out with real 5G and WiFi
data in an indoor scenario to test the performance of the techniques. Additionally, we demonstrate the
benefits of fusion of technologies when positioning with radio maps. Finally, an evaluation of the robustness
from the different methods was carried out when missing information in radio maps during the training
phase.

INDEX TERMS Fingerprinting, adaboost, random forest, 5G, WiFi, fusion, indoor localization.

I. INTRODUCTION
As an increasing number of customer services rely on
location to satisfy the needs of both users and network
operators, Localization-as-a-Service (LaaS) is becoming
increasingly vital for 5G and 6G networks [1]. LaaS is
critical in enabling new location-based services such as
autonomous robots and vehicles [2], smart education [3] or
e-Health [4]. The 3GPP has set a target of achieving high
localization accuracy for 5G networks, aiming for submeter
accuracy in certain cases such as autonomous driving, where
location accuracy below 10 cm is envisioned [5], and an
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accuracy of below 3 meters in most cases (both indoors
and outdoors) [6]. Combining context-aware data from the
Internet of Things (IoT) collected through WiFi networks
with 5G information can enhance the accuracy, reliability, and
scalability of localization services [7], [8].

Accurate location estimation has become increasingly
important in recent years, and the use of Global Navigation
Satellite Systems (GNSS) is a common approach for
achieving high accuracy in outdoor environments. However,
issues like signal blocking, attenuation, and multipath effects
make GNSS ineffective indoors, where many applications are
being developed. To address this, supplementary technologies
like 5G, WiFi, or Ultra Wide Band (UWB) are often used
to determine location [9], [10]. In situations where energy
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constraints on user devices require network-based location
to conserve battery and optimize computational efficiency,
the network estimates the User Equipment (UE) location
based on data collected in the network infrastructure in a
non-cooperative manner [11]. Some applications, such as
beam management or automatic configuration of network
parameters, may also require terminals to transmit their
location using specific protocols [12], which can be complex
and energy-intensive. An alternative solution to determining
location is through network-based location [13]. This method
involves the network utilizing data collected from the network
infrastructure in a non-cooperative manner to estimate the
location of a terminal.

Cellular networks like Long Term Evolution (LTE) are
commonly used to locate users when GNSS is unavail-
able [14]. The most common approaches are location by
proximity, ranging-based methods, Angle of Arrival (AoA)
and fingerprinting. Location by proximity is the easiest
method to determine the location of the UE because it
assumes the location of the gNodeB (gNB) is the loca-
tion of the UE and is used when high accuracy is not
required [15]. Ranging-based methods, such as trilateration,
involves using ranges obtained through methods such as
Received Signal Strength Indicator (RSSI) or Time of Flight
(ToF) [9] and can be very accurate if ranges are precise.
The determination of the location involves estimating the
interception of 4 spheres (or 3 in 2D location). Nevertheless,
range estimations are not normally accurate, occasionally
resulting in the non-convergence of circles or hyperbolas
utilized in the trilateration process. To solve the uncertainty,
techniques such as Least Squares (LS) or Weighted Least
Squares (WLS) are used [16]. AoA measures the angle at
which the signal reaches the UE from the gNB. Multiple
Input Multiple Output (MIMO) systems are capable of
transmitting with beamforming that can be used to implement
the AoA approach [17]. Indoor environments pose reliability
challenges for both range-based models and AoA due to
the susceptibility of the models to signal blocking and
reflections. While the received power might not follow
a predetermined propagation model, in cases where the
environmental conditions remain relatively stable, it is
observed to remain constant over time. For instance, if we
consider a location in close proximity to a WiFi AP and
the measured power is unusually diminished due to an
obstacle such as a wall, this power level will remain unaltered
over time as long as the obstruction remains stationary.
As a result, each point in space is associated with a set
of paired values comprising reference point (RP) identi-
fiers and unvarying received power levels. This principle
underlies the concept of fingerprinting, these paired values
conform a distinctive signature, commonly referred to as
a fingerprint, which serves to uniquely identify each point
in space [18].

