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ABSTRACT Amid advancements in aerospace technology and remote communication, a proliferation of
Earth-observing satellites has been launched, creating a distinction between high- and low-altitude platforms.
High-altitude satellites capture low-resolution (LR) aerial images, covering expansive areas, whereas their
low-altitude counterparts provide high-resolution (HR) images of relatively confined spaces. The task of
semantically categorizing LR aerial imagery is pivotal within numerous artificial intelligence (AI) systems
but is encumbered by challenges including limited availability of labeled training data and the complexity of
approximating human environmental perception through computational models. To address these challenges,
this research proposes a novel strategy that marries active perception learning with Hessian-regularized
feature selection (HRFS). This approach endeavors to procure perceptually and discriminatively potent
visual representations for classifying LR aerial imagery. By emulating the human propensity to sequentially
engage with salient regions within a visual field, an active learning paradigm is adopted to differentiate
between salient and non-salient regions within LR aerial images. Theoretically, this methodology ensures
that selected salient regions can reconstruct the aerial imagery in its entirety, thus mirroring the human
visual system’s perception. Following this, a pioneering HRFS technique is devised to extract premium
features from these selectively identified salient regions, distinguished by its semi-supervised operation,
the capability for concurrent linear classifier training, and the preservation of the geometric distribution
of samples within the feature space. Empirical assessments underscore the resilience and efficacy of the
proposed classification framework.

INDEX TERMS Perception learning, manifold regularizer, selecting features, low-resolution, active feature.

I. INTRODUCTION
Owing to advancements in aerospace engineering, remote
sensing technology, and telecommunication, there has been
a notable surge in the deployment of Earth observation
satellites. These satellites can broadly be classified into
two categories: high-altitude and low-altitude satellites.
High-altitude satellites are characterized by their extensive
coverage area, significantly surpassing that of their low-
altitude counterparts. In contemporary applications, the
precise semantic interpretation of low-resolution (LR) aerial
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imagery has emerged as a crucial element within various
intelligent systems.

The scholarly domain has seen the introduction of a
multitude of visual categorization and annotation algorithms
aimed at interpreting aerial imagery across a spectrum
of resolutions. Prominent methodologies can be broadly
classified into three distinct groups: 1) Multiple Instance
Learning (MIL) and CNN-guided region localization utiliz-
ing weak supervision [43], [44]; 2) Semantically-aware graph
models for aerial image parsing [3], [4]; and 3) Intricately
designed hierarchical models for the annotation of aerial
photographs [5], [6], [7]. Nonetheless, in the context of opera-
tional intelligent systems, these existing paradigms encounter
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FIGURE 1. An overview of categorizing aerial photo with low resolution.

limitations in accurately representing low-resolution (LR)
aerial images due to several critical challenges:

• The presence of numerous visually appealing objects
or their components within an aerial image necessitates
a biologically-inspired computational approach capable
of simulating human perception of salient regions.
Developing a deep learning algorithm that effectively
identifies visually prominent areaswhile enhancing their
representation poses significant hurdles. These include:
i) determining the sequence of human gaze allocation
towards attractive image segments (Gaze Shift Paths or
GSPs), ii) mitigating the impact of inherent noisy labels
within large-scale training datasets, and iii) translating
image-level semantic labels to discrete patches within
each LR aerial image;

• Differing from high-resolution aerial images, LR aerial
imagery often exhibits reduced visual quality, influenced
by external variables such as uncontrollable weather
conditions. This results in a scarcity of annotated
LR aerial images in contrast to their high-resolution
counterparts, complicating the task of developing a
feature selection algorithm trained on partially annotated
LR datasets. Challenges include bridging the inherent
relationship between LR and HR aerial images within
a high-dimensional manifold space.

