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ABSTRACT Rich natural resources such as fertilizers, environment, groundwater, rivers, and land are
abundant in many countries. Agriculture is the primary source of income for the people living in different
countries. There have not been shortages of resources like river water and groundwater, in recent decades.
But, the lack of knowledge on how to use those valuable resources is the main reason for resource wastage.
The amount of water applied to crop fields in a variety of soil, weather, and crop growth stages can
be managed and optimized using smart farming. The crop field’s soil moisture can be measured using
sensors positioned at various observation points, which will show how much water has been retained.
Unfortunately, the smart farming system is not capable to receive the soil moisture data provided by the
irrigation management due to issues with connectivity or sensor failure. Innovative agricultural approaches
can be facilitated by the Internet of Things (IoT) technologies. These IoT nodes have encountered energy
limitations and challenging routing techniques as a result of their low capacity. Therefore, it is imperative to
resolve the issues by implementing an effective IoT-based irrigation system in the agricultural area. Themajor
steps of the developed model are data collection and prediction. Initially, essential image and sensor data is
attained from the benchmark resources. Next, the collected images are provided to the level of the irrigation
prediction phase. This phase facilitates the farmers to maximize the crop yields and minimize the production
cost. Here, effective irrigation prediction is performed using anAdaptive Hybrid (1D-2D) Convolution-based
ShuffleNetV2 model (AHC-ShuffleNetV2). Moreover, the parameters of the suggested AHC-ShuffleNetV2
are optimized using a Fitness-based Piranha Foraging Optimization Algorithm (FPFOA). This increases the
performance rates of the proposed model. Later, several experimental analyses are executed in the developed
model over classical techniques to display their effectualness rate. When considering the sigmoid activation
function, the implemented smart irrigation level prediction framework’s RMSEwasminimized by 73.15% of
POA-ShuffleNetV2, 72.36% of RSA-ShuffleNetV2, 78.94% of MRS-ShuffleNetV2, and 79.47% of PFOA-
ShuffleNetV2 respectively. Hence, it is revealed that the designed smart irrigation level prediction model
attained low error rates and also achieved higher efficacy than the other baseline techniques.

INDEX TERMS Irrigation level prediction, agricultural fields, smart internet of things, fitness-based piranha
foraging optimization algorithm, adaptive hybrid (1D-2D) convolution-based shufflenetV2 model.

The associate editor coordinating the review of this manuscript and
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I. INTRODUCTION
One of the main factors influencing precision agriculture is
the control of water for irrigated crops. Crop stress is brought

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 71901

https://orcid.org/0000-0002-9705-3867
https://orcid.org/0000-0002-8115-4882
https://orcid.org/0000-0001-6546-8083
https://orcid.org/0000-0001-7643-2342


X. Xu et al.: Adaptive Hybrid (1D-2D) Convolution-Based ShuffleNetV2 Mechanism

on by insufficient irrigation with regard to water management
and timing, which eventually lowers crop yield [9]. Because
of this, there is a high demand for effective irrigation, which
provides exact information regarding irrigation requirements
instantly. Agriculture has highly benefited from the efficient
use of irrigation systems [10]. Remote manual irrigation is an
add-on demand in numerous situations including geographi-
cal region, crop health, and climatic change that is according
to the experiential input of the farmers. The conventional
works concentrate on either manual or automatic irrigations.
But, the concept of recommending a complete device offering
remote manual and automatic dynamic irrigation processes in
the distinct growing crop stages is still far-fetched. In tradi-
tional irrigation systems, a large number of wires are needed
to gather sensor data and send commands to the solenoid
valves [11]. The entire system is costly and complex due to
the high cost of cables and other accessories, which restricts
the deployment’s scope. Soil moisture can be collected at
various soil depths in the agricultural land using positioned
sensors at multiple monitoring locations. The amount of
water retained in a crop field is indicated by analyzing the
soil moisture [12]. It is difficult to determine the specific
quantity of water needed by irrigation management as the
smart farming system is unable to collect soil moisture data
because of sensor malfunctions and connectivity issues [13].
Using various irrigation management data types from irri-
gation systems and crops, machine learning approaches can
infer information about soil moisture. Consequently, irriga-
tion water conservation can be enhanced by using forecasted
soil moisture data [14].
By extending the conventional cloud computing architec-

ture to the edge network and analyzing the monitored area,
the fog computing paradigm also aids in addressing the con-
nection issue in the farms [15]. As a result, fog computing
reduces latency and bandwidth by processing sensor requests
locally on the farms with the least amount of cloud computing
involvement [16]. Nowadays, farmlands can have wireless
coverage because of emerging communication technologies
like Bluetooth, ZigBee, and General Packet Radio Service
(GPRS) cellular networks [17]. These technologies also have
certain restrictions. The GPRS-enabled devices require more
power to maintain the burden associated with battery replace-
ment [18]. Furthermore, they depend on telecom carriers’
cellular networks, which can be unreliable in some rural
locations [19]. Regarding ZigBee or Bluetooth solutions, the
devices’ low power performance can be ensured, but the com-
munication range is insufficient to cover a significant amount
of farmland [20]. A number of Low-Power Wide-Area Net-
work (LPWAN) technologies, including Long Range (LoRa)
radio technology, NB-IoT, and SigFox have been developed
recently. Low cost, high capacity, low power consumption,
and long-distance communication are the main characteris-
tics of LPWAN technology. The LPWANgets over traditional
wireless technologies’ drawbacks and its application in wire-
less irrigation systems seems quite promising [21].