Fingerprinting exhibits several primary drawbacks.
It notably demonstrates high sensitivity to disparities
between training and testing conditions arising from dynamic

propagation attributes such as temperature, humidity, and
obstacles [19], [20], [21]. Additionally, it mandates an
extensive preliminary map construction phase, which
necessitates thoroughness [22]. This is imperative because
unrecorded data points remain unusable for positioning
during the operational phase. Lastly, the integrity of the radio
map is compromised due to device heterogeneity stemming
from variations in orientation and chip sensitivity [23].

Fingerprinting has some disadvantages, which include the
requirement for a long map-building phase in advance. This
process must also be comprehensive because unmeasured
points cannot be used for location in the exploitation phase.
An alternative method for constructing maps is through
crowdsourcing data from various UEs or sensors. This
method may sacrifice precision but it is cost-effective.
The system can use the measurements provided by these
sources to create or update the radio map or models for
localization systems [24], [25]. Other studies have explored
the reconstruction of maps when maps are incomplete.
In [26], they addressed this issue by leveraging the linear
nature of signal propagation. Their objective was to create
new data by considering the context of the existing map,
allowing for the application of techniques like fingerprinting.
It is important to note that this approach is constrained by the
granularity of the radio map division, which directly impacts
the final accuracy of the system. When the division is finer,
precision increases, but it also necessitates a larger number of
minimum required data points. Another avenue explored is
the utilization of Deep Learning techniques with incomplete
maps for the recovery of missing data points. However, it is
observed that this approach has limitations and can only
recover up to 50% of missing data in incomplete maps [27].
Supplementary techniques such as combining ranging with

AoA can enhance the final location estimation of a UE,
resulting in a higher degree of accuracy [9], [28]. The fusion
of multiple technologies helps to increase the density of RPs
in the scenario, providing more information for the final
estimation stage. This reduces the cost of infrastructure or
expands the coverage area [29].

The contributions of this paper are listed as follows:
• Implementation of fingerprinting andmodel-based algo-
rithms utilizing real 5G and WiFi data.

• Evaluation of the performance of positioning systems
when fusing different technologies employing map- and
model-based methodologies.

• Examination of the the behavior of the algorithms
when varying different percentages of missing reference
points during the training phase.

• Proposition of model-based techniques when maps are
incomplete with a percentage over 50% of missing
reference points while minimizing the degradation on
the localization performance.

The rest of the paper is organized as follows. Section II
explains both the fingerprinting algorithm and various
DTR-based techniques. Section III provides an overview
of benefits of fusion of technologies. In Section IV, the
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TABLE 1. Overview of acronyms.

experimental setup and the scenario are described. Section V
analyzes the results of the outcomes that were obtained
from the data collection campaign and the implementation of
various location methods with different experiments. Finally,
Section VI presents the conclusions of this work.
The acronyms in this paper are listed in the Table 1 as

follows:

II. LOCATION TECHNIQUES
In indoor environments, techniques like trilateration can
be challenging due to the possibility of signal blocking
and reflections, which can result in significant errors. ToF
based ranging estimation can reduce these errors, but it
can be expensive due to the hardware requirements [9].
In indoor environments, however, there are typically multiple
radio signals that can be measured and reported without
hardware modifications. In cellular networks, UEs are
required to measure all visible base stations and report
this information to the serving base station to determine
the best cell [30]. In stable indoor environments, the
received power tends to remain constant, making radio map
techniques particularly useful. This section will provide
an overview of various techniques suitable for these types
of scenarios.

A. FINGERPRINTING
Classical fingerprinting is a localization technique that
involves generating a unique fingerprint of wireless signal
strength and other characteristics of a particular location.
This fingerprint can be later used to identify the location
of a device. The process of creating a fingerprint involves
measuring wireless signal characteristics at various points
within an area, such as a building or campus. In static

FIGURE 1. Fingerprinting method.

environments where changes are minimal, the received power
at a specific point in space remains relatively constant
over time. As a result, each point yiyiyi can be represented
in a database of T entries using a vector that contains
the RSSI measurements of the N APs received by UE
with known positions in WiFi and gNBs in 5G networks,
RRR = (RSSI1,RSSI2, . . . ,RSSIN ), as shown in Figure 1.
Consequently, each point has a distinctive RSSI vector that
constitutes its fingerprint allowing for accurate location
tracking.

