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ABSTRACT In wind turbine engineering, stability and control rely on precision. A new approach for
discrete-time systems is presented in this study, which makes use of constrained Gramians and frequency
weights. Wind turbines with a double-fed induction generator and dynamic rotational speeds can have
their model order reduced using the suggested method, which makes use of sophisticated state-space
representations. A novel balanced realization method, along with frequency-weighted and limited Gramians,
successfully lowers the dimensionality of large state models. Minimizing approximation errors and ensuring
stability are both achieved by the resulting lower-order system. This paper makes a significant contribution
by offering an a priori formula for error boundaries, which allows for more efficient and faster computations.
A paradigm shift in improving the accuracy of modeling techniques is marked by this groundbreaking
method, which applies frequency-weighted and limited Gramians to real-time systems like wind turbines.

INDEX TERMS Frequency weighted Gramians, frequency limited Gramians, balance algorithm, model
reduction, error-bound, induction generator, wind turbine.

ABBREVIATIONS AND ELEMENTARY OPERATORS
Table 1 briefly summarize some abbreviations and elemen-
tary operators with their terminologies.

I. INTRODUCTION
Improving turbine technology is driven by the primary quest
of efficiently generating electrical power using the wind’s
kinetic energy [1], [2], [3], [4], [5]. Notable machines in this

The associate editor coordinating the review of this manuscript and

approving it for publication was Bidyadhar Subudhi .

category include Permanent Magnet Synchronous Genera-
tors (PMSGs), Double-Fed Induction Generators (DFIGs),
and Squirrel Cage Induction Generators (SCIGs) [6], [7].
In particular, DFIGs resist grid ride-through issues with
high and low voltages [8], which solidifies their importance
in wind energy conversion systems [9]. Their versatility,
manageability, remarkable energy efficiency, better power
quality, and other outstanding qualities lead to their extensive
use [9].
The addition of reactive power compensators enhances

the complexity of wind energy conversion systems, which
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TABLE 1. Abbreviations and elementary operators.

include double cage induction machines (DCIMs) and single
cage induction machines (SCIMs) [10], [11]. When using
a SCIM with two squirrel cages instead of one with one
cage, the order and complexity increase exponentially. Strict
adherence to grid standards is necessary to reduce power
outages because of the constantly changing wind conditions,
which impact density, velocity, and temperature [8], [11]. The
integration of wind farms with the grid is further complicated
by diverse grid codes designed tomeet each country’s specific
operating requirements and environmental conditions of each
country [12], [13].
The following features are covered in this work: controls

(active/reactive power, external and communications, voltage
and frequency control), operational ranges (frequency and
voltage), ride-through capabilities (low voltage ride-through
(LVRT) and high voltage ride-through (HVRT)), wind
farm verification and modeling for improved accuracy and
reliability, and power quality improvement. For effective
study, energy systems, such as wind turbines (WTs), require
reduced-order models (ROMs) [14]. By utilizing Gramians-
based balanced realization, ROM state-space representations
substantially contribute to WT stability, controllability, and
observability investigations. Researchers and practitioners
can better understand energy systems, especially WTs, with
the help of the following ROMs.

The simplification of analysis, design, and simulation
of higher-order systems is greatly aided by model order
reduction (MOR), which is commonly achieved through
balanced truncation (BT) [15] in the field of control
theory [16], [17], [18]. Adaptations such as the frequency-
weighted (i.e., Enns approach) and restricted-frequency
interval (i.e., Wang & Zilouchian (WZ)) techniques have
been implemented because some shortcomings of BT still
exist, even though it has been widely used [19], [20],
[21]. However, these methodologies [19], [21] also have
some drawbacks,such as instability and loss of minimality.

Many attempts were made by the researchers to address
this significant drawback, based on frequency-weighted [22],
[23], [24] (i.e., Campbell (CB) [22], Ghafoor & Sreeram
(GS) [23] and Sammana & Imran (SI) [24]) and frequency-
limited interval (i.e., Imran & Ghafoor (IG) [25], Toor &
Imran (TI) [26] and Sammana & Imran (SI) [24]) MOR
approaches.

A critical research need will be satisfied by overcoming the
significant disparities between the input and output matrices,
which lead to approximation errors and instability issues in
ROMs. The main reason why the current methods frequently
deviate from ROMs and the original dynamics of the system
is that they handle the input and output matrices incorrectly.
These variances lower the accuracy and dependability of
ROMs by raising the possibility of instability and producing
large approximation mistakes. By developing a novel MOR
technique that blends frequency-weighted truncation with
limited interval balanced truncation, our work seeks to close
this gap [19], [21].

Based on stability-preserving MOR, the proposed method
yields a computable a priori error-bound expression for
variable-speed WTs [27]. It is possible to achieve stability
and reduced approximation error by carefully improving the
input and output matrices. As a result, authority is distributed
fairly in light of the system’s distinctive tenets. Unlike
traditional approaches, our system aggressively guarantees
that energy is dispersed uniformly among related states,
thereby collectively normalising the impact of improvements
on the matrices corresponding to the input and output.
We have confirmed via extensive simulations that our
proposed approach is more realistic and effective than the
current ones. The comparison’s outcomes, the simulation
method, MOR’s theoretical foundations, comparison results,
simulation methodology, and its application to wind farms.
Finally, we provide a brief overview of our findings and
suggest areas for further research.
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II. GRID INTERFACES FOR INDUCTION MACHINES
A. DFIG GRID INTERFACE ARRANGEMENT
A gearbox increases the rotating speed of the shaft that
connects the DFIG rotor to the WT, as shown in Figure 1,
allowing for grid connectivity for DFIGs. The wound rotor
can be connected to the grid with the help of two AC-DC-
AC converters, which guarantee conversion of approximately
30 percent of the total power production. The DC-link
capacitor is used to store the generated power. Regardless
of variations in wind speed, the DFIG uses converters to
keep the output frequency constant by grid requirements.
Intricate control systems regulate input, reactive power, and
grid terminal voltage; a step-up transformer links the DFIG’s
stator to the power grid. Using our all-encompassing control
system, wind power can be reliably generated [28], [29].
Remark 1: Sophisticated control algorithms are needed

to guarantee the reliable and effective operation of DFIG
systems, especially when handling variable wind conditions.
It could be difficult to achieve optimal control performance
while taking uncertainties and system limitations into
account.
Remark 2: Reactive power support and fault ride-through

capabilities are two grid code requirements that must be
addressed in order to integrate DFIG systems with the
electrical grid. Maintaining grid stability requires smooth
and dependable grid integration, but this comes with a lot
of challenging technological issues.

B. SCIG GRID INTERFACE ARRANGEMENT
The power grid is always linked to wind turbines, regardless
of whether they are double- or single-cage SCIGs with
set rotational speeds [30]. A simplified representation of
the system is shown in Figure 2, which emphasizes the
power factor enhancement by employing capacitor banks and
reactive power compensators. Maximizing wind generation
while reducing the effect of wind fluctuations on the rotor’s
rotational speed is achieved by rotor pitch angle adjustment.
All the parts of WTs that depend on different speeds are
contained in the metaphorical ‘‘squirrel cages.’’.