To address these obstacles, we introduce a novel
Hessian-Regularized Feature Selector (HRFS) that leverages
actively learned human gaze behavior from HR aerial
images to enhance the classification of LR aerial images.
Figure 1 provides an overview of our proposed framework,
which utilizes a comprehensive collection of HR and LR

aerial images (including partially unannotated samples).
The algorithm maps regions from aerial images into a
feature space and then, to mimic human cognitive processes
in interpreting aerial imagery, employs an active learning
strategy to segregate each image into a series of visually
compelling patches alongside less attractive background
patches. Concurrently, it computes the Gaze Shift Path (GSP)
and its associated visual features. To distill a subset of
highly representative GSP features across images of varying
resolutions, HRFS is employed to identify discriminative
features, leveraging a scenario where only a limited number
of samples are labeled. Theoretically, HRFS preserves the
geometric distribution of both LR and HR aerial images
within the feature space and facilitates the concurrent
learning of a linear classifier. A comparative analysis against
17 recognized visual categorization algorithms underscores
the efficacy of our approach.

This research introduces two primary innovations: a) the
deployment of an active learning algorithm for the sequential
generation of GSPs from LR aerial images, and b) the HRFS,
which selects high-quality features in a semi-supervised
manner, ensuring the preservation of sample geometric
distribution while enabling joint classifier training.

II. RELATED METHODS TO OURS
A plethora of computational visual models has been devised
for the analysis of aerial imagery. To encapsulate the
entirety of an image semantically, Lum et al. [46] intro-
duced a topology-based visual schema delineating binary
region-wise connections across various aerial images, facil-
itating a kernel-guided feature synthesis for comprehensive
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global image capture and subsequent recognition. Xia and
colleagues [48] advanced a framework utilizing weakly
labeled training data to annotate high-resolution (HR)
aerial imagery semantically. Akar et al. [50] ingeniously
merged the renowned random forest algorithm with an
object-oriented visual representation learner for the clas-
sification of remote sensing images. Sameen et al. [51]
crafted a multi-tiered visual architecture for determining
multiple labels across diverse HR urban aerial images.
Chenggong and co-researchers [47] employed a predefined
five-layer Convolutional Neural Network (CNN) for classify-
ing high-definition remote sensing images, proposing a novel
domain-level adjustment to refine the deep model for specific
scenery. Danfeng et al. [28] conceptualized a multimodal
learning algorithm for simultaneous annotation of HR aerial
imagery. Cai Weiwei and team [8] developed an inter-visual-
attention mechanism to weight the representations of aerial
photographs.

Despite their effectiveness in classifying multi-resolution
aerial images, these image-level visual models encounter
limitations in optimally modeling low-resolution (LR) aerial
images, primarily due to the blurring of tiny yet discrimi-
native objects. To accurately detect and capture objects of
various scales, a region-level modeling technique becomes
essential for localizing small objects within each LR aerial
image.

In related research, a group sparsity regularizer was intro-
duced to robustly recognize human faces by proposing an
upper-bounded function to enhance the l1-norm for sparsity,
effectively addressing bias and outlier impacts [58]. A novel
approach to incomplete multi-view clustering was formu-
lated, upgrading incomplete similarity graphs and learning
complete tensor representations [59]. Dehkordi et al. [53]
developed a framework for generating remote sensing
imagery to monitor surface water extent changes, leveraging
Landsat images processed on the GEE cloud platform, with
K-means initialized by Fmask. Another study evaluated
post-processing schemes for object detection within aerial
images, determining optimal strategies based on the average
F-score metric [54].
For regional aerial image characterization, a multi-layer

deep learning model was designed to detect visually salient
foreground objects [2]. A hierarchical model based on focal
loss was developed for precise car localization within LR and
HR aerial photos [1]. A geographic object detection model
tailored for HR aerial imagery was proposed, focusing on
intelligent extraction of intersections and roads [52]. More-
over, a combination of feature engineering and soft-label
computation was suggested for constructing effective visual
detectors for aerial imagery analysis [9].
Our aerial image recognition methodology distinguishes

itself by being biologically inspired and closely mirroring
the human visual perceptual process. Although the afore-
mentioned region-level image models proficiently utilize
representative regions of multiple sizes from each LR aerial
photo, they exhibit limitations such as domain-specific design

constraints, inability to explicitly identify visually or seman-
tically salient regions for LR aerial photo representation, and
lack of principled feature selection or explicit encoding of
geometric sample structure during feature engineering.

