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ABSTRACT Program deadlock detection plays an important role in ensuring the stability of software
systems. In view of the high efficiency and low false alarm rate, dynamic deadlock analysis methods are
widely studied. However, existing dynamic analysis methods use lock graph or its extended variants to model
program behavior. Since there are information loss in existing lock graphs, deadlock false positives still exist.
To solve the problem, a novel 2-stage dynamic deadlock analysis method is proposed. In the first stage, a Petri
net model of the program is constructed by analyzing program running traces. Then, unfolding-based Petri
net dead marking detection methods are used to identify potential program deadlocks. In the second stage,
based on Petri net unfolding techniques, a deterministic program scheduling scheme that can be used for
deadlock replay is derived for each potential deadlock. Each successfully replayed program deadlock is a
real deadlock. It is shown that the proposed deadlock detection and replay method can eliminate more false
positives compared to general dynamic methods, and the deadlock replay scheme is deterministic and easy
to understand compared with existing random scheduling strategies.

INDEX TERMS Petri net, deadlock detection, net unfolding, discrete event system, program verification.

I. INTRODUCTION
Synchronization primitives are widely used in today’s multi-
threaded programs [1], [2], [3]. However, many concurrency
bugs including data races [4], [5], [6], and deadlocks [7],
[8], [9] may happen if synchronization mechanisms are not
properly designed. For example, when each thread in a thread
set is waiting to acquire a lock held by another thread in
the set, all these threads will block forever and a deadlock
occurs [10]. Deadlocks are common in today’s software. For
example, Sun’s bug database at http://bugs.sun.com/ shows
that 6,500 bug reports out of 198,000 contain the keyword
‘‘deadlock’’.

Deadlocks are usually difficult to be detected because they
happen under very specific thread schedules. Both static [7],
[9], [11], [12] and dynamic [13], [14], [15], [16], [17] dead-
lock detection techniques are developed. Static techniques
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analyze program codes to infer lock acquisition cycles. They
may guarantee that all executions of a program are deadlock-
free. However, static analysis may report a large number
of false positives (deadlocks that cannot actually occur in a
practical execution) [18]. For example, the static deadlock
detector developed by Williams et al. [12] reports 100,000
deadlocks in Sun’s JDK 1.4, out of which only 7 are real
deadlocks. Furthermore, it often fails to scale for large multi-
threaded programs due to the exponential increase of program
state space. Dynamic techniques are performed by analyzing
one or just a few program executions. Due to the full use
of runtime information, they generally produce fewer false
positives. This is a significant advantage because eliminating
false positives is usually time-consuming [19]. Moreover,
since one running trace contains only a part of program
behavior information, dynamic techniques are usually effi-
cient. Meanwhile, this also brings a disadvantage, which is
false negatives (deadlocks that can actually occur in practical
executions, but cannot be detected). However, in view of
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the difficulty in eliminating false positives, as well as the
advantages of automation and high efficiency of dynamic
analysis, dynamic analysis becomes the mainstream method
of program deadlock detection. This paper focuses on a new
dynamic deadlock analysis method.

Generally speaking, dynamic analysis detects potential
deadlocks by extracting specific lock authorization patterns
from program’s running traces. For example, the litera-
ture [20] proposed a deadlock dynamic analysis tool called
Visual Threads based on lock graphs,1 which regarded each
loop in the lock graph as a potential deadlock. This method
is simple and effective, but it usually reports many false
positives. For example, false positives may be generated
due to thread-inner loops, loops protected by door locks,
or loops caused by causal dependent operations belong to
different threads. Reference [21] proposed the concept of
lock trees and presented a deadlock detection algorithm
called GoodLock. It can eliminate false positives caused
by thread-inner loops and door-lock protected loops. How-
ever, it can only detect deadlocks caused by two threads.
Reference [7] improved GoodLock and enabled it to detect
deadlocks caused by arbitrary number of threads. Refer-
ence [22] proposed the concept of cyclic lock dependency
chain, which expanded thread ID, currently-held-lock set on
the basis of lock graph. It can eliminate false positives caused
by thread-inner loops and door-lock protected loops, and
has no limit on the number of threads which form a dead-
lock. By eliminating removable lock dependency in a cyclic
lock dependency chain, [13] proposed a deadlock detection
algorithm called Magiclock, which has higher scalability and
efficiency compared to that in [22]. The above deadlock
detection methods cannot eliminate false positives caused
by causal dependent operations belong to different threads.
To address this issue, [23] segmented the program operations
based on thread start and join operations, and proposed the
concept of segmentation graph to model the causal relation
among program segments. Meanwhile, extended lock graphs
are proposed there by expanding thread ID, currently-held-
lock set and segment ID to traditional lock graphs. Finally,
a new deadlock detection method was proposed based on
the segmentation graph and extended lock graph in [23],
which can eliminate all the false positives caused by thread-
inner loops, door-lock protected loops, and loops caused by
multiple operations which are causal dependent due to thread
start or join operations. In addition, [24] developed a type of
timestamp and vector clock to describe the causal relations
among threads caused by thread start and join operations.
Then, it proposed a new deadlock detection method based
on vector clocks and cyclic lock dependency chain, which
can also eliminate all the false positives caused by the above-
mentioned loops.

1Take each lock object as a node in the graph. Each time a thread applies
for a lock B while holding a lock A, a directed arc from A to B is added to
the graph. The resulted graph is called a lock graph.

However, all the above-mentioned deadlock detection
methods have the following problems: (1) the different execu-
tion of the same lock acquisition statement in a loop module
cannot be distinguished in existing models like lock graphs,
lock trees, cyclic lock dependency chains, or extended lock
graphs. However, some executions may cause deadlocks,
while not for others. The latter situation will cause false posi-
tives. (2) Causal dependency of operations belong to different
threads can be caused by thread start or join operations. How-
ever, that is not all. The release and acquisition of the same
lock objectmay also lead to causal dependency. Segmentation
graphs or other existing tools cannot correctlymodel the latter
case. The root cause of the above problems is that existing
models cannot model the acquisition/release operations and
their dependency relations accurately. To address this issue,
by mining a program running trace, this paper constructs a
Petri net [25] to model program behavior in a finer gran-
ularity, where each execution of a lock acquisition/release
statement is modeled by a unique transition (even though they
are different executions of the same statement), and the causal
dependency caused by the aforementioned various synchro-
nization primitives are all contained. Furthermore, consider-
ing the high efficiency of unfolding technology in the field of
Petri net analysis [26], an unfolding-based deadlock detec-
tion method toward concurrent programs is developed. The
refinement of the model and the high efficiency of unfolding
technology make the proposed method more reliable.

Furthermore, neither the proposed Petri net models nor
existing models mined from program running traces can
model program behavior without loss of information. For
example, conditional thread blocking statements and exe-
cution time of operations are both difficult to be described
in the model. Both of them may lead to false positives.
To ensure the authenticity of the detected deadlocks, dead-
lock replay technology has been proposed in [27], [28], and
[29]. Through active intervention when a program is running,
deadlock replay techniques schedule the program execution
in order that a program defect can be triggered as much as
possible. A potential deadlock that is successfully replayed is
sure to be a real deadlock. Reference [27] proposed a random
scheduling method to find program bugs, which tried to trig-
ger concurrent defects such as deadlocks by lots of repetitive
running under different scheduling schemes. The scheduling
policy is completely random and blind. Since deadlock is
usually a low probability phenomenon, this method is lack
of efficiency and reliability. In contrast, [10], [24], [29],
[30], [31], [32] first detect potential deadlocks, and then
derive a specific scheduling scheme to increase the triggering
probability of potential deadlocks. Specifically, [10], [24],
[29] proposed a heuristic scheduling strategy for potential
deadlocks, suspending the thread when it reaches a poten-
tial deadlock point, thereby increasing the probability of
deadlock triggering. However, this method is still random in
nature. It usually requires lots of runs to replay a real deadlock
successfully. Considering that the trigger of a deadlock is
related to both the deadlock point and some lock acquisition

53714 VOLUME 12, 2024



F. Lu et al.: Petri Net Unfolding-Based Detection and Replay of Program Deadlocks

operations before it, [30] proposed a new deadlock replay
scheduling algorithm based on barrier. It optimized the inter-
vention time of program scheduling. In addition, [30] and
[31] constructed a set of constraints for program scheduling
to replay a potential deadlock. It suspends a thread when
its execution does not meet those constraints. The above
methods improve the probability to successfully replay a real
deadlock. However, the scheduling scheme they generated
is not intuitive and cannot be used to trace the root cause
of deadlocks. In contrast to them, the proposed method can
generate an intuitive and deterministic scheduling scheme for
each detected potential deadlock.