Fingerprinting involves two distinct phases, as illustrated
in Figure 1. The first phase, known as the offline or training
phase, involves creating a radio map by assigning a unique
fingerprint to each point on a regular grid. In the second
phase, called the online or exploitation phase, the terminal
measures the surrounding gNBs and generates a new vector
(rssi1, rssi2, . . . , rssiN ). This vector is then compared to
the different points on the map to find the most similar
fingerprint. To determine the most probable position ŷ̂ŷy on
the grid, the algorithm seeks the point that minimizes the
Euclidean distance between the new vector of RSSI and
the fingerprint database, as described in the positioning
algorithm equation shown in Figure 1.
The level of accuracy in the fingerprinting method depends

on several factors such as the size of the grid used during the
training phase, the size of the input vector, the variance of
the measured power for each component, and the accuracy of
the UE’s measurements. If the input vector has fewer than N
entries, the final estimation will be degraded. In the case of
multiple final estimations, the system may randomly provide
one final location. In addition, there is a tradeoff between
complexity and accuracy; this is crucial because using a
smaller grid results in a shorter training phase but with lower
accuracy, while a finer grid requires a longer training phase
but with higher accuracy.

WiFi and cellular networks are commonly associated with
fingerprinting due to the high density of stations in office
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and residential areas [18], [31]. Fingerprinting can provide
high accuracy with a reduced infrastructure investment, but
it requires the creation of a radio map with a complex
training phase. To maintain location precision, the maps need
to be updated when there are changes in the environment.
Furthermore, the maps must be comprehensive, meaning that
all points on the grid must be systematically measured in
order to properly locate users at any point.

B. DTR-BASED LOCATION
Fingerprinting has a major drawback in that it requires com-
plete information maps about the environment. To address
this issue, a commonly used approach is to employ ML
algorithms to create an environment model [32], [33], [34],
which can then be utilized for estimating the position during
the exploitation phase. ML algorithms generate a comprehen-
sive model of the scenario through the information provided
in the training phase with certain RPs. Consequently, even
without conducting measurements across the entirety of the
scenario during the training phase, the ML model enables
a localization service encompassing the entire designated
area [35], [36]. In the context of a grid scenariowhenmaps are
incomplete, this study utilized DTRs, which are recognized
for their simplicity and computational efficiency [37],
to estimate the position. In addition, DTR-based methods
were chosen over other ML algorithms because they offer the
best precision for indoor localization [38].
By creating a set of hierarchical comparison rules that

are applied sequentially, DTRs model the behavior of
the localization system. The resulting path over a tree is
determined by the outcome of each rule (branch), leading to
a final node (leaf) that decides the output of the regressor as
illustrated in Figure 2.

FIGURE 2. DTR functionality.

The DTR learning process comprises two phases: training
and testing. In the training phase, the 80% of the avail-
able samples are randomly selected to form the training
dataset Dtrain, while the remaining 20% of the dataset Dtest
is used for testing. The objective of the training phase is
to create a tree that minimizes the regression error on the
training set.

In this work, we study different DTR-based algoritms that
were chosen due to its high accuracy and low complexity:
Random Forest (RF) and two Adaboost-based training
algorithms that are Decision Tree Adaboost (DTA) and
Linear Tree Adaboost (LTA). DTA, in its final prediction of
positions, combines outputs from different WLs by using a
decision rule and taking their average [39]. On the other hand,

LTA creates an interpolation function by taking into account
the different outputs of a set of decision rules [40], [41].

1) RANDOM FORESTS
RFs are a ML technique that employs a collection of
individual models (known as base models) to generate a final
prediction. This ensemble method is versatile and can be
applied to variousML tasks such as classification, regression,
or localization. RFs are especially useful for localization
tasks because they can effectively aggregate the predictions
of multiple decision trees to determine the location of a
device [42], [43].

RFs employ the bootstrapping method to generate decision
trees, which involves a random subset of the training data that
is selected to create a single decision tree. This process is
repeated several times, leading to a vast number of decision
trees trained on various subsets of the data. To generate the
final prediction of the localization process, the predictions of
all the decision trees in the forest are averaged as depicted
in Figure 3.

FIGURE 3. RF schema.

The implementation of RFs is relatively straightforward,
as they utilize decision trees, which makes them compu-
tationally efficient. Additionally, RFs are resistant to data
noise since average of all the location outputs mitigates the
impact of any individual decision tree that might produce an
inaccurate estimation.