III. PROPOSED WORK
A. ACTIVELY HUMAN GAZE MODELING
In the realm of low-resolution (LR) aerial photography,
each photograph comprises numerous image patches that
do not significantly contribute to understanding its semantic
categorizations. These patches, typically constituting the
less visually appealing background, fail to captivate human
attention. To devise a proficient model for categorizing LR
aerial photos, we employ an active learning algorithm to
select a subset of semantically rich image patches fromwithin
an aerial photograph.

Theoretically, an optimally designed machine learning
model should accurately discern the concealed distribu-
tion of samples. Given the semantic correlation among
spatially adjacent image patches, it becomes possible to
linearly represent each patch with the help of its neigh-
boring patches. This premise allows for the calculation
of reconstruction parameters, thereby facilitating a method
to optimally capture and represent the underlying sample
distribution through a refined selection of image patches that
more accurately reflect the semantic content of the aerial
photograph.

argmin
R

∑N

i=1

∣∣∣∣∣∣∣∣yi − ∑N

j=1
Tijyj

∣∣∣∣∣∣∣∣
s.t.

∑
RN
j=1 = 1,Tij = 0 if xj /∈ B(xi), (1)

In this formulation, {x1, x2, · · · , xN } represents the visual
features of N image patches, where Tij measures the sig-
nificance of each image patch in reconstructing its spatially
neighboring patches. Here, N signifies the total count of
patches within an aerial photograph, and B(yi) denotes
the neighborhood of patches surrounding the i-th image
patch.

To evaluate the visual representativeness of the selected
image patches, we introduce a reconstruction algorithm
utilizing the parameters described above. An error metric is
employed to assess the effectiveness of our selected image
patches. Let {b1, b2, · · · , bN } represent the reconstructed
image patches, which are derived through the application of
the following objective function:

ϵ(b1, b2, · · · , bN )

=

∑L

i=1

∣∣∣∣asi − bsi
∣∣∣∣2 + µ

∑N

i=1

∣∣∣∣∣∣∣∣ai − ∑N

j=1
Rijaj

∣∣∣∣∣∣∣∣2 ,

(2)

In this context, µ serves to determine the significance
of our regularization term, while L specifies the quan-
tity of selected visually appealing patches. The collec-
tion {as1 , as2 , · · · , asK } comprises the visually significant
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patches, with {s1, s2, · · · , sK } indicating the indices of these
chosen patches. Notably, the first part of the equation is
responsible for quantifying the rectification cost of these
chosen aesthetically appealing patches. Concurrently, the
second part ensures that the reconstructed image patches
retain the same distribution as the original input samples.

Consider C = [c1, c2, · · · , cN ] and d = [d1, d2, · · · , dN ]
representing the original and reconstructed patch arrays,
respectively. We define ϒ as a diagonal matrix where
each diagonal element is assigned a value of one if its
index i belongs to {r1, r2, · · · , rK }; otherwise, it is set to
zero. Leveraging this setup, we proceed to reformulate the
objective function accordingly.

ϵ(D) = tr
(
(B − C)Tϒ(B − C)

)
+ µtr(BTCA), (3)

In this context, D is defined as (I − R)T (I − R), where
I represents the identity matrix and R the reconstruction
coefficient matrix. Our goal is to minimize the objective
function ϵ(A). To achieve this, we equate the gradient of
ϵ(A) with respect to A to zero, which allows us to derive the
optimal values for A.