Generally speaking, this paper presents a novel dynamic
deadlock detection method which works in two stages. In the
first stage, a Petri net-based model of a program, called a
program trace net, is mined from the running trace of a
multithreaded program. Then, a deadlock-adjoint trace net is
proposed and its unfolding is used to detect potential program
deadlocks. The proposed method can avoid several kinds of
false positives reported by existing common methods. In the
second stage, for each detected potential deadlock, we derive
an intuitive and deterministic scheduling scheme to replay a
potential program deadlock. A detailed scheduling algorithm
based on the scheme is also developed.With the deterministic
scheduling, each potential deadlock replayed successfully is
sure to be a real program deadlock. In this way, the authen-
ticity of the deadlock can be guaranteed.

The rest of the paper is organized as follows. Section II
introduces the concept of multithreaded programs. Also in
this section, a Petri net-based program model is proposed to
describe the program behavior implied in a program running
trace. After that, the mining algorithm of the Petri net-based
program model is developed in Section III. Section IV
presents the concept of deadlock-adjoint program trace nets,
and proposes a deadlock detection method based on its
unfolding. Then, a deadlock replay algorithm is developed in
Section V to check the authenticity of the detected deadlocks.
The next two sections make an experimental evaluation and
a conclusion.

II. CONCEPT AND MODELING OF MULTITHREADED
PROGRAMS
Taking Java programs as an example, this section presents
the basic concepts related to multithreaded programs. Mean-
while, a Petri net-based model of multithreaded programs is
proposed in this section.

A. MULTITHREADED PROGRAMS IN JAVA
Java is a general purpose, object-oriented language that has
received great interest as a means to develop concurrent
and distributed applications in the Internet environment [33].
Concurrency is supported in Java by the thread concept.
In java, threads are special objects representing independent
executions of Java codes which operate on shared objects
residing in the main memory. The behavior of a thread is
described by the statements contained in its run() method.

Each thread offers a set of public methods by which other
threads can control or inspect its execution. For example,
if t is a thread reference, t.start(), t.stop()are statements that
respectively start and stop the execution of the thread refer-
enced by t, whereas calling t.join() has the effect of waiting
until the thread referenced by t terminates its execution. These
methods are widely used for inter-thread communication.

To synchronize threads, Java mainly uses the monitor
model, which is a structured way of using semaphores to
access shared data. This mechanism can be explained in terms
of locks. Each Java object is endowed with a lock that enables
only one thread at a time to execute in the protected code
regions of the object. Lock and unlock operations are not
provided as separate statements in Java, but as implicit oper-
ations occurring respectively at the beginning and at the end
of synchronized blocks. A synchronized block is introduced
syntactically by the declaration synchronized(o), where o is
a reference to the associated object that must be locked.
In addition, class LockSupport is also a basic thread block-
ing primitives for creating locks and other synchronization
classes. It associates, with each thread that uses it, a permit.
A call to LockSupport.park will return immediately if the
permit is available, consuming it in the process; otherwise it
may block. A call to LockSupport.unpark makes the permit
available, if it was not already available. Methods LockSup-
port.park and LockSupport.unpark provide efficient means of
blocking and unblocking threads.

Table 1 presents a pseudo-code of a Java multithreaded
program. It contains three threads (MainThread, ThreadA,
ThreadB) and three lock objects (G,o1,o2). ThreadA has
a loop module containing several lock authorization state-
ments. During each execution of the loop, ThreadA first
acquires object G. On the premise of holding lock G, it suc-
cessively acquires o1 and o2, then releases them in reverse
order. During the first execution of the loop, ThreadA starts
ThreadB. After ThreadB started, it acquires G, release G,
acquires o2 and o1, and then release o1 and o2 sequentially.
Obviously, ‘‘the nested acquisition of locks o1 and o2 in the
first loop execution of ThreadA’’ and ‘‘the nested acquisition
of locks o2 and o1 in ThreadB’’ cannot cause a deadlock even
if they seem to form a circular dependency. This is because
ThreadA always holds G during the first execution of the
loop and this blocks all the operations in ThreadB. In other
words, ThreadA’s first release of G and ThreadB’s acquisition
of G lead to a causal dependency between the above two
italicized operations. This makes them impossible to trigger
a deadlock. Conversely, if ThreadA execute the second loop
after ThreadB acquires and releases G, then ‘‘the nested
acquisition of locks o1 and o2 in the second loop execution
of ThreadA’’ and ‘‘the nested acquisition of locks o2 and o1
in ThreadB’’ will no longer have a causal dependency, which
can lead to a deadlock. Existing detection methods based on
segmentation graphs or extended lock graphs identify both
cases as deadlocks although only the second one are real.
The proposed detection method aims to address such false
positives.
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TABLE 1. The pseudo-code of a multithreaded program, denoted by
program 1.

In addition, if we uncomment lines 17 and 20 of Program 1,
ThreadB can only acquire locks after ThreadA executed its
loop module two times. In this case, the above-mentioned
deadlock will also be disabled. It can also be correctly iden-
tified by the deadlock detection method proposed next.

B. PROGRAM RUNNING TRACE
We assume that a multithreaded program is composed of a
finite set of threads. Each thread has a unique identifier. These
threads communicate with each other through shared objects
(which correspond to locks in Java programs). A running
trace α captures one execution of a multithreaded program by
listing the sequence of synchronization operations performed
by the program. Its formal definition is as follows.
Definition 1 (program running trace): A running trace of

a multithreaded program, denoted by α, is a sequence of
synchronization operations defined as follows:

α ∈ Trace :: = SynOperation∗

op ∈ SynOperation :: = c : fork (u, v) |c : join (u, v)|

c : stop (u) |c : acq (u, l)| c : rel (u, l)

where
• Tid is the set of threads. Lock is the set of lock objects
that appeared in the program. u, v ∈ Tid are threads,
l ∈ Lock is a lock;

• c is the label identifier of a program statement;
• fork (u, v) means u start v;
• join (u, v) means u blocks until v terminates;
• stop (u) denotes the termination of thread u;
• acq (u, l) and rel (u, l) mean u acquire and release l.
Consider the multithreaded java program in Table 1. One

of its running traces is given in Table 2. This running trace

does not trigger a deadlock. However, from this trace, we can
reconstruct a Petri net model for this program. It can reveal a
real deadlock of Program 1.

C. PROGRAM TRACE NET
Petri nets are widely used for modeling and analysis of con-
current systems, such as flexible manufacturing systems [34],
[35], [36], process aware systems [37], [38], [39], [40]. There
are also many Petri-net-based methods to model concurrent
programs [41], [42], [43], [44]. For example, [45] developed
a toolkit for translating an Ada program into a type of Petri
net called Ada net. In an Ada net, the control flow of each
concurrent branch is modeled by a Petri-net-formatted state
machine. Communications among concurrent tasks are rep-
resented by extra nodes connecting different state machines.
An Ada net may imply the complete behavior of a program.
However, it is in general inefficient or even intractable to do
program analysis.

When we detect program deadlocks from a program run-
ning trace, we only need to construct a Petri net model that
describes the program behavior related to this running trace.
In this way, those complex Petri net structures used to model
decision statements including if-else, case, and loop state-
ments are no longer needed. As a result, the resulting Petri
net model will be simpler, easier to construct and analyze.
Next, the concepts related to this type of model are given.
Definition 2 (Petri net): [46] A Petri net is a 4-tuple

∑
=

(P,T ;F,M0), where: 1)P and T are finite sets of places and
transitions, respectively; 2) F ⊆ (P× T )∪ (T ×P) is a finite
set of flow relations; 3) M0 : P → {0, 1, 2, · · · } is the initial
marking of

∑
; 4) P ∩ T = ∅ and P ∪ T ̸= ∅.