III. DCIM: A MATHEMATICAL MODEL
The mathematical relations used to harvest wind energy
are listed in [31], [32], and [33]. The mathematical model
represents every electrical variable and stator property as an
integer. Table 2 lists the different DCIM options.

A. MATHEMATICAL FORM OF AN ELECTRICAL MODEL
The electrical arrangement includes several brushes, along
with a stator and two squirrel cages. The mechanical part
is detailed extensively in the first situation, whereas in the
second case, the entire process is elucidated [34]. Figure 3
shows the circuit simplified. The stator voltages (d) and (q)
can be determined using the computations given below (refer

to Table 3):

Vqs = Rsiqs +
dϕqs
dt
+ ωϕds ,

Vds = Rsids +
dϕds
dt
− ωϕqs .

For the first cage, we have the following equations for the
q- and d-axis rotors:

0 = Ŕr1 íqr1 +
d ϕ́qr1
dt
+ (ω − ωr )ϕ́dr1 ,

0 = Ŕr1 ídr1 +
dϕdr1
dt
+ (ω − ωr )ϕ́qr1 .

Similarly, for the second cage, we have the following
equations for the q- and d-axis rotors:

0 = Ŕr2 íqr2 +
d ϕ́qr2
dt
+ (ω − ωr )ϕ́dr2

0 = Ŕr2 ídr2 +
dϕdr2
dt
+ (ω − ωr )ϕ́qr2

Dual squirrel-cage induction motors’ behaviour can be
modelled with an electrical torque equation, as shown below:

Te = 1.5p(ωϕds iqs − ωϕqs ids )

Remark 3: Dynamic responses to wind speed variations,
grid outages, and control commands are demonstrated
by DFIG systems. It is necessary to regulate transient
behaviours like voltage deviations and rotor speed fluctua-
tions in order to maintain system stability and performance.
Remark 4: In order to ensure that DFIG systems operate

as consistently and efficiently as is reasonably possible,
ongoing maintenance is required. It can be challenging
to locate and diagnose defects like converter failures and
bearing wear, particularly in remote offshore areas.
Remark 5: It is difficult to strike a compromise between

component part costs and the performance and efficiency
requirements of the DFIG system. For DFIG system devel-
opers, meeting efficiency standards and creating efficient
systems with low setup and operating costs continue to be
important goals.

B. MATHEMATICAL FORM OF A MECHANICAL MODEL
Themechanical system of the DCIM at the second-order level
is depicted in this picture [27]:

d
dt
ωm =

1
2H

(Te − Fωm − Tm)

where ωm = d
dt θm.

IV. BALANCED TRUNCATION TECHNIQUE
Here, we have a discrete linear time-invariant (LTI) system
characterized by the following equations:

ẋ[k] = Ax[k]+ Bu[k],

y[k] = Cx[k]+ Du[k],

H [z] = C[zI − A]−1B+ D, (1)
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FIGURE 1. Simplified DFIG grid integration.

FIGURE 2. Simplified SCIG grid integration.

FIGURE 3. A DCIM’s electrical circuit in the dq- or dual-axis frame of reference system.

where A ∈ ℜn×n, B ∈ ℜn×p, C ∈ ℜ
q×n, and D ∈

ℜ
q×p form a minimal and stable discrete-time realization

with p inputs and q outputs. The goal of MOR is to
obtain a reduced-order mathematical model for discrete-time
systems.

Similarly, the reduced-order system is given by:

ẋtr [k] = Atrxtr [k]+ Btru[k],

y[k] = Ctrxtr [k]+ Dtru[k],

Htr [z] = Ctr [zI − Atr ]−1Btr + Dtr , (2)
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TABLE 2. Options for DCIM.

TABLE 3. The DCIM’s parameters.

where Atr ∈ ℜr×r , Btr ∈ ℜr×p, Ctr ∈ ℜq×r , and Dtr ∈ ℜq×p

constitute the reduced-order discrete-time realization with
r ≪ n.
The Gramians for entire-frequency controllability (i.e.,

PBT ) and entire-frequency observability (i.e., QBT ) are
defined as [15]:

PBT =
1
2π

∫ π

−π

[ejωI − A]−1BBT [e−jωI − AT ]−1dω,

QBT =
1
2π

∫ π

−π

[e−jωI−AT ]−1CTC[ejωI − A]−1dω,

These Gramians satisfy the following Lyapunov equations:

APAT − P+ BBT = 0,

ATQA− Q+ CTC = 0.

To achieve a balanced realization, a transformation matrix
Tf is constructed such that:

T Tf QTf = T−1f PT−Tf = diag{ψ1, ψ2, ψ3, . . . , ψn}, (3)

where ψi ≥ ψi+1 for i = 1, 2, 3, . . . , n− 1, and ψr > ψr+1.

The realized model is then partitioned into ROMs:

T−1f ATf =
[
Ar A12
A21 A22

]
, T−1f B =

[
Br
B2

]
(4)

CTf =
[
Cr C2

]
, D = Dr . (5)

Remark 6: The associated ROMs {Ar ,Br ,Cr } maintain
the stability and minimality of a discrete-time realization
{A,B,C} [15]. The choice of {T−1f ATf ,T

−1
f B,CTf } also

determines the frequency response error bounds for the
balancing realization with the parameter settings.
Remark 7: Particularly, the balancing transformation Tf

lines up the system’s modes so that the ROMcaptures themost
important dynamics, guaranteeing a successful decrease
in computing complexity without sacrificing fundamental
system behaviors [15].
Remark 8: The resultant diagonal matrix’s diagonal ele-

ments represent the system’s singular values; these values
shed light on how each mode contributes to the system’s
overall behavior [15].

A. WEIGHTED MOR PROBLEM
1) AUGMENTED REALIZATIONS
Here, we have an input-weighting discrete LTI system
characterized by the following equations:

ẋiw[k] = Aiwxiw[k]+ Biwuiw[k],

yiw[k] = Ciwxiw[k]+ Diwuiw[k],

Viw[z] = Ciw[zI − Aiw]−1Biw + Diw, (6)

Here, {Aiw,Biw, Ciw,Diw} denote the niwth order input-
weighting minimal and stable realization, where Aiw ∈
ℜ
niw×niw , Biw ∈ ℜniw×miw , Ciw ∈ ℜpiw×niw , Diw ∈ ℜpiw×miw ,

niw, miw, and piw represent the order of the input-weighting,
the total number of inputs, and the total number of outputs,
respectively.