Algorithm 1 explains with pseudocode the struc-
ture and formulation of the RF algorithm [44]. Given
T samples and N features (in this case, APs) labeled
([RRR(1),y1y1y1], . . . , [RRR(T ),yTyTyT ]) where the input vector is a tuple
compound by a RSSI vector formed by RSSIn(t) from the
nth AP and tth sample and the localization output ytytyt that is
the final position of the user in a 2D plane. For training the
RF, we generate S trees as an arbitrary number of the size
of the forest. On each iteration i = 1, . . . , S, we select a
random subset of features (SfeaturesSfeaturesSfeatures) and samples (SsamplesSsamplesSsamples).
Then, a tree is generated using SsamplesSsamplesSsamples with the chosen
features SfeaturesSfeaturesSfeatures.
During the testing phase of the RF algorithm, the

input vector is [rssi1, rssi2, . . . , rssiN ] which contains the
measurements of different APs. Each tree produces an
estimated location ŷîyîyi and the output of the RF algorithm is
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Algorithm 1 RF Algorithm
■ To model the forest (training):
• Input: ([RRR(1),y1y1y1], . . . , [RRR(T ),yTyTyT ])

foreach i = 1,. . . ,S do
– Select a random subset of features (SfeaturesSfeaturesSfeatures)

from the input data
– Extract a random subset of the

samples (SsamplesSsamplesSsamples)
– Build a tree using data of SsamplesSsamplesSsamples with

the selected features Sfeatures
end foreach

■ To predict the final location:
• Input the new vector of measurement [rssi1, . . . , rssiN ]

foreach i = 1,. . . ,S do
– Estimates the location ŷîyîyi with the new input

vector on the i-th tree
end foreach

• Output the final position ȳ̄ȳy =
1
S

∑S
i=1 ŷîyîyi

ȳ̄ȳy as the average of all estimated locations. In the testing
phase, we know the real location where the measurements are
collected. Thus, the quality of the estimation by the RF can be
analysed. The proposed approach has a significant advantage
in that it is computationally efficient that can be used for real-
time applications.

2) ADAPTING BOOSTING (ADABOOST)
Adaboost leverages the predictions of multiple individual
models, known as Weak Learners (WLs), to arrive at a final
prediction [45]. The WLs are generated through a process
called boosting, which involves iteratively training the model
on new subsets of the data, with each round emphasizing the
data points that were incorrectly classified in the previous
iteration. Figure 4 illustrates the method of combining the
predictions of all the WLs in the ensemble to make the
final prediction. Two Adaboost-based training algorithms are
studied in this work: DTA and LTA. In the DTA method, the
positions from various WLs associated with a decision rule
are averaged in the final prediction [46], while in the LTA
method, an interpolation function is developed between the
different outputs within a set of decision rules [40], [41].

FIGURE 4. Adaboost process.

Adaboost is capable of adapting and learning from
changes in data over time, making it crucial in dynamic
environments where wireless characteristics are prone to
variation. Although it achieves high accuracy, especially
in LTA, a significant disadvantage of Adaboost is its
reliance on extensive computational processing for the final
estimation.

The structure and formulation of the Adaboost regressor
training, as described in [45], is explained through the
pseudocode in Algorithm 2. As in RF algorithm, given
T samples and N APs labeled ([RRR(1),y1y1y1], . . . , [RRR(T ),yTyTyT ])
where the input vector is a tuple compound by a RSSI vector
formed by RSSIn(t) from the nth AP and tth sample and
the output ytytyt is the final position of the user in a 2D plane.
For the Adaboost, there is a number S that determines the
number of WLs (in RF determines the number of trees).
On each iteration i = 1, . . . , S, the regression generates a
WL function gi with an associated weight wi that adjust the
regressor to minimise error. Initially, wi is set equal to 1/S.
The weighted error ei defines the error of the regression at
the i iteration and sets λi. The parameter λi defines two
characteristics of the regressor. First, λi defines the step size
of the adapting boosting. Second, λi sets the new weightwi+1
in the WL. Then, the set of weights wi are normalized for
the next iteration. The final regression model F(x) computes
the combination of the weighted WLs that is the weighted
average in DTA and the weighted linear regression in LTA.