For each x ∈ P∪T , •x = {y ∈ P∪T |(y, x) ∈ F} and x•
=

{y ∈ P ∪ T |(x, y) ∈ F} denote the preset and post-set of x.
Given that a markingM and a transition t ∈ T , t is enabled at
M ifM (p) ≥ 1 holds for every p ∈

•t . An enabled transition
can fire. The firing of t leads to a new marking M ′

= M −
•t + t• (where + and - denote the addition and subtraction of
multi-set, respectively), which is denoted by M [t > M ′. For
a transition sequence σ ∈ T∗, ifM0[σ1 > M1[σ2 > M2[σ3 >

. . . ..Mk−1[σk > M , σ is said to be firable, and M is called a
reachable marking.
Definition 3 (program trace net): Given that a program

running trace α, an extended Petri net
∑

(α) =

(P,T ;F,M0, ρ, τ ) is called a program trace net if the fol-
lowing hold:

1) P = PS ∪ PL ,PS ∩ PL = ∅. PS represents state places
corresponding to the control flow states of each thread. PL
represents lock places corresponding to lock objects appeared
in α; Let PI ⊆ PS be the initial control flow states of each
thread, and PT ⊆ PS be the termination states of each thread;

2) T = TF∪TJ∪TL∪TT , where: a) TF represents fork oper-
ations appeared in α; b)TJ represents join operations; c) TL
represents the set of lock acquisition and release operations;
and TT represents the set of thread termination operations
(i.e., stop operation) appearing in α;
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TABLE 2. A running trace of the program in table 1.

3) F = FS ∪ FL ∪ FF ∪ FJ , where: a) FS ⊆ (PS × T ) ∪

(T × PS) defines, for each operation in T , the predecessor
and subsequent control flow states within a thread; b) FL ⊆

(PL × TL)∪(TL × PT ) shows the lock acquisition and release
relations; c) FF ⊆ TF × PI defines the causal relations
between a fork operation and the initial control flow state of
the forked thread; and d) FJ ⊆ PT × TJ defines the causal
relations between the termination state of a thread and a join
operation which waits for the termination;

4) ρ : P → Locks(α) ∪ Threads(α) is a function which
maps each lock place to a lock object and maps each state
place to a thread, where Locks(α) and Threads(α) denote the
set of lock objects and threads that appeared in α;
5) τ : T → SynOperations(α) is a 1-1 mapping function

which maps each transition to a synchronization operation
that appeared in α, where SynOperations(α) denote the set
of operations that appeared in α;

6) M0(p) = 1 if (a)p ∈ PL holds, or (b) prepresents the
initial control flow state of the main thread. For the other
places,M0(p) = 0.

For the sake of simplicity, sometimes a program trace net
is referred to as a trace net. Consider for instance the program
running trace in Table 2. Its corresponding trace net is given
In Figure 1, where red circles are lock places, and black
circles are state places. For each place or transition in the
trace net, the blue font labels show its mapped lock object
or synchronization operation that appeared in Table 2. The
black font labels are their node identifier.

Next section will give the algorithm for mining a program
trace net from a running trace.

III. MINING OF PROGRAM TRACE NET AND ITS
PROPERTIES
Given a running trace of a multithreaded program, its corre-
sponding trace net can be constructed according to the rules
given in Table 3. Generally speaking, at the beginning, only
an initial control flow place corresponding to the ready state
of the main thread is added. It is marked with one token,
meaning that the main thread is ready to execute. Then, for
each operation appeared in the trace one by one, a transition
along with its input/output places and flows should be added
according to the operation information.

For example, for the operation fork (u, v), a new transition
t should be generated to describe the operation. Simultane-
ously, a flow relation < p1, t > should be added to model the
prerequisite for this operation to execute, where p1 is the last
control flow place of thread u before executing fork (u, v).
Place p2 should also be generated to model the new control
flow state of thread u after fork (u, v) completed. In addition,
place p3 should be generated to model the ready state of
thread v. Finally, flow relations < t, p2 > and < t, p3 >

should be generated to model the causal relations between
fork (u, v) and its consequent states.

For the operation acq (u, l), a new transition t and a flow
relation < p1, t > should be added to model the prerequisite
for this operation to execute, where p1 is the last control flow
place of thread u before executing acq (u, l). Place p2 and
flow relation < t, p2 > should also be generated to model
the new control flow state of thread u after this operation is
executed. In addition, if l appears for the first time in the trace,
a lock place p3 corresponding to the object l should be added
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FIGURE 1. 61, the program trace net mined from the running trace in
Table 2.

and marked with one token. No matter p3 is newly added
or not, a flow relation < p3, t > should be added to model
the lock acquisition relation. The other operations should be
handled in a similar way.

The detailed algorithm to mine a program trace net from
a running trace is given in Algorithm 1. For each operation
in the running trace, the main work includes (1) adding a
new transition and at most two new places, (2) finding one
or two places that meet some special conditions, and (3)
adding several flow relations associated to the newly-added
net nodes. Its time complexity is O

(
|α|

2
+ |α| ∗ |Locks(α)|

)
,

where |α| is the number of operations in α, and |Lokcs(α)|

denotes the number of lock objects that appeared in α. Its
space complexity is O (|α| ∗ |Locks(α)|).
Theorem 1: For each firable transition sequence σ in the

program trace net
∑

(α) = (P,T ;F,M0, ρ, τ ), τ (σ ) is a
potential program running trace, where τ (σ ) means the pro-
gram operation sequence obtained by replace each transition
t in σ with τ (t).
Proof: According to the mining algorithm of a program

trace net, a causal relation among Petri net transitions can
be generated only in the following cases: (1) two operations
in the same thread are executed one after another, then there
will be a causal dependency between their corresponding
transitions; (2) thread u executes operation fork (u, v). Then,
a causal relation between the transition corresponding to
fork (u, v) and the one corresponding to the first operation
of thread v will be added; (3) thread u executes operation
join (u, v). In this case, a causal relation between the tran-
sition corresponding to stop (u) and the one corresponding
to join (u, v) will be generated. In addition, a causal rela-
tion from resource place l to each transition representing
acq (u, l); and a causal relation from each transition repre-
senting rel (u, l) to the lock placel, will also be generated.
Except for these cases, no other causal relations among tran-
sitions will be generated event if their corresponding program
operations are executed one after another in α. As can be
seen, the mined Petri net models only the causal relations that
do exist among program operations. Furthermore, the initial
state of

∑
(α) models exactly the initial program state where

only the main thread is ready and all the lock objects are
available. Therefore, for each firable transition sequence σ

in
∑

(α), τ (σ ) is a potential program running trace. How-
ever, since α captures only part of program synchronization
operations (the common synchronization primitives given in
Definition 1), some operation causal relations that exist in
the program may not be included in

∑
(α). Hence, τ (σ ) is

a potentially executable running trace with high probability,
but it is not necessarily executable.

In addition, one should note that the predecessor and
successor relations among program operations appeared
in a running trace is compatible with the causal rela-
tions contained in the trace net. Hence, for a program
running trace, its corresponding transition sequence must
be firable in the trace net. For example, in Figure 1,
σ =t1t2t3t4t5t6t7t8t9t10t11t12t13t14t16t17t18t19t20t21t22t23t24 is
the transition sequence corresponding to the running trace
in Table 1. It is firable in

∑
1 and results in the marking

{p24, p26, p27, p28, p29}. At the resulting marking, all threads
are in a termination state. All the resource places are marked
with one token. This means that the program terminates
normally.

More importantly, the conflict and concurrent structures
in the trace net make it implying many other potential pro-
gram running traces. This makes it possible to detect more
program deadlocks. For example, t15 (ThreadB’s acquisition
of lock G) executes after t9 (ThreadA’s second acquisition
of lock G) in Table 2. However, in Figure 1, there is no
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TABLE 3. Petri net fragments used to model program objects and operations.

causal dependency between them. In other firable transi-
tion sequences, their execution order may be reversed. For
example, σ ′

=t1t2t3t4t5t6t7t8t15t16t9t10t17 is such a firable
transition sequence where t15 fires before t9. Its correspond-
ing program running trace τ

(
σ ′

)
is shown in Table 4. The

transition sequence leads to a dead marking {p1, p12, p19} in
the trace net. Meanwhile, the program in Table 1 will fall into
a deadlock state if it runs according to the trace in Table 4.
It can be seen that there is a direct correspondence between a
dead marking of the trace net and a potential deadlock of the
program. Next, we will present the detection method of such
potential deadlocks.