Similarly, we have a discrete LTI output-weighting system
described by the following equations:

ẋow[k] = Aowxow[k]+ Bowuow[k],

yow[k] = Cowxow[k]+ Dowuow[k],
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Wow[z] = Cow[zI − Aow]−1Bow + Dow, (7)

Here, {Aow,Bow,Cow,Dow} denote the nowth order output-
weighting stable and minimal realization, where Aow ∈
ℜ
now×now , Bow ∈ ℜnow×mow , Cow ∈ ℜpow×now , Dow ∈
ℜ
pow×mow . In this case, now, mow, and pow are the order of

output-weighting realization, the number of inputs, and the
number of outputs, respectively.

The weighted input-augmented and weighted output-
augmented systems H [z]Viw[z] (i.e., {Aia,Bia,Cia,Dia})
and Wow[z]H [z] (i.e., {Aoa,Boa,Coa,Doa}), respectively, are
given by:

H [z]Viw[z] = Cia[zI − Aia]−1Bia + Dia,

Wow[z]H [z] = Coa[zI − Aoa]−1Boa + Doa,

where[
Aia Bia
Cia Dia

]
=

 A BCiw BDiw
0 Aiw Biw
C DCiw DDiw

 ,
[
Aoa Boa
Coa Doa

]
=

 Aow BowC BowD
0 A B
Cow DowC DowD

 .
Let the GramiansPia andQia, representing weighted input-

augmented controllability and weighted output-augmented
observability Gramians, respectively, be given as follows:

Pia =
[
PE P12
PT12 PV

]
,

Qoa =
[
QW QT12
Q12 QE

]
.

These Gramian matrices Pia and Qia satisfy the following
Lyapunov equations:

AiaPiaATia − Pia + BiaB
T
ia = 0, (8)

AToaQoaAoa − Qoa + C
T
oaCoa = 0. (9)

Furthermore, PE and QE represent the original system’s
input controllability and output observability Gramians,
respectively. PV and QW denote input-weighting con-
trollability and output-weighting observability Gramians,
respectively. Similarly, P12 is the controllability Gramian,
and Q12 is the observability Gramian based on the number of
inputs and outputs of input weighting and output weighting
realizations, respectively.

2) ENNS MOR FRAMEWORK
To tackleMOR tasks efficiently, Enns developed a framework
based on the idea of system augmentation. This method
increases the computing efficiency of model reduction
through the judicious use of augmented systems. By adding
new states to the original system’s state-space representation,
Enns’s methodology allows for a more comprehensive
understanding of the system’s dynamics. By adding new
states to the system, we can better record crucial data, which
speeds up the MOR process while methodically retaining

important system properties. Enns’s framework can derive
ROMs while maintaining a balanced realization by deftly
managing the augmented system [19].

By truncating the 1st and 4th blocks of (8) and (9),
respectively, the resulting Lyapunov equations are as follows:

APEAT − PE + XE = 0, (10)

ATQEA− QE + YE = 0. (11)

Here, XE and YE are defined as:

XE = BEBTE = BCiwPT12A
T
+ AP12CT

iwB
T

+ BCiwPVCT
iwB

T
+ BDiwDTiwB

T , (12)

YE = CT
ECE = CTBTowQ

T
12A+ A

TQ12BowC

+ CTBTowQWCBow + C
TDTowDowC . (13)

Applying eigenvalue decomposition on XE and YE ,
we obtain:

XE = UEdiag
[
SE1 , SE2

]
UT
E = UESEUT

E , (14)

BE = UEdiag
[
S1/2E1

, S1/2E2

]
= UES

1/2
E , (15)

YE = VEdiag
[
RE1 ,RE2

]
V T
E = VEREV T

E , (16)

CE = diag
[
R1/2E1

,R1/2E2

]
V T
E = R1/2E V T

E , (17)

where SE1 , SE2 ,RE1 , andRE2 are diagonal matrices containing
positive and negative eigenvalues.

The transformation matrix TE can be obtained as:

T TE QETE = T−1E PET
−T
E = diag[ζ1, ζ2, ζ3, · · · , ζn],

where ζj ≥ ζj+1, j = 1, 2, 3, . . . , n − 1 and ζr > ζr+1. The
transformation matrix TE transforms the original stable large-
scale system realization into a balanced realization. The ROM
Htr [z] = Ctr [zI −Atr ]−1Btr +Dtr is acquired by partitioning
the transformed realization in a similar way as in (4)-(5).
Remark 9: The input/output corresponding matrices XE

and YE may be indefinite, potentially impacting the stability
of ROMs [19]. Furthermore, in certain frequency weighted
realizations [35], the realization {A,BE ,CE ,D} may not be
necessarily minimal [35].
Remark 10: Enns’s approach, with its frequency-weighted

focus, will struggle to capture system dynamics adequately.
There are worries regarding the stability and reliability of the
resultant ROMs due to the uncertainty introduced by using
indefinite matrices XE and YE . Equally problematic for the
ROM’s precision is the possibility that the assumption of
minimality in particular frequency weights won’t hold up in
actual practice [22].
Remark 11: Enns’s MOR method maximizes efficiency

for certain applications by focusing on frequency weighted
Gramians [19]. Professionals should be aware of its apparent
computing prowess but that it solely considers frequency
weights. Applications necessitating complex frequency-
interval insights are outside the scope of Enns’s technique,
notwithstanding its success in related tasks (i.e., frequency-
interval Gramians). An approach that puts computing
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economy ahead of exhaustive frequency-interval dynamics in
certain cases [24], [26].

B. LIMITED-INTERVAL MOR PROBLEM
The WZ [21] offered pioneer frequency-limited framework
built around discrete-time 1-D systems. Gramians are eval-
uated for the particular frequency intervals. These Gramian
matrices PJ and QJ for the particular frequency intervals are
defined as:

PJ = P[ω2]− P[ω1],QJ = Q[ω2]− Q[ω1],

where these Gramians be given as:

PJ [ω] =
1
2π

∫
δω

[ejωI − A]−1BJBTJ [e
−jωI − AT ]−1dω,

QJ [ω] =
1
2π

∫
δω

[e−jωI−AT ]−1CT
J CJ [e

jωI − A]−1dω,

where δω = [ω1, ω2]. These Gramians PJ and QJ satisfy the
following set of Lyapunov equation:

APJAT − PJ + XJ = 0, (18)

ATQJA− QJ + YJ = 0, (19)

where XJ and YJ , XJ = BJBTJ = (F[ω2]− F[ω1])
BBT+ BBT (F∗[ω2]− F∗[ω1]) is the input corresponding
matrix and YJ = CT

J CJ = (F[ω2]− F[ω1])CTC +
CTC (F∗[ω2]− F∗[ω1]) is the output corresponding matrix
attained in the particular frequency intervals δω = [ω1, ω2],
F[ω]=−ω2−ω14π I + 1

2π

∫
δω
[ejωI −A∗]−1dω and F∗[ω] denote

the conjugate transpose of the matrix F[ω]. The following is
obtained using the eigenvalues decomposition of XJ and YJ .