Existingmodels employmachine learning approaches such
as Gradient Boosting Regression Trees (GBRT), Random
Forest (RF), and K-Nearest Neighbors (KNN) for irriga-
tion level prediction. Nonetheless, Deep Neural Networks
(DNN) has drawn interest in getting solutions for non-
linear models [22]. These models involve deeper neural
networks, which provide more significant learning capacities
and, consequently, improved accuracy and performance [23].
Bi-directional Long Short-Term Memory (BLSTM) and
LSTM are the two types of Recurrent Neural Networks
(RNNs). These are specifically made to identify sequential
features in input and then use those patterns to forecast future
events. A number of IoT-enabled precision agriculture water
management systems have been developed recently. The IoT
is one of the promising technologies that can rectify the issues
concurrently composedwith environmental impact problems,
time, and labor. The majority of them relies on sensing-based
systems and predetermines the offline watering schedules.
The solutions are generated by taking into account the user’s
background, level of expertise, and extended ambient fac-
tors [24]. The LSTM has many advantages related to the
precision agriculture industry. The LSTM is a unique kind
of neural network that is particularly useful for time series
analysis. Furthermore, the customers’ watering needs for
the crops can be predicted by the collected models [25].
To increase water-saving efficiency, the data fusion models
consider real-time sensor data, weather forecasts, irrigation
records, and past local weather conditions. However, the con-
ventional irrigation level prediction techniques didn’t focus
on the accuracy levels and system complexity. Moreover, the
traditional techniques generate automatic models with big
frameworks that increase the computational cost and also
increase the processing time. Hence, an effective irrigation
level prediction model is developed.

Some of the valuable contributions of the proposed deep
learning-based irrigation level prediction model with smart
IoTs are given below.

• To design a novel irrigation level predictionmethod in an
agricultural field with smart IoTs by utilizing advanced
deep learningmechanisms that facilitate tomaximize the
crop yields and minimize the production costs.

• To predict the irrigation level in the agricultural fields
by developing the AHC-ShuffleNetV2 mechanism that
integrates the hybrid 1D-2D convolution and Shuf-
fleNetV2. In this network, the parameters such as epoch
size, steps per epoch, and hidden neuron count are opti-
mized using the proposed FPFOA to reduce the MAE
and RMSE values. Moreover, with the help of this net-
work, the efficiency of the implemented framework is
enhanced and at the same time, the inefficient resource
utilization and processing time are minimized.

• To propose a FPFOA by upgrading the random value
in conventional PFOA that helps to progress the overall
irrigation prediction capability of the developed network
by optimizing the parameters.
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• To check the efficacy of the offered deep learning-based
irrigation level forecasting method by evaluating the
suggested method with other heuristic approaches and
deep learning networks.

The suggested irrigation level forecasting method using
smart IoTs in the agricultural field is explained in the below
sections. The literature regarding smart agriculture alongwith
its shortcomings and merits are described in Sub-part II.
In Sub-part III, the importance of deep learning in irrigation
level prediction, existing challenges in irrigation level pre-
diction, and finally the proposed irrigation level prediction
model is explained.Sub-part IV provides the dataset details
and describes about smart irrigation with IoT. Irrigation level
prediction using deep learning is given in Sub-part V. The
experimental findings are presented in Sub-part VI. The final

The final conclusion about the research is given in
Sub-part VII.

II. EXISTING WORKS
A. RELATED WORKS
In 2021, Roy et al. [1] have proposed AgriSens, an IoT-based
dynamic irrigation scheduling system, to effectively manage
water in irrigated crop areas. Using IoT, AgriSens offered
manual, remote, automated, dynamic, and real-time irrigation
treatment for various growth phases of a crop’s life cycle. The
amount of water in a field was measured by the developed
low-cost water-level sensor. After that, an algorithm was cre-
ated based on farmers’ requirements for autonomous dynamic
manual watering. With its user-friendly interface, AgriSens
offered farmers a multimodal field information delivery via
website, mobile app, and visual display.

In 2022, Jiménez et al. [2] have created a sophisticated
IoT-multiagent precision irrigation method to increase irri-
gation systems’ water consumption efficiency. An intelligent
irrigation agent that independently prescribes and applies
water amounts based on agronomical criteria was suggested
in this research. This approach was expanded to eleven
pump stations that serve water to 5911 fields, using both
virtual and actual intelligent agents. A primary agent in each
pump station receives information from hundreds of irriga-
tion intelligent agents via an MQTT protocol regarding crop
characteristics and water prescriptions. The primary agent
created a regional irrigation map to manage geo-referenced
field data and negotiate water resources among agents based
on supply availability. Devices with internet access could be
used to visualize intelligent irrigation agents and field maps.
The fields’ irrigation levels were applied correctly and it was
proven by the results, which increased the fields’ water use
efficiency.

In 2022, Cordeiro et al. [3] have utilized Deep Neural Net-
work (DNN) architecture to create a soil moisture prediction
model. The created model addressed the issue of missing
data in the dataset. Next, KNN data imputation was applied
to fill in the missing values that guaranteed the requisite
level of reliability. In order to assess the prediction mod-
els’ performance based on RAM and CPU utilization, the

proposed model was lastly implanted on a tiny single-board
computer. Consequently, the models could be used to create
fog architectures within an IoT environment. Their findings
showed that the predictive model achieved high irrigation
water without any wastage.

In 2021, Laphatphakkhanu et al. [4] have suggested an
effective method to assess the water-use efficiency of three
irrigation techniques: (1) basin irrigation, (2) Alternate Wet-
ting and Drying (AWD), and (3) Modern Irrigation System
(MIS), which used an IoT-based weather monitoring station.
The water footprint was traced during the dry season of rice
cultivation. According to the findings, the field’s actual water
usage for basin irrigation, AWD, and MIS was 7612, 5823,
and 7461 m3/ha, respectively. Based on CROPWAT 8.0, the
water demandwas found to be close to the basin irrigation and
MIS. For MIS, AWD, and basin irrigation, the corresponding
rice productivity per area was calculated. The well-grained
systemwas theMIS, with a high water footprint for the AWD,
basin irrigation, and MIS, respectively, in the various rice-
growing systems. Furthermore, when compared to AWD and
basin irrigation, the MIS might lower the water footprint.