ϒ(B − C) + µCB = 0. (4)

Then, our patches are as follows:

A = (µD + ϒ)−1ϒB, (5)

In this way, we obtain:

ε(br1 , · · · , brK ) = ||C − A||
2
F =

∣∣∣∣∣∣B − (µD + ϒ)−1ϒX
∣∣∣∣∣∣2
F

= ||(µC + ϒ)µDX||
2
F , (6)

In this context, the Frobenius norm of a matrix is denoted
by || · ||

2
F . Given the combinatorial nature of the problem,

directly minimizing the objective function as presented may
not be computationally feasible. To address this challenge,
we employ a sequential selection process. We start by
considering a subset of selected image patches within an
aerial image, represented as {bs1 , · · · , bsK ′ }. We then define
ϒn as a diagonal matrix of size N × N , where N is the
total number of patches, and 9i, another N × N matrix,
where diagonal elements are set to one, and off-diagonal
elements are zero. The selection of the next image patch,
sK ′+1, is determined by optimizing a specific criterion that
takes these matrices into account.

rL ′+1 = argmin
i/∈{r1,··· ,rK ′ }

∣∣∣∣∣∣(µC + ϒn + 5i)−1µDX
∣∣∣∣∣∣2
F

. (7)

Practically, the matrix D in the context of optimizing the
selection of the next image patch (as described in the previous
equation) is sparse. To expedite the computation involved
in inverting this matrix, we utilize the Sherman-Morrison
formula, a well-establishedmathematical principle cited from
the literature on matrix computations [49]. This approach
significantly streamlines the calculation process, enabling

more efficient determination of subsequent image patch
selections within the framework.

(µC + ϒn + 5i)−1
= J −

D∗iDi∗

1 + Dii
, (8)

In the mathematical formulation, J∗i and Ji∗ denote the
i-th column and the i-th row of the matrix J, respectively.
These notations facilitate the manipulation of specific
elements within the matrix, crucial for the computation of the
updated objective function as outlined in equation (7).∣∣∣∣∣∣(µD + ϒn + 9i)−1µDB

∣∣∣∣∣∣2
F

= µ2tr(JDBBTDJ)

−
2µ2DBBTDBB∗i

1 + Jii
+

µ2Ji∗J∗iDBBTDB∗i

(1 + Jii)2
, (9)

By definingM asDBBTD, the optimization problem outlined
in (7) is transformed.

rL ′+1 = argmin
i/∈{s1,··· ,sK ′ }

1
1 + Cii

(
Ci∗J∗iJi∗MJ∗i

1 + Jii

− 2Ji∗MJJ∗i). (10)

Leveraging the formulation provided by (10), it becomes
feasible to sequentially identify the K most visually com-
pelling patches within each aerial image. These patches,
when arranged sequentially, give rise to a Gaze Shift
Path (GSP) that mirrors the natural progression of human
visual attention across different segments of aerial imagery,
a process illustrated in Fig. 1. To encapsulate the information
contained within each GSP, 128-dimensional features are
extracted from each image patch using a CNN architecture,
as noted in [21]. These features are then amalgamated to
form a comprehensive 128K -dimensional vector, effectively
capturing the essence of each GSP in a manner that aligns
with human visual processing patterns.

B. HESSIAN-REGULARIZED FEATURE SELECTION
Let us represent G = [g1, · · · , gN ] ∈ RN×T as the matrix
holding the deep Gaze Shift Path (GSP) features derived
from all training samples. By convention, the first L aerial
images are labeled, denoted as GL = [g1, · · · , gL], whereas
the remaining images are unlabeled, represented as GU =

[gL+1, · · · , gN ]. Additionally, L = [l1, · · · , lL] signifies the
label matrix for the L labeled instances.