XJ = UJdiag[SJ1 , SJ2 ]U
T
J

H⇒ BJ=UJdiag[S
1/2
J1
, S1/2J2

]=UJSJ 1/2,

YJ = VJdiag[RJ1 ,RJ2 ]V
T
J

H⇒ CJ=VJdiag[R
1/2
J1
,R1/2J2

]=RJ 1/2V T
J ,

where

SJ1 = diag[s1, s2, . . . , skJ ], SJ2=diag[skJ+1, skJ+2, . . . , sn],

RJ1 = diag[r1, r1, . . . , rpJ ],RJ2=diag[rpJ+1, rpJ+2, . . . , rn],

SJ1 and RJ1 include (kJ ) and (pJ ) positive part of eigenvalues,
respectively; in a similar manner, SJ2 and RJ2 include (n−kJ )
and (n− pJ ) negative part of eigenvalues, respectively.

Let TJ be the transformation matrix as:

T TJ QJTJ = T−1J PJT
−T
J = diag[ζ1, ζ2, ζ3, · · · , ζn],

where ζj ≥ ζj+1, j = 1, 2, 3, . . . , n − 1 and ζr > ζr+1. The
transformation matrix TJ transforms the original stable large-
scale system realization into a balanced realization. The ROM
Htr [z] = Ctr [zI −Atr ]−1Btr +Dtr is acquired by partitioning
the transformed realization in a similar way as in (4)-(5).
Remark 12: For the particular frequency-range δω =

[−π, π], limδω 7→[−π,π] PBT [δω] = PBT = PJ , limδω 7→[−π,π]

QBT [δω] = QBT = QJ , where PBT [δω] and QBT [δω] are

acquired by employing Parseval’s relationship [20], the ROM
acquired by employing WZ [21] and BT [15] are same.
Remark 13: XJ and YJ can be acquired for multiple

frequency ranges [35], [36], [37].
Remark 14: WZ [21] sometime yield indefinite XJ and YJ ;

consequently, generate unstable ROMs [25], [26], [37].

V. MAIN RESULTS
Enns’s MOR framework [19] presents prominent challenges.
The method has a tendency to produce ROMs that may
exhibit instability, emphasizing the necessity for careful
consideration when applying this approach to systems
where stability is of paramount importance. Similarly,
WZ’s [21] MOR approach encounters a comparable lim-
itation by primarily focusing on a restricted frequency
spectrum. This characteristic could restrict its applicabil-
ity in scenarios where a comprehensive understanding of
the system’s behavior across certain frequency-intervals is
essential.

The instability issue in ROMs obtained using [19],
[21] (i.e., both weighted and limited intervals scenarios)
stems from the potential indefiniteness of matrices Xind ∈
{XE ,XJ } = {BEBTE ,BJB

T
J } = {[UEdiag{SE1 , SE2}U

T
E ],

[UJdiag{SJ1 , SJ2}U
T
J ]} and Yind ∈ {YE ,YJ } = {CEC

T
E ,CJ ,

CT
J } = {[VEdiag{RE1 ,RE2} V

T
E ], [VJdiag{RJ1 ,RJ2}V

T
J ];

subsequently, Bind ∈ {BE , BJ } = {[UEdiag{S
1/2
E1
, S1/2E2

}],

[UJdiag{S
1/2
J1
, S1/2J2

}]} and Cind ∈ {CE ,CJ } = {[diag{R
1/2
E1
,

R1/2E2
}V T

E ], [diag{R
1/2
J1
, R1/2J2

}V T
J ]. This indefiniteness of

matrices occurs when SE2 < 0, SJ2 < 0, RE2 < 0 and
RJ2 < 0, where SE1 = diag{s1, s2, . . . , skE }, SJ1 =
diag{s1, s2, . . . , skJ }, SE2 = diag{skE+1, skE+2, . . . , sn},
SJ2 = diag{skJ+1, skJ+2, . . . , sn}, RE1 = diag{r1, r2, . . . ,
rpE }, RJ1 = diag{r1, r2, . . . , rpJ }, RE2 = diag{rpE+1,
rpE+2, . . . , rn} and RJ2 = diag{rpJ+1, rpJ+2, . . . , rn}.
Although [36] provides a solution to this limitation, the
introduced approximation error in the frequency response is
significant for the specified frequency-interval.

To address these drawbacks, the proposed MOR technique
aims to offer a more versatile and stable approach for model
reduction tasks. This paper introduces a novel approach that
not only provides low-frequency response truncation error
and stable ROMs but also yields an a priori formulation for
the error-bound.
Definition 1: The proposed frequency-weighted-limited

stability-preserving balanced model order reduction (FWL-
SP-BMOR) technique aims to overcome instability challenges
observed in existing weighted Gramians. It focuses on
generating stable ROMs with minimal truncation error
within a specified frequency-weighted framework. The
FWL-SP-BMOR method is defined by the controllability
(Pdef ∈ {Pw−def ,Pl−def }) and the observability (Qdef ∈
{Qwdef ,Qldef }) involves the following Gramians:

APdef AT − Pdef + Xdef = 0, (20)

ATQdef A− Qdef + Ydef = 0. (21)
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Here, Xdef ∈ {Xwdef ,Xldef } = {[Bwdef BTwdef ], [Bldef B
T
ldef ]}

and Ydef ∈ {Ywdef ,Yldef } = {[Cwdef CT
wdef ] , [Cldef C

T
ldef ]},

with Bdef ∈ {Bwdef ,Bldef } and Cdef ∈ {Cwdef ,Cldef } being
proposed input and output-associated matrices, respectively.
Problem 1: Despite advancements in frequency-weighted

and -limited balanced MOR techniques, existing methods
encounter challenges in maintaining stability and minimizing
approximation errors, particularly within a frequency-
weighted and -limited context. This paper introduces the
FWL-SP-BMOR method, aiming to produce stable ROMs
with enhanced accuracy in capturing system dynamics over
specified frequency-weights. The problem can be mathemati-
cally formulated as follows:
Given a LTI system described by matrices {A,Bind ,Cind },

find a ROM {Âtr , B̂tr , Ĉtr , D̂tr } with significantly fewer states
while preserving stability and minimizing the error between
the original system transfer function H [z] and the reduced
model transfer function Htr [z] within a frequency-weighted
and -limited framework.

A. PROPOSED FRAMEWORK
The proposed input and output associated matrices, Bdef and
Cdef , respectively, are given as:

Bdef = Udef

[
S1/2EJ1

0

0 S1/2def 2

]
= Udef S

1/2
def , (22)

Cdef =

[
R1/2EJ1

0

0 R1/2def 2

]
V T
def = R1/2def V

T
def , (23)

where, SEJ1 ∈ {SE1 , SJ1}, REJ1 ∈ {RE1 ,RJ1}; furthermore,
Sdef 2 andRdef 2 are defined conditionally based on the signs of
certain parameters. These matrices are computed as follows:

Sdef 2 =



 SEJ2−(
n∑

i=kEJ+1
si)I

−sn


1/2

forsn < 0

S1/2EJ2
forsn ≥ 0,

Rdef 2 =



REJ2−(
n∑

i=pEJ+1
ri)I

−rn


1/2

forrn < 0

R1/2EJ2
forrn ≥ 0.