In 2022, Irshad et al. [5] have improved the system’s energy
management performance by introducing a revolutionary
combination of optimal intelligent smart irrigation systems.
Hierarchy Shuffled Shepherd Clustering (HSSC) was used
here to form and choose the best cluster heads. Additionally,
the Emperor Penguin Jellyfish Optimizer (EPJO) approach
has been suggested for offering the best routing strategy and
energy regulation. Network Simulator-2 (NS2) was the pro-
gram used to simulate this operation. The suggested method’s
simulation results were verified and contrasted with tradi-
tional methods. As a result, the findings of the suggested
technique showed better outcomes in comparison to the tradi-
tional works. Moreover, the producedmodel has substantially
lower energy consumption and better network lifetime.

In 2022, Jani and Chaubey [6] have proposed a smart
framework for agriculture that used the IoT to manage many
kinds of inexpensive IoT sensors. They gather data from
insects, water, air, and soil. Then, they analyze the data
from sensors to make the right decisions. Their approach’s
unique contribution was to combine the scientific automation
of pest identification, pesticide spraying, pest irrigation, and
fertigation into a single framework, without the participation
of farmers. The outcomes and comprehensive implementa-
tion instructions for the created framework’s smart irrigation
module were included in this work.

In 2022, Gong et al. [7] have proposed an intelligent
irrigation system that optimized the watering schedule by
integrating a LoRa network and a data fusion model. The
data fusion model was presented in this work that integrated
multi-source heterogeneous data, such as online monitor-
ing sensor data, weather forecasts, user irrigation logs, and
historical weather data. Then they used the LSTM network
to simulate and predict the appropriate watering demands.
Using LoRa, a self-powered wide-area network was estab-
lished and made available to support various IoT application
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scenarios. It had a gateway as well as two different kinds of
nodes: sensor and valve nodes. By using a water flow-based
power generating strategy, the node achieved energy auton-
omy and maintenance-free operation over the course of its
life cycle. The mobile application’s interface, intelligent irri-
gation control, and network administration were all intended
to be provided via a cloud platform. An analysis of the sug-
gested system was conducted using a case study on landscape
irrigation. Comparing the suggested system to the traditional
manual setup options, the average water-saving efficiency
was improved by the proposed framework.

In 2023, Behzadipour et al. [8] have suggested intelligent
irrigation and modifying agricultural irrigation methods to
regulate the amount of water needed by the plants. The
primary data sources for this study were data from sensors
including humidity of ambient and light and soil tempera-
ture. The MATLAB 2018 software and regression modeling
in SPSS software were used to examine the data. With a
combined model of images and sensors in genetic program-
ming, the proposed model attained a smaller standard error
and better R2 values. For the smart irrigation method, the
microcontroller was adjusted by the proposed optimal model.
By using this method more amount of water was saved in the
crop fields. Finally, the accuracy and superiority of the model
were estimated.

B. PROBLEM STATEMENT
In agriculture, water resources are the major sources for
offering a better yield rate. Generally, effective irrigation
systems are utilized to minimize the water utilization rate and
also to enhance the productivity rate. Different advancements
and complications presented in the classical irrigation system
are presented in Table 1. AgriSens [1] implementation cost
is minimal and also it has a higher reliability rate and has
better accuracy rate in the system. Yet, it needs to overcome
the issues in the packet delivery ratio and also it requires
enhancing the lifetime of the system. MQTT Protocol [2]
effectively schedules the irrigation time for the global and
local level based on the field region. Moreover, it needs to
minimize the overhead in the messages and needs processing
power. DNN [3] reliability rate is high and it effectively fills
the unknown values for the features and also it accurately
predicts the soil moisture. Moreover, it requires enormous
information for training and also its validation cost is higher.
MIS [4] has a higher effectualness rate according to produc-
tivity and also it consumes minimal water and is an efficient
technique. However, it requires time interval modification in
every condition and also it didn’t consider factors like wind
speed, temperature, and rain. HSSC [5] consumes minimal
energy and also enhances the lifetime of the network and it
offers a finite routing path by resolving the delay and data
failure issues.Moreover, its complexity rate is higher and also
it requires overcoming the convergence issues in the system.
IoT [6] initialization cost is lower than other techniques
and also it automatically identifies the pests, fertilizers, and

pesticide sprays. Yet, it needs to reduce the human interaction
and also it needs to provide higher privacy and security rate.
LSTM [7] didn’t require replacing the battery as it utilizes
the maintenance-free battery for the whole life cycle. Yet,
it faces more complications when high-power features are
utilized. The regression technique [8] effectively changes the
microcontroller for better irrigation and also it has a superior
accuracy rate. However, it needs to resolve the linearity and
overfitting issues and also it requires improving the sensitivity
rate. Thus, it is important to design an efficient IoT-based
irrigation level prediction system by considering the several
limitations of different techniques. The primary research gaps
of the traditional models have been listed as follows.
) The traditional irrigation level prediction mechanisms

demand more time, resources, and cost for its imple-
mentation. Yet, this is required minimal to enhance the
performance rates of these models. Hence, this work
designed a smart irrigation level prediction model with
low cost and less resource utilization.

) The conventional irrigation level prediction techniques
are prone to error rates. This tend to deduce the accuracy
levels of the techniques. Hence, this work designed a
new model that minimized the error rates and hence
increased the accuracy levels.

) Since the traditional models have high computational
complexity the work developed a new deep learning
network with less complexity.

The conventional irrigation level prediction techniques fail
to optimize the network parameters such as epoch size, steps
per epoch, and hidden neuron count leading to overfitting.
Hence, this work optimizes these parameters by introducing
a new optimization algorithm.