The estimator uses F(x) for the testing or exploitation
phase. In these phases, the input of the regressor is a vector
[rssi1, rssi2, . . . , rssiN ] with the measurements of the APs
extracted from the UE. The output of the algorithm is the
estimated location ȳ̄ȳy of the UE.

Algorithm 2 Adaboost Algorithm
• Input: ([RRR(1),y1y1y1], . . . , [RRR(T ),yTyTyT ])
• Initialize weights wi =

1
S for every i

• Start with the null classifier f0 (x⃗) = g0 (x⃗) = 0
[RRR(1),y1y1y1], . . . , [RSSIN (T )], yT )
foreach i = 1,. . . ,S do

– Fit some weak learner gi

– Calculate ei =

∑S
j=1(ej∗wj)∑S

j=1 wj

– Set λi =
1
2 ln

(
1−εi
εi

)
– Update weights: wi+1 = wie−λiyigi

– Normalize wi to sum to one
– The new model is fi = fi−1 + λigi

end foreach
• Output the final model ȳ̄ȳy = F(x) =

∑S
i=1 λigi

III. FUSION OF Wi-Fi/5G TECHNOLOGIES
As the demand for connectivity increases, the number of
radio technologies available at a specific point in space
has increased over time. This is especially true for indoors
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environments, where the demand for broadband is higher.
Thus, it is common that technologies such as WiFi and
cellular networks are present in most indoor scenarios.

The fusion of 5G and WiFi can also enhance the user
experience by providing seamless connectivity [47]. This
is particularly important in indoor environments where
users frequently move between different rooms and areas,
each with varying signal strengths and qualities. With the
integration of 5G and WiFi, the system can dynamically
switch between the two technologies depending on the
location and signal strength, ensuring a consistent and reliable
connection.

Moreover, the fusion of these two technologies can also
improve network efficiency and reduce costs [48]. With
the increasing demand for high-speed connectivity, network
operators are under pressure to provide faster and more
reliable services. By utilizing both 5G andWiFi technologies,
operators can optimize the use of available resources, thereby
reducing network congestion and improving overall network
performance. This can result in lower costs for both the
network operator and the end-user [49].
In terms of localization, 5G and WiFi are two technologies

that can be utilized to increase the coverage area, enhance
the accuracy of the final location estimate through fusion
in trilateration [29], or create denser areas for radio map
creation. Furthermore, since both services are managed
independently, they can act as backup options for each other
in case one fails. Additionally, both technologies can offer
unique services, such as wide spectrum service in case of
5G [50] or precise timestamp in trilateration for WiFi [51].

In this work, the fusion of 5G and WiFi, for the different
localization algorithms, is direct as the system integrates the
data of both technologies as input data. Fusion enables the
system to expand the number of APs available for the radio
map creation. Having a higher number of APs in the radio
map allows the method to compare the context of the UE
more thoroughly for the final location estimation. Moreover,
a denser radio map reduce the impact of losing a single
gNB or APs.

IV. EXPERIMENTAL SETUP
This section presents the configuration for obtaining real
5G data and WiFi from the University of Malaga. The 5G
network belongs to the University of Malaga, and contains
three indoors base stations which have been configured to
reduce the interferences with commercial networks. The base
stations are located at two different heights (2.5m and 3.5m)
and a map of the scenario is shown in Figure 5. The three
WiFi APs are Google WiFi mesh routers placed on shelves
at a height of 2 meters in order to ensure the visibility of all
APs in the entire map. Measurements were taken at ground
truth points represented by orange dots and green dots. The
scenario includes three laboratories and one hall withmetallic
elements that can cause signal blocking, attenuation, and
multipath effects. The 5G gNBs are placed in the ceiling to
provide good visibility and transmit at a power of 20 dBm

FIGURE 5. Map of the scenario.

at a frequency of 3774.990 MHz. Measurements were taken
systematically over a grid of points marked on the floor as
illustrated in Figure 5. Samples were taken 0.8 meters apart
to cover the entire accessible area of the scenario.

The location target UE is a Motorola Edge 20 which
runs Android 11. An application has been programmed to
capture the RSSI of the serving and neighbor cells and
WiFi APs information. The captured data is sent to a server
over 5G, where the measurement samples are saved in a
MySQL database to be further processed. The programmed
application also allows to indicate the ground truth and send
it along the taken measurements.