Similarly, here SEJ2 ∈ {SE2 , SJ2}, REJ2 ∈ {RE2 ,RJ2};
furthermore, kEJ ∈ {kE , kJ } and pEJ ∈ {pE , pJ }.

1) STRUCTURAL PROPERTIES
Lemma 1: The proposed input and output matrices, Xdef

and Ydef , respectively, exhibit certain structural properties
based on the given conditions. Specifically, when Xind ≥
0 and Yind ≥ 0, it implies certain relationships between Pind ,
Pdef , Qind , and Qdef .
Corollary 1: Under the conditions Xind ≥ 0 and Yind ≥

0, the relationships Pdef > 0 and Qdef > 0 hold.
Additionally, the conditions imply Pind ≤ Pdef and Qind ≤

Qdef . Furthermore, the Hankel Singular Values (HSV) satisfy
(λi[PindQind ])1/2 ≤ (λi[PdefQdef ])1/2.
Remark 15: The conditions XE ≥ 0 and YE ≥ 0 imply

certain structural properties in the Gramians, ensuring
Pdef > 0 and Qdef > 0. The stability of the ROM is
demonstrated by providing a minimum and stable realization
{A,Bdef ,Cdef }. Given the stability of unweighted balanced
truncation, the ROM is also stable.

B. PROPOSED TRANSFORMATION
The transformation matrix Ts is obtained to diagonalize Qdef
and Pdef :

T TdefQdef Tdef = T−1def Pdef T
−T
def

= diag{ψ̂1, ψ̂2, ψ̂3, . . . , ψ̂n}, (24)

where ψ̂i ≥ ψ̂i+1 and ψ̂r ≥ ψ̂r+1. The transformed
realization, denoted as {Â, B̂, Ĉ, D̂}, is partitioned as:

T−1def ATdef = Â =
[
Âtr Â12
Â21 Â22

]
,T−1def B = B̂ =

[
B̂tr
B̂2

]
, (25)

CTdef = Ĉ =
[
Ĉtr Ĉ2

]
, D = D̂tr . (26)

Ĥ [z] = Ĉtr [zI − Âtr ]−1B̂tr + D̂tr , (27)

Remark 16: It is imperative to ensure the non-singularity
of the matrix Tdef . This condition can be expressed as:

det(Tdef ) ̸= 0

where det(Tdef ) denotes the determinant of the matrix Tdef .
Verifying the non-singularity of Tdef is essential for ensuring
the validity and numerical stability of the subsequent
mathematical operations.

C. ERROR BOUND ANALYSIS
This section analyzes the error bounds associated with the
ROM obtained through the proposed framework. The error
bound, as shown in Theorem 1, is a crucial metric that
quantifies the accuracy of the ROM in approximating the
original system. We establish a theoretical foundation for the
error bound and present a formula that offers insights into the
relationship between the error and the system parameters.
Theorem 1: A Priori Error Bound Formulation Let’s

consider a dynamic system characterized by the input-
associated matrix Bdef and output-associated matrices Cdef .
The ranks are such that rank

[
Bdef B

]
= rank

[
Bdef

]
and rank

[
Cdef
C

]
= rank

[
Cdef

]
. Under the assumption

of asymptotic stability in the LTI original system (1) and
the stability and minimality of the ROM (2), the proposed
framework establishes stringent error bounds:
1) The term ∥Wow[z](H [z] − Ĥtr [z])Viw[z]∥∞ is bounded

by:

2∥Wow[z]∥∞∥Ldef ∥∞∥Kdef ∥∞∥Viw[z]∥∞
n∑

j=r+1

ψ̂j.
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2) The expression ∥(H [z]−Ĥtr [z])Viw[z]∥∞ is bounded by:

2∥Kdef ∥∞∥Viw[z]∥∞
n∑

j=r+1

ψ̂j.

3) The norm ∥Wow[z](H [z]− Ĥtr [z])∥∞ is bounded by:

2∥Wow[z]∥2∥Ldef ∥∞
n∑

j=r+1

ψ̂j.

Here, Ldef and Kdef take distinct forms based on the
system’s characteristics:

Ldef =

{
CVdef R

−1/2
def if rn < 0exists

CVindR
−1/2
ind otherwise,

Kdef =

{
S−1/2def UT

def B if sn < 0exists

S−1/2ind UT
indB otherwise

Proof: In this demonstration, we establish the proof
for part (1) of Theorem 1, while parts (2) and (3) emerge
as specific instances of this derivation. The rank conditions
for the modified input-associated and output-associated
matrices, as per [36], are expressed as follows:

rank
[
Bdef B

]
= rank

[
Bdef

]
and rank

[
Cdef
C

]
= rank

[
Cdef

]
.

Consequently, the interrelation between B = Bdef Kdef and
C = Ldef Cdef persists. Through meticulous partitioning,

Bdef =
[
Bdef 1
Bdef 2

]
,Cdef =

[
Cdef 1 Cdef 2

]
,

and subsequent substitution of B̂tr = Bdef 1Kdef , Ĉtr =
Ldef Cdef 1 , we derive the following expression:

∥Wow[z](H [z]− Ĥtr [z])Viw[z]∥∞

= ∥Wow[z](C[zI − A]−1B− Ĉtr [zI − Âtr ]−1B̂tr )Viw[z]∥∞
= ∥Wow[z](Ldef Cdef [zI − A]−1Bdef Kdef

− Ldef Cdef 1 [zI − Âtr ]
−1Bdef 1 ) Kdef Viw[z]∥∞

≤ ∥Wow[z]∥∞∥Ldef ∥∞∥(Cdef [zI − A]−1Bdef

− Cdef 1 [zI − Âtr ]
−1Bdef 1∥∞∥Kdef ∥∞∥Viw[z]∥∞.

If {Âtr ,Bdef 1 ,Cdef 1} represents the ROM, and {A,Bdef ,
Cdef } symbolizes the transformed realization; then, in accor-
dance with [15], the inequality

∥(Cdef [zI−A]−1Bdef − Cdef 1 [zI−Âtr ]
−1Bdef 1 )∥∞≤2

n∑
j=r+1

ψ̂j

holds.
As a result,

∥Wow[z](H [z]− Ĥtr [z])Viw[z]∥∞

≤ 2∥Wow[z]∥∞∥Ldef ∥∥Kdef ∥∞∥Viw[z]∥∞
n∑

j=r+1

ψ̂j.

This concludes the proof of part (1) of Theorem 1.
Corollary 2: Under the condition of exclusive input

weighting, the boundedness of the error term ∥(H [z] −
Ĥtr [z])Viw[z]∥∞ is bounded by:

∥(H [z]− Ĥtr [z])Viw[z]∥∞ ≤2∥Kdef ∥∞∥Viw[z]∥∞
n∑

j=r+1

ψ̂j.