III. SMART IoT- BASED IRRIGATION LEVEL PREDICTION
IN AGRICULTURAL FIELDS USING HYBRID CONVOLUTION
ADOPTED DEEP LEARNING ALGORITHM
A. IMPORTANCE OF DEEP LEARNING IN IRRIGATION
LEVEL PREDICTION
The traditional machine learning techniques mostly need
users’ help to adjust the model parameters, but deep learning
models learn the features directly from the training data,
resulting in more accurate predictions. Since deep learning
has been successfully applied in the domains of natural lan-
guage processing and image classification methods, it is well
suitable for deep learning technologies to address agricultural
concerns [34]. Utilizing the exceptional processing capacity
of modern computers is made possible by DCNN technology.
Moreover, in numerous image analysis applications, deep
learning techniques have demonstrated their ability to man-
age image noise and illumination variance. Furthermore, the
studies discovered that deep learning models have the ability
to analyze the consumption of water in irrigation fields and
predict the irrigation conditions even in aerial images [35].
By using deep learning methods to analyze the condition of
the field and monitoring the irrigation conditions, the farmers
could able to take necessary measures to improve their crop
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TABLE 1. Features and challenges of classical IoT-based irrigation level prediction system using different techniques.

yield. New deep learning-based techniques have been pro-
posed in recent days to improve the agricultural sectors. Deep
learning is useful in productivity prediction, crop disease
detection, hyper-spectral imaging, and precision agriculture.

B. EXISTING CHALLENGES IN IRRIGATION LEVEL
PREDICTION
The traditional methods utilized for irrigation level prediction
take a lot of time for the calibration and the development pro-
cess. The data requirements as well as the cost for predicting
the irrigation level using neural networks are high. Most of
the techniques do not provide optimum irrigation planning
measures, which affects the quantity of soil nutrients as well

as the quality of crops [36]. Processing soil moisture data
in real-time dynamics is difficult. Based on the regions and
weather conditions, the irrigation level should be provided.
The soil moisture content should be analyzed before forecast-
ing the irrigation level, but not all the methods are convenient
to measure those data. The developing methods should be
self-adaptable to different areas for predicting the irrigation
level for various kinds of crops [37]. Correct data is needed
to attain precise forecasting outcomes. But, some of the data
collection processes in the existing methods are exposed to
false data injection and privacy threats. Therefore, a deep
learning-based irrigation level prediction in agricultural fields
with smart IoTs is proposed.

VOLUME 12, 2024 71905



X. Xu et al.: Adaptive Hybrid (1D-2D) Convolution-Based ShuffleNetV2 Mechanism

C. SCHEMATIC VIEW OF PROPOSED IRRIGATION LEVEL
PREDICTION MODEL
A deep learning-based technique for predicting the irrigation
levels in agricultural fields with smart IoTs is proposed.
The required image and sensor data for implementing this
research are attained from the standard resources. Then, the
collected images are passed to the irrigation level prediction
phase. This process is accomplished by the developed AHC-
ShuffleNetV2 model.

FIGURE 1. Visualization of the proposed mechanism for irrigation level
prediction with smart IoTs.

It is developed by integrating two deep learning networks
named hybrid 1D-2D and ShuffleNetV2. In order to fur-
ther progress the prediction performance, a new heuristic
approach FPFOA is recommended. It maximizes the predic-
tion performance by optimizing steps per epoch, epoch size,
and hidden neuron count in ShuffleNetV2 for decreasing the
MAE and RMSE. Then different experimental analyses are
conducted to demonstrate the efficacy of the designed irriga-
tion levels prediction model using deep learning. The above
Figure 1 visualizes the proposed mechanism for irrigation
level prediction in agricultural fields with smart IoTs.

IV. IoT-BASED DATASET COLLECTION FOR PREDICTING
IRRIGATION LEVEL AND DETAILED SUMMARIZATION OF
PROPOSED OPTIMIZATION STRATEGY
A. SMART IRRIGATION WITH IoT
An innovative method for automating irrigation methods and
reducing water consumption is the SMART irrigation system,
which helps to improve the performance of crop growth
by providing an adequate amount of water to crops. This
method helps farmers to meet their demand for the correct
amount of water for the irrigation process by adjusting the
water level in agricultural fields based on actual weather and

soil conditions. Numerous applications, such as irrigation
decision assistance, crop selection and crop growth monitor-
ing, are made possible by the IoT. In agriculture, different
irrigation techniques are needed for each stage of a crop’s
growth. The agricultural fields’ irrigation systems are being
modernized with the application of IoT. A SMART irrigation
system consists of wireless connection, data processing, fault
detection, irrigation control, and data gathering using sensors.
The water-level sensor, soil moisture, and daylight readings
are employed in the crop field to take readings. The purpose
of soil monitoring is to determine the amount of moisture in
the soil by utilizing well-founded technologies in the SMART
irrigation system. Two probes are put into the soil to form the
soil moisture sensors. The soil moisture sensors are buried
in the roots of turfs, shrubs, or trees allowing accurate mea-
surement of the amount of moisture in soil. Low moisture
soil offers reduced resistance and passes high current when
the current goes through the probes. The variable resistance
serves as a proxy for soil moisture content. A pictorial view
of smart irrigation using IoT is depicted in Figure 2.

FIGURE 2. Pictorial view of smart irrigation using IoT.

B. DESCRIPTION OF AGRICULTURAL DATASET
From the below dataset, the images and data needed for this
research are taken.

1) DATASET 1 AGRICULTURE CROP IMAGES
The agricultural crop images are accumulated from
the link https://www.kaggle.com/datasets/aman2000jaiswal/
agriculture-crop-images. Accessed on 2023-12-21, these
images are collected. It consists of crop images including
maize, jute, sugarcane, rice, and wheat. For all the above-
mentioned crops, more than forty images are given in this
database.

2) SOIL MOISTURE DATASET
The soil moisture content data are gathered from
‘‘https://www.kaggle.com/datasets/amirmohammdjalili/soil-
moisture-dataset’’, accessed on 2023-12-21. From different
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layers of soil, the soil moisture content data is collected.
The data is taken by considering seconds, hours, days, and
months. Moreover, three different moisture content levels are
given in this dataset.