Furthermore, given a trace net mined from a program
running trace, it is easy to find that (1) the trace net is

1-safe, i.e., a place has at most 1 token in the reachable
markings. This is because each control flow state can either
be active or not, and each lock object can either be available
or not. The former correspond to a place marked with one
token, while the latter corresponds to an empty place. In both
cases, a place can have at most one token; (2) if all the
places modeling the termination state of non-joint threads are
marked with one token, all the other control flow state places
must be empty and all the lock places must be marked with
1 token. This is because a thread has at least one active state.
Once its termination state is active, other state places of the
thread must be empty. Meanwhile, all the lock objects are
sure to be released when all the program threads terminate
correctly.
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Algorithm 1 The Algorithm for Mining a Trace Net From a Program Running Trace
Input: α, a running trace of a multithreaded program
Output: the program trace net corresponding to α, denoted by

∑
(α) = (P,T ;F,M0, ρ, τ )

Steps:
1. PS := ∅,PL := ∅; //Initialize the state place set and lock place set to be empty sets.
2. TF := ∅,TJ := ∅,TL := ∅,TT := ∅; //Initialize the set of various type of operations to be empty sets.
3. FS := ∅,FL := ∅,FF := ∅,FJ := ∅; // Initialize the set of various type of flow relations to be empty sets.
4. Let p0 be the initial control flow place corresponding to the ready state of the main thread. Add it to PS and PI . Set ρ(p0)

to MainThread. SetM0(p0) to 1;
5. FOR EACH operation op in α{
6. IF(op is in the type of fork(u, v)){
7. Add a new transition t to TF , and Set τ (t) = fork(u, v);
8. Let p1 be the place satisfying ρ(p1) = u∧ p•

1 = ∅. Add a new state pace p2 to PS . Set ρ(p2) to u. Add (p1, t) and (t, p2)
to FS . Set M0(p2) to 1;

9. Add a new state pace p3 to PS and PI . Set ρ(p3) to v. Set M0(p2) to 1. Add (t, p3) to FF ;
10. }//fork
11. ELSE IF(op is in the type of join(u, v) ){
12. Add a new transition t to TJ , and Set τ (t) = join(u, v);
13. Let p1 be the place satisfying ρ(p1) = u∧ p•

1 = ∅. Add a new state pace p2 to PS . Set ρ(p2) to u. SetM0(p2) to 1. Add
(p1, t) and (t, p2) to FS ;

14. Let p3 be the place satisfying ρ(p3) = v ∧ p•

3 = ∅. Add (p3, t) to FJ ;
15. }//join
16. ELSE IF (op is in the type of stop(u)){
17. Add a new transition t to TT , and Set τ (t) = stop(u);
18. Let p1 be the place satisfying ρ(p1) = u ∧ p•

1 = ∅. Add a new state pace p2 to PSand PT . Set ρ(p2) to u. Set M0(p2)
to 1. Add (p1, t) and (t, p2) to FS ;

19. }//stop
20. ELSE IF (op is in the type of acq(u, l)){
21. Add a new transition t to TL , and Set τ (t) = acq(u, l);
22. Let p1 be the place satisfying ρ(p1) = u ∧ p•

1 = ∅. Add a new state pace p2 to PS . Set ρ(p2) to u. Set M0(p2)
to 1. Add (p1, t) and (t, p2) to FS ;

23. IF( there exists lock place p3 ∈ PL satisfying ρ(p3) = l) Add (p3, t) to FL ;
24. ELSE {Add a new lock place p3 to PL . Set ρ(p3) to l. Set M0(p3) to 1. Add (p3, t) to FL .};
25. }//acq
26. ELSE IF(op is in the type of rel(u, l)){
27. Add a new transition t to TL , and Set τ (t) = rel(u, l);
28. Let p1 be the place satisfying ρ(p1) = u∧ p•

1 = ∅. Add a new state pace p2 to PS . Set ρ(p2) to u. SetM0(p2) to 1. Add
(p1, t) and (t, p2) to FS ;

29. Let p3be the place satisfying ρ(p3) = l. Add (t, p3) to FL ;
30. }//rel
31. }//FOREACH
32. P := PS ∪ PL ; T := TF ∪ TJ ∪ TL ∪ TT ; F = FS ∪ FL ∪ FF ∪ FJ
33. return

∑
(α) := (P,T ;F,M0, ρ, τ )

IV. PROGRAM DEADLOCK DETECTION BASED ON
UNFOLDING OF DEADLOCK-ADJOINT TRACE NETS
Giving that a program running trace α, if it triggers a pro-
gram deadlock, then the deadlock can be easily located and
repaired. We mainly study the scenario that the program
terminates normally without falling into a deadlock state
when it runs in the trace of α. To detect potential program
deadlocks in this scenario, we give the following concepts
and algorithms next.

A. DEADLOCK-ADJOINT TRACE NET
For a program trace net

∑
(α), denote the set of its reachable

markings byR
(∑

(α)
)
. A reachablemarkingR

(∑
(α)

)
M ∈

is called a dead marking if no transitions are enabled by M .
Note that some dead markings represent program deadlocks,
while some others represent normal termination states of a
program.

For example, if Program 1 execute in the trace of Table 2,
all threads will stop normally and all lock objects will be
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FIGURE 2. Problem analysis diagram of algorithm 1.
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TABLE 4. Another running trace of program 1 which triggers a program deadlock (red font operations are blocked thread points).

released. If the trace net execute the transition sequence cor-
responding to this trace, it will reach a marking where (1) all
the places modeling the termination state of non-joint threads
and all the places modeling lock objects are marked with one
token, (2) all the other places are empty. This marking is dead
since no transitions can be enabled at this state. However, this
marking corresponds to an expected program state where the
program terminates normally. We call such a dead marking
a legal dead marking. The legal dead marking of

∑
(α) in

Fig.1 is {p24, p26, p27, p28, p29}.
Differently, if Program 1 runs in the trace of Table 4,

ThreadA will be blocked because it need to acquire lock o1
which is held by ThreadB. ThreadB will also be blocked
because it need to acquire lock o2 which is held by ThreadA.
The main thread will be blocked too because it need to
wait for the termination of ThreadA. In this case, a program
deadlock occurs. Correspondingly, if the trace net execute
the transition sequence corresponding to this trace, which
is σ ′

=t1t2t3t4t5t6t7t8t15t16t9t10t17, the trace net will result
in a dead marking {p1, p12, p19}. Such a marking represents
a potential program deadlock. We call it an illegal dead
marking.

Formally speaking, we have the following definition and
conclusion.
Definition 4 (legal/illegal dead marking): Let

∑
(α) =

(P,T ;F,M0, ρ, τ ) be a trace net mined from a program
running trace α, R

(∑
(α)

)
M ∈ be a dead marking of

∑
(α).

If all the places modeling the termination state of non-joint
threads and all the places modeling lock objects are marked
with one token at M , and all the other places are empty at
M , then M is called a legal dead marking of 6. Otherwise,
M is called an illegal dead marking. In other words, a dead
marking is legal if and only if

∀p ∈ P : M (p) =

{
1if (p ∈ PL) ∨

(
p ∈ PT ∧ p•

= ∅
)

0otherwise

Theorem 2: Let σ be a firable transition sequence of the
program trace net

∑
(α) = (P,T ;F,M0, ρ, τ ). If the execu-

tion ofσ leads to an illegal dead marking of
∑

(α), then the

program may fall into a deadlock when it running in the trace
of τ (σ ).
Proof: According to Theorem 1, τ (σ ) is a potential pro-

gram running trace. The resulting program state after running
τ (σ ) is modeled by the resulting marking of

∑
(α) after

firing σ . If σ results at an illegal dead marking of
∑

(α),
then, after the program executes τ (σ ), no operations can be
executed and at least one thread does not terminate. This
means that the program may fall into a deadlock state.
According to Theorem 2, detecting the illegal dead mark-

ings of a trace net may reveal potential program deadlocks.
To detect such illegal dead markings efficiently, we translate
a program trace net to another Petri net which retains all
the illegal dead markings while excluding all the legal dead
markings. To do this, a new transition, denoted by recover ,
should be added. recover takes the following places as input:
(1) all the places modeling the stop state of non-joint threads;
and (2) the places modeling lock objects. Meanwhile, it takes
the ready state place of the main thread and the lock places
as output. In this way, when the original Petri net reaches a
legal dead marking, recover will become enabled and it can
restore the Petri net to its initial state. We call the resulted
Petri net a deadlock-adjoint trace net of the original one. Its
formal definition is as follows.
Definition 5 (deadlock-adjoint trace net): Let

∑
(α) =

(P,T ;F,M0, ρ, τ ) be a trace net mined from a program
running trace α. PT_legal = {p|p ∈ PT ∧ p•

= ∅} denotes
the set of state places modeling the termination state of non-
joint threads. PL denotes the set of lock places. p0 denotes
the state place modeling the ready state of the main thread.∑

′
(α) =

(
P′,T ′

;F ′,M0, ρ, τ ′
)
is called a deadlock-adjoint

trace net of 6(α), where
P′

= P,
T ′

= T ∪ {recover}, where recover is a newly added
transition used to restore the legal dead marking of 6 to its
initial marking,

F ′
= F ∪

((
PT_legal ∪ PL

)
× {recover}

)
∪ ({recover}

×
(
{p0} ∪ PL

))
;
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τ ′
: T ′

→ SynOperations(α) is a 1-1 mapping function
satisfying (1)τ ′ (t) = τ (t) if t ∈ T , and (2) τ ′ (t) = ε if
t = recover , where ε is the null operation.
Consider for instance the Program trace net in Figure 1.