Similarly, in the presence of exclusive output weighting, the
error term ∥Wow[z](H [z]− Ĥtr [z])∥∞ is bounded by:

∥Wow[z](H [z]− Ĥtr [z])∥∞ ≤2∥Wow[z]∥∞∥Ldef ∥∞
n∑

j=r+1

ψ̂j.

Corollary 3: In scenarios where there is no input weight-
ing, and output weights are unity, the error bound for the
frequency-limited case is bounded by:

∥Wow[z](H [z]− Ĥtr [z])Viw[z]∥∞ ≤ 2
n∑

j=r+1

ψ̂j.

Corollary 4: When Xind ≥ 0 and Yind ≥ 0, it implies
Pind = Pdef and Qind = Qdef . Furthermore, Pind < Pdef
and Qind < Qdef . Additionally, the relation holds true for
HSV: (λi[PindQind ])1/2 ≤ (λi[PdefQdef ])1/2.
Remark 17: The established error bounds, derived from

rigorous proofs and corollaries, emphasize the robustness
and precision of the proposed FWL-SP-BMOR framework.
These bounds provide a thorough understanding of the
interrelations between the original system, the ROM, and
the impact of various weighting strategies. This analytical
foundation ensures the reliability and accuracy of the
MOR process, which is crucial for applications demanding
precision in real-time systems.

D. PROPOSED ALGORITHM
This section presents the algorithmic steps for comput-
ing frequency-weighted ROM using the proposed frame-
work. The algorithm 1 leverages the Gramian matrices to
achieve a ROM with improved efficiency and computational
performance.

VI. NUMERICAL EXAMPLES
Within the domain of power systems, this study presents
numerical illustrations featuring variable speed-dependent
WT and phase-locked loop for explanatory purposes. These
instances encompass flux, current and phase-locked loop
models derived from DFIGs and phase-locked loop parame-
ters articulated within the discrete-time framework of MIMO
and SISO systems, respectively. The primary objective
of these examples is to assess the effectiveness of the
proposed methodology relative to the prevailing state-of-the-
art frequency-weighted and limited interval MOR techniques
employed in discrete-time systems. This comparative analy-
sis aims to contribute valuable insights to the existing body
of knowledge in the field.

Furthermore, the study delves into an in-depth discussion
of the frequency response error value and error-bound values
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Algorithm 1 Computation of ROMs
1: procedure computeROMs(model_equations, input_matrices,

output_matrices)
2: Input: Original system as given in (1)
3: Output: ROM corresponding to the given original sys-

tem (27)
4: Main program:
5: model_equations← [Lyapunov equations as in (10)-(11)]
6: input_matrices← [Input matrix as in (12)]
7: output_matrices← [Output matrix as in (13)]
8: for each align in model_equations do
9: if is Definite(align) then
10: transformation_matrix← compute Transformation

Matrix(equation as in (18))
11: if is Stable(transformation_matrix) then
12: additional Step1(transformation_matrix) ▷

Find frequency weighted for Gramians
13: else
14: modified_equation ← modify Equation(equations

as in (20)-(21))
15: input_matrix as in (22), output_matrix as in (23)←

compute Matrices(modified_equation)
16: transformation_matrix as in (24) ← compute

Transformation Matrix(input_matrix, output_matrix)
17: if is Stable(transformation_matrix) then
18: additional Step1(transformation_matrix) ▷

Find frequency weighted for Gramians
19: balanced_realization as in (25)-(26)← compute Bal-

anced Realization(transformation_matrix)
20: ROM← compute ROM(balanced_realization)
21: store Results(ROM)
22: additional Step2(ROM Ĥtr (s) as in (27)) ▷Minimize

error ∥yo(t)(y(t)− ytr (t))yi(t)∥2
23: procedure isDefinite(align)
24: return check Definiteness(align)
25: function computeTransformationMatrix(align)
26: matrix← extract Matrix(align)
27: transformation← compute Transformation(matrix)
28: return transformation
29: function modify Equation(align)
30: modified_equation← modify(align)
31: return modified_equation
32: function compute Matrices(modified_equation)
33: input_matrix← extract Input Matrix(modified_equation)
34: output_matrix ← extract Output

Matrix(modified_equation)
35: return input_matrix, output_matrix
36: function compute Transformation Matrix(input_matrix, out-

put_matrix)
37: transformation_matrix ← compute

Transformation(input_matrix, output_matrix)
38: return transformation_matrix
39: function compute Balanced Realiza-

tion(transformation_matrix)
40: balanced_realization ← compute Balanced

Realization(transformation_matrix)
41: return balanced_realization
42: function compute ROM(balanced_realization)
43: ROM← compute ROM(balanced_realization)
44: return ROM
45: function store Results(result)
46: store(result)

derived from the error tables (i.e., Tables 4 and 5). This
comparative analysis sheds light on the relative accuracy and
efficiency of each method in capturing system dynamics.
Additionally, the investigation extends to the pole location
tables (i.e., Tables 6 and 7), specifically exploring the
pole placements resulting from frequency-weighted and
frequency-limitedMOR techniques. The comparison of these
tables contributes further insights into the transient behaviour
and stability characteristics of the system under different
reduction methodologies.
Example 1: Consider the state-space representation of a

sixth-order MIMO LTI stable model, specifically the current
model [27]. The system matrices are given by:

A=


0.6270 0.7790 0 0 −0.0002−0.0003
−0.7790 0.6270 0 0 0.0003 −0.0002

0 0 0.6270 0.7790 0.0002 0.0003
0 0 −0.7790 0.6270−0.0003 0.0002

−0.0001−0.0001 0 0 0.3203 0.3951
0.0001 −0.0001 0 0 −0.3951 0.3172



B = e−5


−0.2516 −0.1209 −0.0036 −0.0022
0.1209 −0.2516 0.0022 −0.0036
−0.0043 0.0022 0.0212 0.0106
0.0016 0.0036 −0.0106 0.0212
−0.5190 −0.8790 −0.5217 −0.8834
0.8790 −0.5120 0.8834 −0.5146


C =

[
0 0 1 0 0 0
0 0 0 1 0 0

]
D =

[
0
]
2×4

Now, let’s consider the weighted input and output realization
matrices, denoted as Aiw, Biw, Ciw, and Diw, tailored to match
the dimensions of the original system matrices.

Aiw=


0.8270 0.9790 0 0 −0.0005−0.0006
−0.9790 0.8270 0 0 0.0006 −0.0005

0 0 0.8270 0.9790 0.0005 0.0006
0 0 −0.97900.8270−0.0006 0.0005

−0.0002−0.0002 0 0 0.5203 0.5951
0.0002 −0.0002 0 0 −0.5951 0.5172



Biw = e−4


−0.1516 −0.1209 −0.0036 −0.0022
0.1209 −0.1516 0.0022 −0.0036
−0.0043 0.0022 0.0312 0.0206
0.0016 0.0036 −0.0206 0.0312
−0.4190 −0.6790 −0.4217 −0.6834
0.6790 −0.4120 0.6834 −0.4146


Ciw =

[
0.9 0.8 0.7 0.6 0.5 0.4
0.3 0.2 0.1 0.9 0.8 0.7

]
Diw =

[
0.9 0.8 0.7 0.6
0.5 0.4 0.3 0.2

]
Similarly, we define matrices Aow, Bow, Cow, and Dow for the
output weighting scenario, tailored to match the dimensions
of the original system matrices.
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TABLE 4. Approximate error ∥Wow [z](H[z] − Ĥtr [z])Viw [z]∥∞.