3) DATASET 2 AGRICULTURAL CROP IMAGE
CLASSIFICATION
The images for the proposed irrigation level prediction work
are garnered from the data source link ‘‘https://www.kaggle.
com/datasets/mdwaquarazam/agricultural-crops-image-clas-
sification: access date: 2024-02-23’’. This resource includes
30 distinct kinds of crops that are present in separate folders.
Overall, this resource includes 829 images.

4) SOIL SENSOR READINGS
This data source is gathered through ‘‘https://discover.data.
vic.gov.au/dataset/soil-sensor-readings-historical-data: acc-
ess date:2024-02-23’’. It includes the historical readings for
soil sensors. These readings are gathered from Melbourne
City. The soil sensors take numerous readings like moisture,
temperature, and salinity. The readings and units are pre-
sented within the data.

Some of the sample agricultural crop images for the pro-
posed irrigation level prediction are given in Figure 3.

FIGURE 3. Sample agricultural crop images for the irrigation level
prediction.

The gathered images are specified as IRLVC and the data
are indicated as SLMOI . Here, the total amount of crop images
and total soil moisture content are characterized as C and I ,
simultaneously.

C. PROPOSED FPFOA
The FPFOA is developed to maximize the irrigation levels
prediction process by optimizing parameters. It optimizes
steps per epoch, epoch size, and hidden neuron count in Shuf-
fleNetV2 to reduce the MAE and RMSE. The conventional
PFOA has the capacity to manage the time-varying random-
ization by traversing the search space effectively. However,
it is not suitable for high dimensional optimization problems
and it provides better solutions only with chosen test func-
tions. Therefore, the random integer α1 in the existing PFOA
is updated to get the best optimal solution in the developed
FPFOA. In order to update this value, the worst fitness and

best fitness values are considered as shown in Eq. (1).

α1 =

(
NS
ZF

)
∗ 0.2 (1)

Here, the random integer is characterized as α1, and this
value is upgraded in Eq. (2). The worst and best fitness values
are termed as NS and ZF , simultaneously. By this updation
in the traditional PFOA, the existing issues in PFOA are
solved and the proposed FPFOA has the ability to offer better
solutions with any kind of test functions.

PFOA [26]: The PFOA is designed based on the foraging
behavior of piranhas. It is a type of fish and it is very aggres-
sive in nature. These piranhas aremostly found in theAmazon
Rivers. They can easily bite and eat animal flesh because of
their serrated teeth. It has the ability to lay about 1000 eggs.
For incubating the eggs, piranha uses plant leaves.

The attacking stage of piranha is divided into three types.
In order to find better optimal solutions, three tactics includ-
ing reverse evasion, population survival, and non-linear
parameter control were employed in this algorithm.

Three kinds of foraging attacks take place in this algorithm.
They are, scavenging foraging, bloodthirsty cluster attack,
and localized group attacks. At first, the population of the
piranha is initialized as in Eq. (2).

rx = hux + α1 × (bux − hux) (2)

Here, the random parameter is denoted as α1. Eq. (1) is
used to update this random parameter. The lower and upper
boundaries are stated as hux and bux , concurrently. The loca-
tion of the x th piranha is mentioned as rx . Piranhas have a high
ability to sense blood. In order to formulate this concept,

an intensity parameter Bx is employed. The intensity
parameter represents the blood concentration level. Their
movements will speed up according to the concentration level
of blood.

The process of piranhas swimming towards the blood is
formulated in the following Eq. (3)-Eq. (5).

Bx = α2 ×
Sx

4π t2x
(3)

tx = pyu − px (4)

Sx = [px (i) − px+1 (i)]2 (5)

In the above expressions, the source intensity is indicated
as Sx . The distance between the piranha and the prey is
termed as tx . The term pyu refers to the prey. In order to
handle premature convergence and time-varying randomized
processes, the Non-linear parametric control strategies are
adapted in this algorithm. A large value L is introduced to pre-
mature convergence and time-varying randomized processes,
the Non-linear parametric control strategies are adapted in
this algorithm. A large value L is introduced to prevent this
algorithm from stucking in the local optimum. Based on the
value L, the convergence of the algorithm will change.

L = G. cos
[
π

2
⊗

(
i

M_i

)]4
(6)
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In Eq. (6), the constant value is represented as G. Max-
imum counts of iterations are defined by the term M_i.
To change the population direction, a flag value F is intro-
duced and it is estimated using Eq. (7).

F =


1 α3 ≤ 0.5

−1 α3 > 0.5

(7)

Here, the random integer is defined by the term α3.
When piranhas are hungrier they even start to attack larger
prey. If the prey is found near their habitat, the piranha
calls other piranha using signals by splashing water. In this
instance, group attacks will happen and it is formulated
via Eq. (8).

px (i+ 1) = µ1

rg∑
m=1

Am (i) − px (i)
rg

− pyu (i) (8)

In Eq. (8), the term rg specifies the random integer.
A random value that lies in the range of [−2, 2] is repre-
sented as µ1. The fraction of the local population attack
is defined as Am (i). The new position of the piranhas is
symbolized as px (i+ 1). When the concentration of blood is
high, the piranhas start to swim faster to attack the wounded
prey as it has a high sense of smell. This bloodthirsty attack
of piranhas is modeled in the below Eq. (9).

px (i+ 1) = µ1 ∗ f µ2 ∗ pyu (i) + E ∗ pyu ∗ F ∗ Bx
+ F ∗ α4 ∗ L ∗ Bx (9)

In the above expression, the hunting capacity of the piran-
has is determined by the coefficient E . The updated position
of the piranha population is termed as px (i+ 1). Piranhas
have less eyesight, so there is a high chance for the piranhas
to be getting lost from the group. The lost piranha eats seeds
to live. This scavenging hunting process is arithmetically
expressed in Eq. (10).

px (i+ 1) =
1
2

[
f µ2 ∗ pH1 (i) − F ∗ px (i)

]
(10)

Here, the H1st agent’s position is denoted as pH1. A sur-
vival rateUR category is adapted in this algorithm tomaintain
the piranha population. The new offspring are produced if
UR ≤

1
4 . It is described in Eq. (11) and Eq. (12).