Its deadlock-adjoint trace net is shown in Figure 2, where
p26 and p24 belong to •recover since they correspond to the
termination state of non-joint threads (which are ThreadB
and the main thread). On the contrary, p21 (representing the
termination state of ThreadA) does not belong to •recover
because ThreadA is joint by the main thread. p27, p28 and p29
belong to •recover because they represent lock objects and all
of them should be released when the program terminate cor-
rectly. In addition, {p0, p27, p28, p29} constitutes the postset
of recover since it corresponds to the initial marking of the
original program trace net, where the main thread is in ready
state and all the lock objects are available.

Obviously, a legal dead marking in a program trace net is
no longer dead in its corresponding deadlock-adjoint trace
net. However, an illegal dead marking is still dead in the
deadlock-adjoint trace net. For example, {p4, p10, p17, p18},
the legal dead marking of 61, is not dead in 62 since recover
is enabled at this state. Meanwhile, the illegal dead marking
{p1, p12, p19} in 61 is still dead in 62 since recover can be
enabled only by the legal dead marking.
Theorem 3: Let σ be a firable transition sequence of

deadlock-adjoint trace net
∑

′
(α) =

(
P′,T ′

;F ′,M0, ρ, τ ′
)
.

If the transition recover does not appear in σ , and the execu-
tion ofσ leads to a dead marking of

∑
′
(α), then the program

may fall into a deadlock when it runs in the trace of τ ′ (σ ).
Proof: According to Definition 5, a dead marking of

∑
′
(α)

is an illegal dead marking of the program trace net
∑

(α) =

(P,T ;F,M0, ρ, τ ). In the case that σ does not contain tran-
sition recover , τ ′ (σ ) is the same as τ (σ ). According to
Theorem 2, the program may fall into a deadlock when it
running in the trace of τ ′ (σ ).

According to Theorem 3, to detect potential deadlocks of
a multithread program, we only need to detect dead marking
of a deadlock-adjoint trace net.

B. UNFOLDING BASED DEAD MARKING DETECTION OF
DEADLOCK-ADJOINT TRACE NETS
Much work has focused on detecting dead markings of Petri
nets. Some are based on reachability trees [39], [47], [48],
[49], [50]. Some are based on structural analysis meth-
ods [51], [52], [53]. However, unfolding technologies are
widely adopted due to its efficiency in tackling with state
explosion problems [26], [54], [55], [56]. In this paper, we use
the unfolding technique to detect dead markings. A brief
introduction to the related concepts is as follows. For more
details on Petri net unfolding technology, please refer to [26]
and [54].

• P/T-net: A P/T-net is 3-tuple N = (P,T ;F) where P
and T are two finite disjoint set of places and transitions,
F ⊆ (P× T ) ∪ (T × P) is a set of flow relations. The

following relations are defined on the set P∪T of nodes
in N :
1) the causality relation, denoted as <, is the transitive

closure of F , and ≤ is the reflexive closure of <; if
x < y, we say that y causally depends on x;

2) the conflict relation, denoted as #: nodes x, y ∈

P ∪ T are in conflict iff ∃t, t ′ ∈ T :
(
t ̸= t ′

)
∧(

•t ∩
•t ′ ̸= ∅

)
∧ (t ≤ x) ∧

(
t ′ ≤ y

)
;

3) the concurrency relation, denoted as ||: nodes x, y ∈

P ∪ T are concurrent if they are not in conflict and
neither of them causally depends on the other.

• Occurrence net: an occurrence net is a P/T-net ON =

(B,E;G) s.t. (1) ON is acyclic; (2) ∀p ∈ B : |•p| ≤ 1;
(3) for any x ∈ B ∪ E , the set {y|y < x} is finite;
(4) ∀x ∈ B ∪ E : ¬ (x#x),i.e., no node is in self-
conflict. In occurrence nets, elements from B are usually
called conditions and elements from E are usually called
events.

• Homomorphism: Let N1 = (P1,T1;F1) and N2 =

(P2,T2;F2) be two P/T-nets. A homomorphism from N1
to N2 is a mapping h : P1 ∪ T1 → P2 ∪ T2 such that
(1) (h (P1) ⊆ P2) ∧ (h (T1) ⊆ T2); (2) for every t ∈ T1,
the restriction of h to •t is a bijection between •t(in N1)
and •h(t)(in N2), and similarly for t• and h(t)•. In other
words, a homomorphism is a mapping that preserves the
nature of nodes and the environment of transitions.

• Branching process: A Petri net
∑

= (P,T ;F,M0) can
also be expressed in the form of

∑
= (N ,M0), where

N = (P,T ;F) is a P/T-net. A branching processof
Petri net

∑
= (N ,M0) is a pair β =

(
N ′, h

)
where

N ′
= (B,E;G) is an occurrence net and h is a homo-

morphism form N ′ to N such that: (1) the restriction of
h to Min

(
N ′

)
2 is a bijection between Min

(
N ′

)
and M0,

(2) for each x, y ∈ E :
•x =

•y∧ h (x) = h (y) → x = y
holds;

• Unfolding:Two branching processes β1 = (N1, h1) and
β2 = (N2, h2) of a Petri net are isomorphic if there is
a bijective homomorphism h from N1 to N2 such that
h2 ◦ h = h1. Intuitively, two isomorphic branching
processes differ only in the names of conditions and
events. Up to isomorphism, a Petri net has a unique
maximal branching process. We call it the unfolding of
the Petri net.

• Configuration: A configuration C in an occurrence
net ON = (B,E;G) is a non-conflicting subsets of
events satisfying (C ⊆ E) ∧ (∀x, y ∈ C : ¬(x#y)) ∧

(x < y ∧ x ∈ C ∧ y ∈ C → x ∈ C). For each e ∈ B,
we define the local configuration of e to be [e] =

{x |x ∈ E ∧ x < e }.
• Configuration-associated Petri net marking: In an

unfolding, each event corresponds to a transition of the
original Petri net, and each condition corresponds to
a place. We can associate each configuration of the

2For a P/T-net N = (P,T ;F), Min (N ) is defined as the set
{x| (x ∈ P ∪ T ) ∧ ¬ (∃y ∈ P ∪ T : y < x)}
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unfolding with a Petri net marking by simply iden-
tifying the conditions that are produced but are not
consumed by the events in the configuration. To do this,
we define the cut of a configuration C by Cut (C) =

(Min (ON ) ∪ C•) \
•C . Then, the associated marking in

the original Petri net is h (Cut (C)), which is denoted it
by Mark (C).

• complete finite prefix of unfolding and cut-off event:
When a Petri net has arbitrarily long firable transition
sequences, its unfolding can be extended infinitely. As a
result, the unfolding is infinite. References [26] and [54]
proposed the concept of complete finite prefix of unfold-
ing for a bounded Petri net, which terminates when an
obtained unfolding prefix can represent all the reachable
markings of the original net. The key to termination is to
identify those events that would not bring new markings
into the unfolding. Such events are called cut-off events.
Formally speaking, an event e is a cut-off event if it
satisfies ∃e′ ∈ E : Mark ([e]) = Mark(

[
e′

]
) ∧ |[e]| >∣∣[e′]∣∣, where [e] denotes the local configuration of e and

|[e]| the cardinality of this latter.

Briefly speaking, unfolding technology uses an occurrence
net to describe the behavior of a Petri net. In an unfolding or
its complete finite prefix, each event in the occurrence net
denotes one firing of a Petri net transition. Each condition
denotes a token. Each flow denotes the consumption or the
generation of a token. Each configuration leads to a poten-
tial partial order run of a Petri net and it yields to a new
marking after firing all the events from the initial marking.
Each configuration-associated marking corresponds to the
resulting marking. Take the program trace net in Figure 2
as an example. One complete finite prefix of its unfolding
is shown in Figure 3.

The specific method to unfold a Petri net and compute its
complete finite prefix can be found in [54]. For example,
to unfold the deadlock-adjoint trace net in Figure 2, condi-
tions c0, c1 and c2 should be generated at the beginning. They
correspond to the initial token in p0, p17 and p18, respectively.
c0 can enable transition t1. Therefore, an event e1 along with
its posterior conditions should be generated to extend the
unfolding. In this way, all the other events along with their
posterior conditions can be generated one by one. However,
e25, e37 and e51 are cut-off events since they reset the adjoint
Petri net to a state that previously appeared. No further
extensions are needed from their posterior conditions. For
more details on Petri net unfolding technology, please refer
to [26] and [54].