Aow=


0.6270 0.7790 0 0 −0.0002−0.0003
−0.7790 0.6270 0 0 0.0003 −0.0002

0 0 0.6270 0.7790 0.0002 0.0003
0 0 −0.77900.6270−0.0003 0.0002

−0.0001−0.0001 0 0 0.3203 0.3951
0.0001 −0.0001 0 0 −0.3951 0.3172



Bow = e−4


−0.0516 −0.0209 −0.0036 −0.0022
0.0209 −0.0516 0.0022 −0.0036
−0.0043 0.0022 0.0112 0.0106
0.0016 0.0036 −0.0106 0.0112
−0.2190 −0.3790 −0.2217 −0.3834
0.3790 −0.3120 0.3834 −0.3146


Cow =

[
0.1 0.2 1.3 0.4 0.5 0.6
0.7 0.8 0.9 1.0 1.1 1.2

]
Dow =

[
0.1 0.2 0.3 0.4
0.5 0.6 0.7 0.8

]
with the predefined frequency-range [ω1, ω2] = [0.48π,
0.57π ] rad/sec. Tables 4 and 5 offer a concise summary of
the approximation error in the context of predefined weights
(i,e., ∥Wow[z](H [z]−Ĥtr [z])Viw[z]∥∞) and predefined limited
intervals (i,e., ∥H [z] − Ĥtr [z]∥∞), respectively. We compare
the ROMs produced by our novel method to those produced
by the models based on unweighted [15], weighted [19],
[22], [23], [24] and limited interval scenarios [21], [24],
[25], [26] to conclude its efficacy. The superior accuracy
and efficiency of the proposed approximations allow it
to outperform competing approaches. Tables 6 and 7
demonstrate the many commonalities between the suggested
and the existing approaches based on weighted [19] and
limited interval scenarios [21], respectively. For the first five
orders, the pole positions at z = 1.2457, z = 1.0445 ±
1.4558i, z = 2.1224, 1.4478 ± 1.2254i, z = 1.4458 ±
1.0445i,−1.7889 ± 1.0225i and z = 2.4127, 1.02445 ±
1.7021i, 0.5541 ± 0.4489i, for the weighted MOR [19] and,
the pole positions at z = 1.6732, z = 1.5562± 1.0445i, z =
1.5574, 1.4485 ± 1.0781i, z = 2.1145 ± 1.0071i, 2.4412 ±
1.0114i and z = 1.4550, 1.4452±1.3455i, 1.4588±1.1233i,

for the limited interval MOR [21], indicate that the ROMs
generated are unstable. To deal with this, the suggested
method builds stable ROMs in the given weighted and limited
interval realization with an approximation error comparable
to the existing stability-preserving methods.
Example 2: Given the state-space expressions of a sixth-

order MIMO LTI stable model (flux model [27]), let the
matrices for the original system be:

A =


−0.9027 −0.4303 0 0 0 0
0.4303 −0.9027 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0.9913 0
0 0 0 0 0 0.9913



B =


−0.0014 0.0061 0 0
−0.0061 −0.0014 0 0

0 0 0.0314 0
0 0 0 0.0314
0 0 0 0
0 0 0 0


C =

[
0 0 0.0010 0 −0.0041 0
0 0 0 0.0010 0 −0.0041

]
D =

[
0

]
2×4

Now, considering the input-weighted and output-weighted
realizations with the given weight matrices, we have:

Aiw =


−0.5012−0.3187 0 0 0.2483 0.0839
0.0182 −0.4116 0 0 −0.6354−0.4993

0 0 0.8642 0 0.7349 0.0644
0 0 0 0.8168 0.2448 0.0765

0.7415 0.2419 0 0 0.1542 0.1156
0.0016 −0.0245 0 0 −0.0467−0.9502



Biw =


−0.0061 0.0014 0 0
−0.0084 0.0051 0 0
0.0002 0.0006 0.0314 0
0.0076 −0.0054 0 0.0314
0.0012 −0.0073 0 0
−0.0017 0.0096 0 0
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TABLE 5. Approximate error ∥H[z] − Ĥtr [z]∥∞.

TABLE 6. ROMs’ poles locations for frequency weighted MOR.

TABLE 7. ROMs’ poles locations frequency limited MOR.

Ciw =
[
0 0 0.0090 0 −0.0026 0.0065
0 0 0 0.0077 0.0098 −0.0001

]
Diw =

[
0.0045 0.0032 0.0078 0.0011
0.0023 0.0007 0.0036 0.0041

]
Similarly, we define matrices Aow, Bow, Cow, and Dow for the
output weighting scenario, tailored to match the dimensions
of the original system matrices.

Aow=


−0.0987−0.0532 0 0 0.0123 0.0356
0.0321 −0.0714 0 0 −0.0432−0.0281

0 0 0.1342 0 0.1123 0.0176
0 0 0 0.0871 0.0332 0.0257

0.0245 0.0127 0 0 0.0654 0.0456
0.0012 −0.0058 0 0 −0.0067−0.1081



Bow =


−0.0032 0.0051 0 0
−0.0014 0.0023 0 0
0.0008 0.0019 0.0056 0
0.0017 −0.0025 0 0.0056
0.0043 −0.0071 0 0
−0.0021 0.0043 0 0


Cow =

[
0.2458 0.1423 1.2345 0.6564 0.8732 0.4971
0.8732 0.4971 0.2458 0.1423 0.2345 0.6564

]
Dow =

[
0.0031 0.0027 0.0066 0.0009
0.0016 0.0005 0.0024 0.0027

]
swith the predefined frequency-range [ω1, ω2] = [0.11π,
0.17π] rad/sec. Tables 4 and 5 offer a concise summary of
the approximation error in the context of predefined weights
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TABLE 8. Comparison of the existing and proposed framework among un-weighted [15], weighted [19], [22], [23], [24], and limited interval [21], [24], [25],
[26] MOR.
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(i,e., ∥Wow[z](H [z]−Ĥtr [z])Viw[z]∥∞) and predefined limited
intervals (i,e., ∥H [z] − Ĥtr [z]∥∞), respectively. We compare
the ROMs produced by our novel method to those produced
by the models based on unweighted [15], weighted [19],
[22], [23], [24] and limited interval scenarios [21], [24],
[25], [26] to conclude its efficacy. The superior accuracy
and efficiency of the proposed approximations allow it
to outperform competing approaches. Tables 6 and 7
demonstrate the many commonalities between the suggested
and the existing approaches based on weighted [19] and
limited interval scenarios [21], respectively. For the first five
orders, the pole positions at z = 1.7741, z = 1.5574 ±
1.5548i, z = 1.0547, 1.1778 ± 1.1187i, z = 2.0554 ±
1.1148i, 1.0048 ± 1.1227i and z = 1.7789, 2.1889 ±
1.1450i, 2.7841 ± 2.4674i, for the weighted MOR [19]
and, the pole positions at z = 1.0013, z = 1.2547 ±
1.4588i, z = 2.0080, 0.1124 ± 0.0077i, z = 1.7889 ±
1.2145i, 1.7889 ± 2.1248i and z = 3.8996, 1.4577 ±
1.4558i, 1.5457±1.7889i, for the limited interval MOR [21],
indicate that the ROMs generated are unstable. To deal with
this, the suggested method builds stable ROMs in the given
weighted and limited interval realization with an approxi-
mation error comparable to the existing stability-preserving
methods.
Example 3: Consider a 2nd order phase locked-loop