V. RESULTS
In this section, we present the localization results obtained
from three different experiments. All experiments used a
dataset of over 500 samples. The data was randomly split
into a training set and a testing set (represented in Figure 5
as orange and green dots, respectively) with 20% of the
measuring points allocated for testing. This process was
repeated a thousand times, on each iteration the training and
testing points are randomly chosen, using the Monte Carlo
method, in which Figure 5 represents one example of this
process, to produce accurate statistical results.

A. EVALUATION OF DIFFERENT METHODS
This experiment evaluated the performance of four local-
ization techniques - fingerprinting, DTA, LTA, and RF.
The DTA and LTA methods were trained with 50 WLs
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FIGURE 6. Cumulative Distribution Function of the error of different
methods with 5G data.

as suggested in [52], and the number of trees in RF
was set at 50 for fair comparison with Adaboost. In this
experiment, the performance of the different methods is being
evaluated solely using 5G technology. For fingerprinting,
the training data was used to construct a radio map and for
the rest of the methods, the training data was utilized to
construct the trees or the WLs. The testing data was used to
measure the precision of the different localization methods,
with the results represented by the Cumulative Distribution
Function (CDF) of the horizontal error in Figure 6. The 95th
percentile (horizontal pink line) has been selected as the basis
for location accuracy standard [53].
Fingerprinting (red) estimates the position of the UE on the

radio map by identifying the closest point. The radio map is
divided into a lattice, and fingerprinting determines the loca-
tion of the UE within this lattice. DTA (blue) calculates the
average the output of the different WLs. In case of averaging
a regular radio map, the final result is always a lattice of
the radio map. Notably, all measurements are acquired at the
center of these lattices. Thus, both fingerprinting and DTA
provide a lattice-based location that is translated into discrete
error and a staggered step of the CDF. RF (yellow) performs
better than DTA as it provides good performance on large and
complex datasets and averages the linear estimation of the
different trees. In contrast, DTA averages the final estimation
based on WLs. LTA (green) is the top performer because
it generates an interpolation function of the different WL
outputs, significantly improving final localisation accuracy,
even though, it reduces the computational efficiency.

FIGURE 7. Cumulative Distribution Function of the error of 5G, WiFi and
fusion for different methods.

Figure 6 clearly shows that ML methods significantly
reduce errors compared to the fingerprinting technique.
The accuracy of fingerprinting heavily relies on the radio
map as it compares directly with the received signals from
the UE. RF and LTA enhances the final location estimation
compared to DTA because the final position is derived from
a linear function. While LTA provides higher precision in
positioning, it is not feasible for real-time applications due
to its highly time-consuming nature. RF offers a trade-off
between accuracy and computational efficiency, making it
suitable for real-time applications.

B. EVALUATION OF FUSING TECHNOLOGIES
In this experiment, the behavior of the different algorithms
are evaluated with different cases: with 5G and WiFi in
isolation and the fusion of both. The goal was to determine
if fusion enhances the precision of the localization system
when different technologies appear in fingerprinting and
DTR-based methods.

Although 5G promises high-precision positioning through
themulti-RTT protocol, to the best of the authors’ knowledge,
this protocol has not been implemented in any commercial
device yet. On the other hand, WiFi has already created the
802.11mc protocol, which offers accurate ranging estimation
through the RTT protocol and can achieve meter-level
accuracy [9], [51]. This protocol is widely implemented in
plenty of smartphones, but only a limited number of APs

TABLE 2. Performance comparison of different methods with 5G, WiFi and fusion.
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TABLE 3. Comparison of different methods.

FIGURE 8. Experiments with different percentage of discarded data.

have adopted it [54]. Until RTT protocol gets integrated
into 5G, using ML techniques and fingerprinting along with
RSSI measurements can be highly beneficial. Additionally,
capturing RSSI measurements does not increment the energy
consumption of the terminal or demand special hardware [9].
Figure 7 represent the different cases of fingerprinting,

DTA, LTA and RF with only 5G NR (solid line), only WiFi
(dashed line) and fusion of 5G and WiFi (dotted line). As it
can be observed, fusion improves the performance of the sys-
tem in all cases. Combining different technologies increases
the number of APs in the scenario, which improves the
final estimation due to the availability of more information

FIGURE 9. Cumulative density distribution of the error of different
techniques with different percentage of discarded data.

of the environment. So, the more complete radio map, the
better localization resolution will be. Among the techniques,
fingerprinting yields the greatest improvement as it is the
most radio map dependent. Despite of LTA having a slightly
better overall performance, RF still provides a high level of
accuracy that is comparable to LTA and it allows real-time
location-based services.