UR(x) =
ftM − ft (x)
ftM − ftMI

(11)

px (i+ 1) = pyu (i) +
1
2

{
[pH1 (i) − F ∗ pH2 (i)]−
[pH2 (i) − F ∗ pH3 (i)]

}
(12)

Here, the maximum and minimum fitness values are men-
tioned as ftM and ftMI , correspondingly. Algorithm 1 presents
the pseudocode of the developed FPFOA.

Algorithm 1 FPFOA
Assign the parameters
Allocate the probability of piranha being hungry A = 0.5
Allocate the probability of blood concentration level
B = 0.5
Update random parameter α in Eq. (1)
Create the population of piranha
While iteration < M_i
If α < A

Upgrade nonlinear cosine factor L by Eq. (6)
If α < B

Estimate the blood concentration
level Bx via Eq. (7)

Estimate group attack by Eq. (8)

Else
Perform bloodthirsty attack via

Eq. (9)

End if

Perform scavenging hunting method in
Eq. (10)

Upgrade piranha survival strategy using Eq. (11)
Compute Pnew
If Pnew < pyu then
Set Pnew = pyu

End while
Visualize the value of pyu

V. INTELLIGENT DEEP LEARNING WITH HYBRID
COVOLUTION MECHANISM FOR THE PREDICTION
OF IRRIGATION LEVEL IN
AGRICULTURE FIELDS
A. HYBRID (1D-2D) CONVOLUTION NETWORK
The 1D-2D Convolution Network [31] is used to forecast
the irrigation level by taking input images as the input for
2D convolution and data are the input of 1D convolution.
The goal of the hybrid1D and 2D convolution is to utilize
different dimensional data to learn high-level features. The
2D convolution has the ability to learn high-level features and
the 1D convolution has the capacity to learn deep features.
The 1D convolution consists of a ReLU layer and a fully
connected layer. Moreover, it has four batch normalization
layers, max-pooling, and 1D convolution layers. There were
32 kernels are presented in this convolution layer. Processing
of input by the 1D convolution is expressed in Eq. (13).

u(p) = v(p) ∗ x(p) (13)

Here, the convolution kernel is denoted as x(p). The output
and input of the convolutions are mentioned as u(p) and v(p),
simultaneously. First convolution layer receives the 1D vector
and generates features. The retrieved feature is mathemati-
cally expressed in Eq. (14).

vkm(p) = L(akm +

∑
n

vk−1
n ×xkmn) (14)

In the above expression, the ReLU function is represented
as L. The bias of the nodes is indicated as akm. The kernel
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parameters are represented as xkmn. The term k defines the
layer and the mth node is specified as vkm. For each parameter
updation, the distribution of hidden units is changed. Follow-
ing Eq. (15) and Eq. (19) give the computations for the batch
normalization layers.

ηk =
1
C

∑
m
vkm (15)(

σ k
)2

=
1
C

∑
m

(
vkm − ηk

)2 (16)

vkm_norm =
vkm − ηk√((
σ k

)2
+ ∈

) (17)

vkm_norm =
vkm − ηk√((
σ k

)2
+ ∈

) (18)

ṽ = αkvkm_norm + γ k (19)

In the above expressions, the terms γ and α denotes the
random parameters. A small positive number is termed as ∈.
The retrieved features are passed to the pooling layer. Then,
the downsampling process takes place and it is expressed via
Eq. (20).

vkm = max
∀q∈�m

vk−1
m (20)

Totally, 64 features are produced by the third and fourth
convolutional layers. The output attained from these layers is
given to a fully connected layer and it is described in Eq. (21).

vk = L
(
ak + vk−1.xk

)
(21)

Unlike 1D convolution, the2Dconvolution has two max-
pooling layers. 32 feature maps are created from this first
layer. The preceding layers form 64 features as output. The
1D-2D convolution layers are expressed in Eq. (22).

vk =

[
v
k−1

1D v
k−1

2D

]
(22)

The features learned by the fully connected layers of 1D-
2D convolution are represented as v

k−1

1D and v
k−1

2D . The softmax
function’s input and softmax function can be described in
Eq. (23) and Eq. (24).

vm =

∑
n

fnXnm (23)

sft (v)m = qm
exp (vi)∑p
n exp (vm)

(24)

Here, the weighted connection is indicated as Xnm. The
activation in the final layer is mentioned as qm. A schematic
depiction of hybrid 1D-2D convolution is given in Figure 4.

B. BASIC SHUFFLENETV2
The channel shuffle operation is performed by the Shuf-
fleNetV2 [33] method. The architecture of ShuffleNetV2
consisted of two segments. Two groups are splitted from
the feature channels in Segment 1. On the right side of

FIGURE 4. Schematic depiction of hybrid 1D-2D convolution.