The literature [54] has proved that a bounded Petri net has
a reachable dead marking if and only if its unfolding has a
reachable dead marking. Therefore, we can use the unfolding
of a deadlock-adjoint trace net to detect potential program
deadlocks. Furthermore, [26] also proved that an unfolding
has a reachable dead marking if and only if there is a configu-
ration which is in conflict with all the cut-off events. Consider
for instance the unfolding prefix in Figure 3. We can find that

FIGURE 3. 62, the deadlock-adjoint trace net of 61.

C1= {e1,e2, e3,e4,e5,e6,e7, e8, e26, e27, e28, e29, e38} is such
a configuration, since e26 is conflict with e25, and e29 is
conflict with e51. The resulted Petri net marking after fir-
ing the configuration-associated transitions in Figure 2 is
{p1, p12, p19}, which is a dead marking. Furthermore, after
executing the operation sequence corresponding to C1, Pro-
gram 1 will reach the state that ThreadA holds lock o1 and
waits for lock o2, while ThreadB holds lock o2 and waits for
lock o1. Obviously, this leads to a program deadlock. In this
way, we got a potential program deadlock. In this process, the
configuration leading a deadlock-adjoint trace net to a dead
marking is the key. Its formal definition is as follows.
Definition 6 (deadlock-adjoint configuration): Let∑
′
(α) =

(
P′,T ′

;F ′,M0, ρ, τ ′
)
be a deadlock-adjoint trace

net, and Unf (6′(α)) = (B,E;G, h) be one complete finite
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Algorithm 2 The Derivation Algorithm of a Configuration-Associated Lock Scheduler

Input:
∑

′
(α) =

(
P′,T ′

;F ′,M0, ρ, τ ′
)
, a deadlock-adjoint trace net corresponding to the program running trace α;

C , a configuration of Unf (6′(α)).
Output: a program lock set LockSet , along with a function δ which assigns each lock with an authorization thread sequence
Steps:
1. Calculate the spanned subnet of configuration C in Unf (6′(α)). Denote it by 6 = (B′,E ′

;G′, h′)
2. FOR EACH condition c satisfying •c = ∅ ∧ ρ

(
h′ (c)

)
∈ PL in 6{

3. Let o be the lock object corresponding to c, i.e., o := ρ
(
h′ (c)

)
;

4. δ (o) := ϵ, where ϵ means an empty thread sequence;
5. WHILE c has an output event in 6{
6. Let e be the output event of c;
7. IF(τ ′

(
h′ (e)

)
is a lock acquisition operation with the form of acq(u, o)){

8. δ (o) := δ (o) ◦ u, where ◦ means the concatenation operation of a sequence;
9. Reset c to be the only output condition of e

10. }//IF
11. ELSE IF(τ ′

(
h′ (e)

)
is a lock release operation with the form of rel(u, o))

12. Reset c to be the output condition of e which satisfying ρ
(
h′ (c)

)
= o;

13. ELSE // in the case that τ ′
(
h′ (e)

)
is a thread fork, join, or stop operation

14. Reset c to be the output condition of e such that ρ
(
h′ (c)

)
is the thread which execute τ ′

(
h′ (e)

)
;

15. Reset e to be the output event of the updated condition c;
16. }//WHILE
17. Put the lock object o into LockSet , and assign δ (o) to its authorized thread sequence;
18. }//FOREACH

prefix of
∑

′
(α) ’s unfolding. Denote the set of cut-off events

in Unf (6′(α)) by ℵ. For a configuration C of Unf (6′(α)),
if for each e ∈ ℵ, there is an event e′ ∈ C such that e′#e, then
C is called a deadlock-adjoint configuration.

As mentioned before, C1= {e1,e2, e3,e4,e5,e6,e7, e8, e26,
e27, e28, e29, e38 is a deadlock-adjoint configuration in
Figure 3. After firing all the transitions corresponding to
C1 from the initial marking in Figure 2, 62 results at the
dead marking

{
p1, p12, p19

}
. This marking corresponds to

a real deadlock of Program 1. However, in Figure 1, if we
uncomment line 30 of Program 1, the running trace in Table 2
is also feasible for the modified program. The program
trace net mined from the trace is still the same as that in
Figure 1. With the method proposed in this section, we will
still report a potential deadlock for the modified program.
However, as mentioned in Section II-A, the detected deadlock
becomes a false positive in this case. In fact, since only a
part of synchronization operations are captured in the running
trace, a program trace net may lose lots of program behavior
information. As a result, it may contain infeasible program
running traces and leads to false deadlocks. To address the
issue, a schedule algorithm to replay potential deadlocks are
proposed next.

V. DEADLOCK REPLAY BASED ON
CONFIGURATION-ASSOCIATED LOCK SCHEDULER
A. DEADLOCK-ADJOINT TRACE NET
To replay a potential program deadlock, we aim to find
a lock scheduler which, for each lock object, assigns
a thread sequence in which the lock object should be

authorized one by one. In fact, each configuration of a
deadlock-adjoint trace net implies a deterministic lock sched-
uler which leads the net to the configuration-associated
marking.

Specifically, let
∑

′
(α) =

(
P′,T ′

;F ′,M0, ρ, τ ′
)
be a

deadlock-adjoint trace net,Unf (6′(α)) = (B,E;G, h) be one
complete finite prefix of its unfolding, and C be a configura-
tion ofUnf (6′(α)). If a subnet ofUnf

(
6′ (α)

)
consists of all

the events in C and all their input and output places, we call
it the spanned subnet of configuration C .
According to the definition of configurations, the spanned

subnet must be conflict free. It can be used to obtain a lock
scheduler as follows. First, for each program lock object o,
let p ∈ P′ be the lock place satisfying ρ (p) = o. Since
there are no conflicting events in a spanned subnet, we only
need to starts from the condition corresponding to the initial
token of the lock places, compute the thread that newly
acquires the lock object one by one, and append the thread to
the thread sequence associated with o. The resulting thread
sequence will be the authorization thread sequence of lock
object o. Denote the authorization thread sequence of o by
δ (o). We call the authorization thread sequences of all the
lock objects a configuration-associated lock scheduler of the
multithreaded program.

According to the program operations associated with C ,
the authorization thread sequence for each lock object and
the lock scheduler can be obtained with Algorithm 2. Its time
complexity is O

(
|PL |2 + |PL | ∗ |C|

)
, where PL ⊆ P′ is the

set of lock places, |PL | and |C| represent the cardinality of
their respective sets.
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FIGURE 4. Problem analysis diagram of algorithm 2.

Consider for instance the deadlock-adjoint configuration
C1= {e1,e2, e3,e4,e5,e6,e7, e8, e26, e27, e28, e29, e38 of 62.
Its spanned subnet is shown in Figure 4. With Algorithm 2,
we can find that δ (G) = ThreadA → ThreadB → ThreadA,
δ (o1) = ThreadA → ThreadA, and δ (o2) = ThreadA →

ThreadB. It’s easy to verify that, if Program 1 runs according
to this scheduler, it will fall into a deadlock state. In this
way, we can obtain a deterministic lock scheduler for each
deadlock-adjoint configuration and its associated potential
deadlock. Obviously, the obtained subnet spanned by a
deadlock-adjoint configuration clearly describes the process
of the program falling into a deadlock. This makes it easy to
trace the root cause of a program deadlock. Meanwhile, the
obtained lock scheduler is deterministic and easy to under-
stand.

Take the configuration {e1, e2, e3, . . . , e25} of 62
as another example. Its spanned subnet is shown in
Figure 5. Obviously, all the lock objects G, o1 and
o2 are authorized to ThreadA → ThreadA → ThreadB
sequentially. Therefore, its associated lock scheduler is
{δ (G) = ThreadA → ThreadA → ThreadB, δ (o1) =

ThreadA → ThreadA → ThreadB, δ (o2) = ThreadA →

ThreadA → ThreadB}. The reached marking under the
scheduling of this scheduler is {h (c35) , h (c37) , h (c28) ,

h (c32) , h (c33)} = {p24, p26, p27, p28, p29}, which is a legal
dead marking and corresponds to a normal program termina-
tion state.