Table 2 presents the performance of the different algo-
rithms for 5G, WiFi and fusion data, characterized by metrics
including the mean (µ), median (Mdn), Root Mean Square
Error (RMSE), standard deviation (σ ) and the 95% percentile
of cumulative density error. All measurements are presented
in meters for reference.

C. ROBUSTNESS OF THE METHODS WITH DIFFERENT
LEVELS OF INCOMPLETE MAPS
In this experiment, the robustness of the different methods are
evaluated with varying degrees of missing RPs in incomplete
maps. In this case, the fusion of 5G and WiFi is used as the
input data because it has demonstrated to always improve
the performance of the localization results. The goal was
to determine the robustness of the techniques by examining
how well it performed as the percentage of missing data
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in the radio map increased. This experiment consists on
reducing the number of training points. To do this, the
percentage of testing points was kept constant at 20% while
the percentage of discarded data varied from 0% to 60% as
shown in Figure 8.

The results of the experiment were represented by the
CDFs of the horizontal error when different percentages
of discarded data (0%, 20%, 40% and 60%) are used to
evaluate the performance of the system. As it can be observed
in Figure 9, except of the case of DTA with 60% of
discarded data, the rest of the cases of DTR-based algorithms
outperform fingerprinting without discarded data in terms
of user localization accuracy. Therefore, using DTR-based
algorithms, allows to achieve higher levels of accuracy even
with maps that contain fewer data points.

Table 3 provides a brief summary of the different methods.

VI. CONCLUSION
Indoor positioning has become an increasingly important
technology in recent years as it enables a wide range of
applications, such as indoor navigation, asset tracking, and
location-based services. However, the traditional method
of using radio maps for indoor positioning has several
significant drawbacks. One of the most significant issues
with radio map techniques is the complex training process
required. The process of creating a radio map involves
collecting and analyzing a large amount of data from a given
indoor environment. This data is used to build a map of the
radio signal strength for each location in the area. However,
this process can be time-consuming and expensive, which
limits its applicability in scenarios where a large area must
be covered. Moreover, another major issue with radio map
techniques is that the fingerprints of the indoor environment
can change over time due to changes in the scenario. These
changes can affect the accuracy of the radio map, which
requires frequent updates to maintain the effectiveness of the
technique. This retraining can be very costly, both in terms of
time and resources.

In this work, we have performed and compared finger-
printing, DTA, LTA and RF techniques with real 5G and
WiFi data. First, DTR-based methods noticeably improves
the localization performance compared with the regular
fingerprinting. It is remarkable that LTA and RF have
performed better than DTA and fingerprinting because the
final location based on the interpolation between points.

On the other hand, fusion of technologies have proven
to provide better performance of the system. By combining
5G and WiFi, the number of APs in the scenario increases.
This implies that during both the training phase and the
operational phase, the different localization algorithms are
provided with more information about the environment. This,
in turn, results in improved final estimation by providing
more environmental information. Furthermore, fusion has the
potential to enhance connectivity, extend coverage, optimize
resources for location-based services and minimize the
expenses associated with deployment and infrastructure.

Related to the robustness of the different methods, LTA
and RF maintains the error stable even when the percentage
of missing RPs in incomplete maps becomes significant,
up to 40% of missing data. Its robustness allows to cover
larger areas, minimize the need for frequent retraining,
or decrease the number of data points required on each
map. Depending on the service being offered, DTR-based
models, specifically LTA and RF, can be highly valuable
tools for indoor positioning. In these experiment, LTA yields
better results in both experiments than RF but it is not
suitable for real-time applications. Nonetheless, RF provides
a balance between accuracy and computational efficiency,
making it ideal for real-time services. Although RF cannot
adapt to environmental changes, DTA readjusts to them but
with decreased localization accuracy. As a result, DTR-based
models have imposed its applicability over fingerprinting.
However, there is no single method that is universally best for
location-based services, as it varies depending on the specific
application and scenario.
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