model as given in [38], with the following 2nd order
input/output weighting state-space form

[
Aiw Biw
Ciw Diw

]
=

−0.75 0 − 0.25
0 − 0.75 − 0.24
−0.24 0.45 0

 ,
[
Aow Bow
Cow Dow

]
=

−0.75 0 − 0.25
0 − 0.75 − 0.24
−0.24 0.45 0


with the predefined frequency-range [ω1, ω2] = [0.19π,
0.29π ] rad/sec. Tables 4 and 5 offer a concise summary of
the approximation error in the context of predefined weights
(i,e., ∥Wow[z](H [z]−Ĥtr [z])Viw[z]∥∞) and predefined limited
intervals (i,e., ∥H [z] − Ĥtr [z]∥∞), respectively. We compare
the ROMs produced by our novel method to those produced
by the models based on unweighted [15], weighted [19], [22],
[23], [24] and limited interval scenarios [21], [24], [25], [26]
to conclude its efficacy. The superior accuracy and efficiency
of the proposed approximations allow it to outperform
competing approaches. Tables 6 and 7 demonstrate the
many commonalities between the suggested and the existing
approaches based on weighted [19] and limited interval
scenarios [21], respectively. For the first orders, the pole
position at z = 1.4967, for the weighted MOR [19] and,
the pole position at z = 1.3372, for the limited interval
MOR [21], indicate that the ROMs generated are unstable.
To deal with this, the suggested method builds stable ROMs
in the given weighted and limited interval realization with
an approximation error comparable to the existing stability-
preserving methods.

ANALYSIS & DISCUSSION
As shown in Table 8, the proposed methodology considerably
beats out the existing approaches that use frequency-weighted
and constrained intervals, including the empirical evaluation.
Since the empirical data has been thoroughly examined
and discussed, the proposed methodology is compared in
Tables 4 and 5 to alternative solutions that use frequency-
unweighted values [15], frequency-weighted values [19],
[22], [23], [24], and frequency-limited intervals [21], [24],
[25], [26]. By outperforming existing methods in terms of
approximation error reduction, the proposed methodology
clearly demonstrates its dominance.

Derivation of ROMs across different orders is inherently
unstable, as shown in Tables 6 and 7 (first through fifth).
These results are compared to approaches suggested by [19]
and [21], starting with initial stable flux and continuing with
current models. The proposed methodology, on the other
hand, is superior since it produces stable ROMs that are
reinforced with error bounds, which improve accuracy and
stability. The exact results in Tables 4 and 5 highlight the fact
that the suggested methodology outperforms current state-of-
the-art MOR strategies.

From the perspective of accuracy and reliability, as well
as the amount of margin for error in the proposed method,
the outcomes point to themselves. This illuminates the
intricate role of order reduction in wind turbine model
formulations.

VII. CONCLUSION
This research aims to analyze state-space systems in the
discrete-time domain and assess their effectiveness in simpli-
fication using the proposed frequency-weighted and limited
interval Gramian framework for model order reduction.
Wind turbines, which may operate at varying speeds, are a
prime illustration of this phenomenon. The simulation results
demonstrate that the proposed method may efficiently and
steadily reduce-order models. The approximation error that
is produced by the proposed method is greatly reduced,
which indicates that it works significantly better than
existing stability-preserving model reduction techniques.
One particularly remarkable aspect is the fact that this method
provides analytical estimates for the bounds of errors. As a
result, the operational efficiency and robustness of these
reduced models have improved. Not only are these findings
significant to academics who are actively engaged in the
continual refinement of MOR techniques that are tailored to
the complex dynamics ofWTs, but the practical ramifications
of these findings extend their importance to researchers as
well. The innovative contributions made by this research pave
the way for the development of the most advanced MOR for
WTs, which will ultimately be of service to the larger field of
renewable energy systems. Since the proposed approach only
applicable for the frequency limited and weighted scenario;
however, further research is necessary in case of time limited
and weighted Gramians.
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VIII. RECOMMENDATIONS AND FUTURE STUDIES
When it comes to the application of MOR approaches to
WTs, the insights that were gathered from this research pro-
vide essential directions for further technical improvement.
Researchers working on the topic are strongly encouraged
to take into consideration the following suggestions and
potential directions for further research:
1) Application of Time-Constrained Gramians: Partic-

ularly in the context of WT generators like DFIG
and PMSG, the application of frequency-constrained
Gramians holds a great deal of promise for MOR
methods. This is especially true when it comes to
the applications of these Gramians. In the event that
additional research and optimization of this approach
is carried out with the utilization of time-constrained
Gramians, it is likely that enhanced reductionmodels for
such systems can be established.

2) Addressing Uncertainty and Disturbances: Given
the real-world unpredictability and uncertainties that
are connected with renewable energy sources, the
development of MOR methods that properly account
for uncertainty and disturbances is a serious topic that
needs to be addressed. If research is conducted using this
approach, it may result in reduced models for WTs that
are more robust and dependable.

3) Advanced Optimization Techniques: In order to
contribute to the improvement of reduced models that
may be used in WT applications, it can be helpful to
make use of more advanced optimization techniques.
Notable instances of these techniques are metaheuristic
algorithms and evolutionary approaches. The most
efficient configurations and parameter values can be
determined with the assistance of these methods, which
can be applied to be of expertise.

4) Integration of Machine Learning: Machine learning
and machine learning together constitute one of the
most promising new horizons in the field of artificial
intelligence. Including machine learning techniques for
model reduction, parameter adjustment, and data-driven
modeling makes it possible to generate reduced-order
models that are very efficient and accurate. This is
achievable through the utilization of these techniques.
This is especially relevant when taking WTs into
consideration.

5) Renewable Energy System Optimization: In the
realm of renewable energy systems, the optimization of
models is an area that encompasses multiple disciplines.
Researchers are strongly urged to investigate holistic
approaches that take into account not just the individual
components, such as WTs, but also their incorporation
into broader renewable energy systems, such as micro-
grids and smart grids.
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