B. LOCK SCHEDULER-BASED REPLAY OF PROGRAM
POTENTIAL DEADLOCKS
Based on the lock scheduler obtained in previous section, this
section develops a scheduling algorithm for deadlock replay.
Each time a thread tries to acquire a lock object during the
running of a program, the program should decide whether or
not the lock should be authorized to the thread according to
the lock scheduler.

Specifically, before each acquisition of a lock object o,
we check whether the requesting thread should be authorized
according to the first element of δ (o). There are 3 cases: (1)
If δ (o) is not empty and the requesting thread is not the first
element of δ (o), which means that the requesting thread is
not the expected one at this moment, we park the requesting
thread and put it into the waiting thread set associated with
o; (2) If δ (o) is not empty and the requesting thread is the
first element of δ (o), we authorize o to the requesting thread.
Then, update δ (o) by deleting its first element. Meanwhile,
unpark all the threads in the waiting thread set associated
with o; As a last case, (3) if δ (o) is empty, no intervention
is needed. In addition, each time a lock acquisition happens,
we check whether a cycle appears in the lock graph spanned
by 3C . If a cycle is found, it indicate that a program deadlock
is triggered. In this case, we set CycleDetected to TRUE.

3The lock graph spanned by a configuration C means the sub-graph of the
traditional lock graph consisting of the lock acquisition operations associated
with C .
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FIGURE 5. one complete finite prefix of 62’ s unfolding (The label inner each node is its identifier in the unfolding. The label next to
each node is the identifier of its associated node in Figure 2. Events represented by 2-sided rectangles are cut-off events. Events
represented in red rectangles constitute a dead-marking associated configuration).
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Algorithm 3The SchedulingAlgorithm of aMultithreaded Program on the Basis of a Configuration-Associated Lock Scheduler
Input: 6, a deadlock-adjoint trace net,
C , a deadlock-adjoint configuration,
Program, a multithreaded program;
Output: Whether or not the potential deadlock associated with C is a real deadlock
Steps:
1. Call Algorithm 2 with 6 and C as the input, and denote the obtained lock set as LockSet . Let δ be the function mapping

each lock in LockSet to its authorization thread sequence.
2. FOREACH lock o in LockSet , let WaitingThreadSet(o) be empty, which is used to store the threads parked by the

scheduler due to the unexpected acquisition of o;
3. Start Program;
4. WHILE there are threads in RUNNABLE or TIMED_WAITING state {
5. Let op be an operation that is scheduled to be executed by the operating system in current state;
6. IFop is a lock acquisition operation in the form of acq(threadX, o) {
7. IF δ(o) is not empty and threadX is the same with the first thread element in δ(o){
8. Execute the operation acq(threadX, o);
9. Delete the first thread element from δ (o) immediately after acq(threadX, o) completed;

10. unpark all the threads inWaitingThreadSet(o);
11. }//IF
12. ELSE IF δ(o) is not empty and threadX is not the same with the first thread in δ(o)
13. Park threadX and put threadX intoWaitingThreadSet(o);
14. ELSE{//in case that δ (o) is empty
15. Execute the operation acq(threadX, o);
16. Check whether or not there is a cycle in the lock graph spanned by C . If there is a loop, let CycleDetected be true

and exit the loop module.
17. }//ELSE
18. }ELSE //op is not a lock acquisition operation
19. Execute the operation acq(threadX, o) and no intervention is needed;
20. }//WHILE
21. IF δ (o) is empty for each lock o and CycleDetected is true
22. OUTPUT that the potential deadlock associated with C is a real deadlock
23. ELSE IF δ (o) is empty for each lock o and all thread of the program terminates normally
24. OUTPUT that the potential deadlock associated with C is a false deadlock;
25. ELSE
26. OUTPUT that the potential deadlock is not successfully replayed. Whether it is a real deadlock or not is unknown.

During the running of a multithreaded program, we sched-
ule its execution with the policy given above until no threads
are in RUNNABLE or TIMED_WAITING state (which
means that no operations can execute). Finally, we check
whether δ (o) becomes empty for each lock o ∈ LockSet(C)
and whether CycleDetected is TRUE. If both are true, the
replay procedure succeeds. The potential deadlock associated
with C is a real deadlock. Otherwise, if δ (o) becomes empty
for each lock o ∈ LockSet and all threads of the program
terminates normally, the potential deadlock associated withC
is a false deadlock. For the rest cases, we don’t know whether
it is a true or false deadlock.

The detailed scheduling algorithm to replay a potential
deadlock is given in Algorithm 3. Its time complexity is
O

(
|C|

2
+ |PL | ∗ |C|

)
, where PL is the set of lock places, |PL |

and |C| represent the cardinality of their respective sets.
Consider for instance the replay of the deadlock asso-

ciated with configuration C1. We have derived that

δ (G) = ThreadA → ThreadB → ThreadA, δ (o1)
= ThreadA → ThreadA, and δ (o2) = ThreadA → ThreadB.
They constitute a scheduling schema. A possible program
running scenario and its scheduling procedure is given
in Table 5, where lockBefore, lockAfter, unlockAfter are
CalFuzzer4 probe functions with which we schedule the
execution of the program.

As another case, if we uncomment line 30 from Program 1,
the obtained potential deadlock along with its adjoint config-
uration remains the same when analyzing the trace in Table 2.
Furthermore, the derived configuration-associated lock
scheduler by Algorithm 2 remains unchanged, i.e., δ (G) =

ThreadA → ThreadB →ThreadA, δ (o1) = ThreadA →

ThreadA, and δ (o2) = ThreadA → ThreadB. Unfortunately,
the detected deadlock becomes a false positive this time.

4CalFuzzer is an extensible tool for active testing of concurrent Java
programs. See literature [32] for details.
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FIGURE 6. Problem analysis diagram of algorithm 3.

Next, let’s see how this false positive is identified by the
deadlock replay procedure.

Specifically, in the case that line 30 is uncommented from
Program 1, ThreadB can acquire locks only after ThreadA
has acquired and subsequently released all the lock objects.
However, as shown in Table 6, when ThreadA acquires G for
the second time, ThreadA is parked since it is not the first
element of δ(G). Now, ThreadA, ThreadB and MainThread
are all in a waiting state. Moreover, at least one of δ(o1), δ(o2)
and δ(G) is not empty. This means that we cannot continue
scheduling the program’s running as we wish. Therefore, the
potential deadlock cannot be replayed successfully. We can-
not determine whether the potential deadlock is real or not.

Note that the deadlock detection and replay method pro-
posed in this paper needs to run a program two times. During
the first run of the program, a Program trace net and a
deadlock-adjoint trace net are constructed by mining the pro-
gram running trace. On this basis, some potential deadlocks
along with their corresponding lock schedulers are derived.
During the second run, for each potential deadlock, we sched-

ule the program’s execution according to its corresponding
lock scheduler. However, it needs to identify the thread or
lock objects that are the ‘‘same’’ in the two different program
runs. This identification cannot be done using thread/lock
memory address because their addresses may change across
different program runs. To address this issue, we need to find
the mapping relation between threads and locks in different
runs. The detailed mapping method is given in Appendix I.

VI. EXPERIMENTAL EVALUATION
To evaluate the proposed method, we develop a prototype
system according to the framework in Figure 6. The working
process is as follows: (1) For a given multithreaded program,
use CalFuzzer to generate a program running trace at first.
As an extensible tool for active testing of concurrent Java
programs, CalFuzzer provides a set of clean API for gen-
erating an event stream, where an event may be acquisition
or releasing of a lock, thread fork/join etc. In addition, the
thread stop event of a thread can be captured by checking
its thread state repeatedly; (2) Based on the program running
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FIGURE 7. The unfolding subnet spanned by the deadlock-adjoint configuration C1, which leads to a deadlock of program 1.

trace just obtained, the prototype system construct its corre-
sponding program trace net and deadlock-adjoint trace net
with Algorithm 1; (3) Detect the reachable dead markings
of the deadlock-adjoint trace net using Petri net unfolding
technology. Each of the dead markings means a potential pro-
gram deadlock; (4) Derive the configuration-associated lock

scheduler for each potential deadlock using Algorithm 2; (5)
Replay the potential deadlock on CalFuzzer with Algorithm
3.

We have conducted experiments on the Program 1 pre-
sented in Table 1 and the multithreaded program examples
disclosed in the Calfuzzer open source project [57]. The
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FIGURE 8. The unfolding subnet spanned by configuration {e1,e2,e3,. . . ,e25 }, which leads
program 1 to a normal termination state.
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TABLE 5. A scheduling procedure for a possible running trace of program 1(operations in yellow filled cells are suspended by the scheduler. red font
operations are blocked points of each thread).
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TABLE 5. (Continued.) A scheduling procedure for a possible running trace of program 1(operations in yellow filled cells are suspended by the scheduler.
red font operations are blocked points of each thread).