FIGURE 5. Diagrammatic representation of shuffleNetV2.

the ShuffleNetV2, the ReLu, batch normalization, and con-
volution operations are performed. The left side of the
network does not perform any functions in order to decrease
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FIGURE 6. Architectural representation of the AHC-shuffleNetV2-based irrigation level prediction in agriculture fields.

the fragmentation of the model. The channels in the net-
work are shuffled after connecting the output features from

the right and left branches. In segment 2, operations like
ReLu, batch normalization, and convolutions are performed
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FIGURE 7. Irrigation level prediction performance analysis among different heuristic algorithms with regards to a) MAE, b) MASE,
c) MEP, d) ONENORM, e) RMSE, f) SMAPE, and g) TWONORM.

afterdownsampling the right and left components. Channel
shuffling and concreting both functions are performed by

the ShuffleNetV2model.The group convolutions are replaced
by categorizing the input channels into two phases. The

VOLUME 12, 2024 71911



X. Xu et al.: Adaptive Hybrid (1D-2D) Convolution-Based ShuffleNetV2 Mechanism

FIGURE 8. Irrigation level prediction performance validation of the developed model over techniques by means of
a) MAE, b) MASE, c) MEP, d) ONENORM, e) RMSE, f) SMAPE, and g) TWONORM.

computations of the network are less as one branch of
the network does not perform any operations. In the entire

convolution, the number of channels is the same and it
is maintained by the other branch. The totals of output
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FIGURE 9. Convergence graph of the proposed irrigation level prediction model by comparing with other existing algorithms for (a) Dataset 1,
and (b) Dataset 2’’.

channels are increased and the channel splits are eliminated
by the shuffle unit employed in the ShuffleNetV2. The out-
puts attained from both the shuffle units are merged. Thus,
improves the performance of the network and maximizes the
information transmission among channels. A diagrammatic
representation of shuffleNetV2 is shown in Figure 5.

C. PROPOSED AHC-SHUFFLENETV2-BASED IRRIGATION
LEVEL PREDICTION
An AHC-ShuffleNetV2 network was created to predict the
irrigation level. The input data SLMOI are sent to the 1D
convolution as input and the gathered images IRLVC are pro-
cessed by the 2D convolution. After the convolution process,
the ShuffleNetV2 provides the predicted output. The AHC-
ShuffleNetV2-based irrigation level prediction is useful for
sewage disposal and control of dust in crop fields. Moreover,
it prevents soil consolidation and the growth of weeds in
irrigation fields by estimating the correct amount of water for
appropriate crops. The objective of the AHC-ShuffleNetV2-
based irrigation level prediction in the agriculture field is to
minimize the MAE and RMSE. It is given in Eq. (25).

df = argmin{
UISNY ,ZFSNP ,RESNF

} (RMSE +MAE) (25)

Here, the steps per epoch in shuffleNetV2 are defined by
the term UISNY that is presented in the range of [500− 1000].
The epoch size in the interval of [5 − 50] is mentioned as
ZFSNP . The objective function is symbolized as df . The hidden
neuron count that lies in-between [5− 255] is represented as
RESNF . Below Eq. (26) and Eq. (27) present the computations
for MAE and RMSE.

MAE =

∑D
w=1 |tw − sw|

D
(26)

RMSE =

√∑D
w=1

(
sw − ŝw

)2
D

(27)

In the above expressions, the total data point counts are
referred asD. The true value and the predicted value are given

as sw and tw, concurrently. The term w is the variable and
the evaluated time series is represented as ŝw. Architectural
representation of the developed AHC-ShuffleNetV2-based
irrigation level prediction in agriculture fields is shown in
Figure 6.

VI. EXPERIMENTAL FINDINGS
A. EXPERIMENTAL SETUP
The proposed irrigation level prediction model using the
deep learning mechanisms via smart IoTs was executed in
Python. This research work was carried out with 3 numbers
of chromosome lengths, iteration counts as 100, and total
population as 10. Various deep learning methods as well as
optimization algorithms were taken into account to estimate
the performance of the suggested method. The deep learning
networks including RNN [31], Gated Recurrent Unit (GRU)
[30], LSTM [7], and shuffleNetV2 [33] were used to check
the effectiveness of the implemented prediction method.
Heuristic algorithms such as the Reptile Search Algorithm
(RSA) [28], Pelican Optimization Algorithm (POA) [27],
Mud Ring Algorithm (MRA) [29], and PFOA [26] were
considered to verify the efficacy of the proposed algorithm.

B. EVALUATION METRICS
The developed irrigation level prediction method is estimated
by some of the followingmeasures given in Eq. (28)-Eq. (32).

|L|1 =

r∑
m=1

|Dm| (28)

MASE =
1
r

f∑
m=1

|f (m)| (29)

SMAPE =
1
r

f∑
m=1

|Cm − Dm|

(|Cm| + |Dm|) /2
(30)

MD =

∑
y− ȳ
r

(31)
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TABLE 2. Statistical outcomes of the implemented deep learning-based irrigation level prediction method among other algorithms.

TABLE 3. Irrigation level prediction results of the presented irrigation level forecasting model with smart IoTs.

MEP =
1
r

f∑
m=1

|Cm − Dm|

Cm
(32)

Here, the entire observation count is represented as r . The
predicted and actual scores are specified as Dm and Cm. One
norm is specified by the term D.

C. PREDICTION PERFORMANCE ANALYSIS AMONG
HEURISTIC APPROACHES
The effectiveness of the irrigation level prediction in the
crop field using the developed FPFOA-AHC-ShuffleNetV2
is validated among different algorithms by varying several
activation functions including linear, ReLU, leaky ReLU,
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FIGURE 10. Actual predicted analysis of the implemented smart IoTs-based irrigation level prediction over diverse deep learning techniques in
terms of (a) Dataset 1, and (b) Dataset 2.

TABLE 4. Accuracy analysis of the implemented smart irrigation level prediction over multiple conventional algorithms.

TABLE 5. Accuracy analysis of the implemented smart irrigation level prediction over multiple conventional classifiers.

TanH, Sigmoid, and Softmax. Moreover, in this, several
standard error measures such as MAE, MASE, MEP, one
norm, RMSE, SMAPE, and two norms are also con-
sidered for the performance analysis. Figure 7 presents
the results of the proposed FPFOA-AHC-ShuffleNetV2
among different optimization approaches. When consider-
ing the ReLU activation function, the MAE of the pro-
posed FPFOA-AHC-ShuffleNetV2 is minimized by 45.33%,
48.10%, 58.58%, and 39.92% than the conventional POA-
ShuffleNetV2, RSA-ShuffleNetV2,MRS-ShuffleNetV2, and
PFOA-ShuffleNetV2 correspondingly. This is the same for
all the measures. Hence, it is revealed that the recommended
FPFOA-AHC-ShuffleNetV2 attained more precise results
than the other traditional models by reducing the error rate.