TABLE 6. A scheduling procedure for a possible running trace of the uncommented program 1(operations in yellow filled cells are suspended ones).

machine configuration during the experiment is: Intel(R)
Xeon(R) Platinum 8163 CPU @ 2.50GHz, memory 2 GB,

and the operating system is Ubuntu 5.4.0. The comparison of
the experimental results is shown in Table 7.
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TABLE 7. Comparison of experiment results (where igoodlock is a deadlock detection and replay tool implemented in calfuzzer. Pnulock means the
proposed deadlock detection and replay method based on petri net unflolding).

FIGURE 9. The unfolding subnet spanned by configuration {e1,e2,e3,. . . ,e25 }, which leads Program 1 to a normal
termination state.

Among the existing deadlock detection methods par-
ticipating in the comparison, iGoodlock uses cyclic lock
dependency chain to detect potential deadlocks. It usually
produces more false positives compared to our proposed
method. The program Demo2 in Table 1 and Program 1 in
Table 1 confirmed this point. iGoodlock algorithm report 1
false positive while our proposed method has no false posi-
tives.

In addition, for each potential deadlock, iGoodlock per-
forms deadlock replay based on DeadlockFuzzer, which is
a random replay strategy. On the contrary, the scheduling
scheme proposed in this article is deterministic. As a result,
for the same real deadlock, iGoodlock and DeadlockFuzzer
usually need multiple runs to replay a real deadlock suc-
cessfully. E.g., for program Test1a and Test1b, iGoodlock

replayed more than 3 times to trigger the program deadlock
in our experiment. However, our proposed method only needs
to replay one time.

From the perspective of time performance, in the first
stage of deadlock detection, our proposed method needs to
consume more time. This is because the program trace net
constructed in this paper contains more program behavioral
information compared to lock graphs, cyclic lock dependency
chain, segmentation graphs, and other existing programmod-
els that are mined from a running trace. Moreover, the
deadlock detection algorithm of Petri net is usually time con-
suming due to the problem of state explosion. This decrease
in time performance is to obtain higher deadlock detection
accuracy. In the second state of deadlock replay, the replay
method proposed in this article is more efficient compared to
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FIGURE 10. The mapping relation between thread identifiers in two
different program runs.

FIGURE 11. The mapping relation between lock identifiers in two
different program runs.

iGoodlock, because it is a deterministic scheduling scheme.
However, DeadlockFuzzer’s scheduling scheme is random
and usually requires multiple runs to replay a deadlock suc-
cessfully.

VII. CONCLUSION
This work proposed a new method for program deadlock
detection and replay. Firstly, it defined the concept of pro-
gram trace nets to model the program behavior implied in
a running trace, and developed the algorithm for mining
the trace net from a program running trace. Then, the pro-
gram deadlock detection problem was transformed to the
dead marking detection of a deadlock-adjoint trace net. Each
of the dead markings indicates a potential program dead-
lock. After that, an algorithm was developed to derive a
configuration-associated lock scheduler for each potential
deadlock. Based on the obtained lock scheduler, a program
scheduling algorithm is proposed to replay the potential dead-
locks and check their authenticity. It was shown that the
proposed deadlock detection and replaymethod can eliminate
more false positives compared to common dynamic deadlock
analysis methods. Meanwhile, the obtained deadlock replay
scheme is deterministic and easy to understand compared to
existing ones.

At the same time, there are still many shortcomings to
be improved in this work. First, when a program trace net

contains a lot of branch structures, its unfolding may have
the problem of state explosion. In the future work, we aim
to design a new program model which contains the same
program behavior information but is more efficient in anal-
ysis. Secondly, this paper only detects program deadlocks
from one running trace. Multiple running traces can contain
more program structure and behavior information. When
discovering a Petri net-based program model from multiple
running traces, the decision statements including if-else, case,
and loop statements should be modeled by unobservable tran-
sitions. On this issue, [58] proposes an optimization-based
approach to discover the unobservable behavior of a discrete
event system through interpreted Petri nets. It improves pre-
vious approaches by evaluating the accuracy of the identified
model with respect to sequences of transitions and markings.
This work is expected to solve the above-mentioned problem
of mining unobservable transitions when discover a program
model from multiple running traces. Furthermore, the iden-
tification method of time Petri net models presented in [59]
can also help us to mine a program model that incorporates
execution time information of program operations. The time
information can improve the accuracy of program deadlock
detection.

In addition, this paper mainly deals with resource dead-
locks. Except for them, communication deadlocks may also
occur due to improper use of wait, notify, park, unpark and
other concurrency primitives [60]. Communication deadlocks
can also be detected if all of the primitives are modeled cor-
rectly with Petri nets. However, due to the large randomness
in the execution order of these operations, the state space of
the program and its Petri net model will increase dramatically.
Since [61] and [62] have proved that the deadlock detec-
tion problem is PSPACE-complete for RRNAs (Petri nets of
Resource Allocation), the unified detection of resource dead-
locks and communication deadlocks may lead to a greater
time complexity. Therefore, we tend to study the two types
of problems separately, and this paper only focuses on detec-
tion of resource deadlocks. Moreover, deadlock fixes [63]
and many deadlock-related issues in flexible manufacturing
systems [34], [35], [64], [65], [66], particularly phantom
deadlocks that may occur in the current state but disappear
in subsequent states, deserve further attention. It’s crucial to
note that phantom deadlocks have the potential to be triggered
from the initial state, whereas the false positives discussed
in this paper are not. Instead, false positives occur due to
inaccuracies in the detection algorithm’s analysis of program
behavior.

Finally, except for the deadlock freedom property, data
consistency and soundness are also important aspects of
concurrent systems [67], [68], [69], [70], [71], [72], [73]. Ref-
erences [44], [74], and [75] have proposed several Petri net
unfolding-based methods to verify these properties, includ-
ing verifying CTL (Computation Tree Logic), detecting data
inconsistency, and checking soundness of workflow systems.
They all analyze the static model of the systems and have
made good progress. In the follow-up, we will carry out
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dynamic analysis similar to the method proposed in this
article.

APPENDIX A
The proposed deadlock detection method in this paper needs
to run a program two times. In the first run, the Petri net
model is constructed by analyzing the program trace. Then,
the potential deadlock along with its corresponding lock
scheduler is obtained. In the second run, according to the lock
scheduler, we schedule the program’s execution according to
the lock scheduler. However, it needs to identify the thread or
lock objects that are the ‘‘same’’ in the two different program
runs. This identification cannot be done using thread/lock
memory address because their addresses may change across
different program runs. To address this issue, we need to find
the mapping relation between threads and locks in different
runs.

Firstly, let’s derive the thread mapping relation between
two different program runs. In most dynamic analysis tools of
concurrent programs (e.g., CalFuzzer [36]), the main thread
usually has a special identifier ( denoted by MainThread).
Hence, it is easy to derive the mapping relation between
the two main threads in different runs. Next, we assume
that the two different program runs have the same input and
that both of them terminate normally without running into
a deadlock. Moreover, without loss of generality, we can
suppose that both runs perform the same set of operations
except that the operations’ execution order may be different.
Then, the sequence of threads started by the main thread is
consistent in order even in different program runs. Based
on this consistency, we can obtain the mapping relation for
those threads started by the main thread. In the same way, for
each thread we have obtained its mapping relation, we can
derive themapping relation for those threads started by it. The
principle to generate the thread mapping relation is shown in
Figure 7. The thread identifiers listed in the left part are from
one program run, the others from another run. A one-way
arrow pointing from Threadx to Threadx_i means Threadx_i is
the i-th thread started by Threadx . A two-way arrow pointing
from Threadx to Thread’x means they are the same thread in
different program runs.

As for the mapping relation of lock objects between two
different program runs, the derivation is similar to that of
threads. On the premise that the two different program runs
have the same input and that both of them terminate normally
without running into a deadlock, we can suppose that a thread
acquire the same set of locks in the same order even though
it is executed in two different program runs. Based on this
consistency, we can obtain the mapping relation for those
locks acquired by a same thread. The generation principle of
the lockmapping relation is shown in Figure 8, where Threadi
and Thread’i are the same thread in two different runs, Locki_j
is the j-th lock object acquired by Threadi, and Lock’i_j the
j-th lock object acquired by Thread’i. Obviously Locki_j and
Lock’i_j are the same object in different program runs.
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