D. PREDICTION PERFORMANCE EVALUATION OVER
DIFFERENT TECHNIQUES
The effectiveness of the irrigation level prediction in the
crop field using the suggested FPFOA-AHC-ShuffleNetV2 is
verified over other deep-learning techniques. The graphical
representation of the results attained using the established
FPFOA-AHC-ShuffleNetV2 by varying the activation func-
tion is depicted in Figure 8. When focusing the TanH
activation function, the MEP of the recommended FPFOA-
AHC-ShuffleNetV2 is reduced by 57.14%, 50%, 40%, and
25% than LSTM, GRU, RNN, and shuffleNetV2, concur-
rently. Therefore, it is highlighted that the capability of
the irrigation level prediction using the suggested approach
is improved by analyzing the above results. Moreover, the
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findings showed that the designed model outperformed the
other conventional techniques.

E. CONVERGENCE ESTIMATION
The cost function valuation of the implemented irrigation
level prediction in agricultural fields with smart IoTs is
estimated by comparing the convergence outcomes of the
proposed model with other algorithms. The convergence
validation of the designed FPFOA-AHC-ShuffleNetV2 is
given in Figure 9 for two datasets. At the 10th itera-
tion, the convergence of the recommended FPFOA-AHC-
ShuffleNetV2 based irrigation level prediction with smart
IoTs is 61%, 75%, 77.27%, and 50% improved than POA-
ShuffleNetV2, RSA-ShuffleNetV2,MRS-ShuffleNetV2, and
PFOA-ShuffleNetV2, correspondingly in Figure 9 (a). Thus,
the results proved that the investigated model is way better
than existing algorithms. Also, it is shown that the designed
FPFOA algorithm is more capable to optimize the network
parameters than the other traditional algorithms.

F. STATISTICAL RESULTS OVER-OPTIMIZATION
ALGORITHMS
The statistical results attained by the designed FPFOA-
AHC-ShuffleNetV2C are visualized in below Table 2. The
statistical results are estimated by comparing the proposed
algorithm FPFOA with different heuristic approaches for
two datasets. The superior performance of the recom-
mended FPFOA is justified by the attained results that are
given in the below table. The implemented FPFOA-AHC-
ShuffleNetV2C technique is strengthened by 25.19% of
POA-ShuffleNetV2, 20.61% of RSA-ShuffleNetV2, 25.95%
of MRS-ShuffleNetV2, and 19.84% of PFOA-ShuffleNetV2
accordingly when considering the best factor in first dataset.
Hence, it is ensured that the capability of the proposed
algorithm FPFOA for improving the performance of irriga-
tion level prediction is higher than traditional algorithms.

G. OVERALL PREDICTION PERFORMANCE EVALUATION
The irrigation level prediction by the proposed FPFOA-
AHC-ShuffleNetV2 is compared with various techniques and
heuristic algorithms. The prediction results of the designed
FPFOA-AHC-ShuffleNetV2 are shown in Table 3.The
SMAPE of the developed FPFOA-AHC-ShuffleNetV2 is
63.15%, 59.40%, 50.67% and 45.29% better than POA-
ShuffleNetV2, RSA-ShuffleNetV2, MRS-ShuffleNetV2 and
PFOA-ShuffleNetV2. Therefore, it is confirmed that the
implemented FPFOA-AHC-ShuffleNetV2 model obtained
more accurate irrigation level prediction than the other con-
ventional techniques.

H. ACTUAL PREDICTED ANALYSIS
Figure 10 shows the actual predicted analysis of the proposed
work concerning soil moisture. For the two data sources,
this analysis is performed by utilizing several deep-learning
techniques. From this analysis, it is shown that the suggested

shuffleNetv3-based analysis attained better outcomes than
the existing deep learning techniques.

I. ACCURACY ANALYSIS OF IMPLEMENTED MODEL
Table 4 and Table 5 depict the accuracy analysis of the
designed irrigation level prediction framework for two
datasets over several existing algorithms and prediction tech-
niques. By using the sigmoid activation function, the accuracy
is analyzed. For the second dataset, the accuracy is improved
by 6.11% of LSTM, 2.47% of GRU, 3.9% of RNN, and
0.65% of shuffleNetV2 in Table 5. Hence, it is guaranteed
that the designed smart IoTs-based irrigation level prediction
framework achieved a higher level of accuracy than the other
techniques.

VII. CONCLUSION
A technique for predicting the irrigation levels using deep
learning by employing smart IoTs was developed. At first,
the required crop field image and data regarding soil moisture
were collected from online datasets. The data and images
were given to the developed network AHC-ShuffleNetV2 for
the irrigation level prediction. It was developed by integrat-
ing two deep learning networks such as hybrid 1D-2D and
ShuffleNetV2. The images were given to the 2D convolu-
tion the data were given to the 1D convolution. In order to
further enhance the prediction performance, a new heuristic
approach FPFOA was suggested. It maximized the predic-
tion performance by optimizing steps per epoch, epoch size,
and hidden neuron count in ShuffleNetV2 for decreasing the
MAE and RMSE. Then different experimental analyses were
carried out to demonstrate the efficacy of the designed irri-
gation levels prediction model. The RMSE of the developed
FPFOA-AHC-ShuffleNetV2 was 55.03%, 51.45%, 37.81%,
and 34.82% superior to LSTM, GRU, RNN, and shuf-
fleNetV2. Hence, the presented method accurately predicted
the irrigation levels in crop fields, which was helpful for
not consuming so much water by the crops. However, the
implemented smart irrigation level prediction model cannot
have the potential to analyze the effects of weather parameters
such as temperature, UV ray, humidity, and wind on the field.
In the near future work, this will be considered for rendering
the better improvement by utilizing advanced deep-learning
strategies.
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