The matrix P ∈ RT×C is introduced to delineate the
selection of features, with C indicating the total number of
aerial image categories. Based on this setup, the objective
function for our feature selection mechanism is formulated
as follows:

min
P

ε(P) + ϕ · η(P), (11)

In this formulation, ε(P) signifies the designated loss
function, with ϕ · η(P) representing the regularization term,
where ϕ is the regularization parameter.
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An affinity graph is denoted asW, where each elementWij
measures the similarity between samples i and j within the
graph. We assign Wij = 1 if samples i and j are adjacent in
the feature space, signifying a spatial or semantic closeness;
otherwise, Wij = 0 for non-neighboring samples. Moreover,
D is introduced as a diagonal matrix where Dii =

∑
jWij,

leading to the construction of the graph Laplacian matrix
K = D−W. Preserving the structure ofK during the feature
selection process ensures the maintenance of the geometric
relationships among the samples, as illustrated in Fig. 2.

FIGURE 2. An example of preserving the relative positions among
samples during feature selection.

Our approach aims to simultaneously account for both
labeled and unlabeled samples, employing transductive
learning principles [11] to predict labels for the LR aerial
images. Denoting J = [j1, j2, · · · , jN ]T ∈ RN×C as the
matrix of predicted labels for all training samples, where
ji represents the predicted label vector for the i-th sample,
the optimal J should align well with the true labels L
for labeled samples and adhere to the structural constraints
imposed by the affinity graph W. Thus, the goal is to
optimize an objective function that reflects both label fidelity
and graph consistency, allowing J to accurately predict the
label distribution across all training samples, leveraging the
framework established in [11].

argmin
J

tr(JTKJ) + tr((J − L)TV(J − L)), (12)

The matrix V, defined as diagonal, is established based on
a specific decision criterion relating to the labeling status
of samples. For labeled samples, V is assigned a value
approximating infinity (implemented as 1 × 1010), while for
unlabeled samples, V is set to 1. This criterion is devised
to ensure that the predicted labels closely match the actual
ground truth by emphasizing the significance of labeled
samples in the optimization process.

In aiming to minimize the discrepancy between predicted
and actual labels, especially for unlabeled aerial images, the
process involves adapting feature selection to account for the
semi-supervised context provided by our affinity graph. This
approach allows for the nuanced incorporation of both labeled
and unlabeled data, facilitating a more informed and accurate
prediction of labels across the dataset.

argmin
J,G

tr(JTKJ) + tr((J − L)TV(J − L))

+ β||GTP||
2
F + ϕ · η(P), (13)

Algorithm 1 LR Aerial Image Classification Framework
Training and Testing
1: Training Phase:
2: Input: Set of N partially labeled LR and HR aerial

images, K , µ, β, and ϕ.
3: Output: Trained LRAL model, selected feature indices,

and parameters for a linear SVM classifier.
4: Train the active learning algorithm as per equation (6),

identify GSPs, and compute deep GSP features for each
LR aerial image.

5: Determine the indices for feature selection using solution
to equation (13).

6: Derive the linear SVM classifier parameters, denoted as
P.

7: Testing Phase:
8: Input: A test LR aerial image, the pre-trained active

learning model, feature selection indices, and the linear
SVM classifier.

9: Output: Predicted category labels for the test image.
10: Generate the deep GSP feature for the test image using

the pre-trained active learning model.
11: Apply feature selection with P on the deep GSP features

and predict category labels.

In this framework, β serves as the weighting factor for the
regularization term. The initial segments of the objective
function aim to ensure that, within the semi-supervised
learning framework, the predicted labels for aerial images,
represented by J, align closely with both the ground truth
and the constructed affinity graph. The regularization term,
ϕ · η(P), is strategically implemented to induce a high degree
of sparsity in the feature selection matrix P. Additionally,
the term β||GTP||

2
F introduces a penalty for label prediction

errors, facilitating the simultaneous optimization of the linear
classifier (i.e., P) and the predicted labels (i.e., J).
In the realm of machine learning, the design of feature

selection algorithms often incorporates a variety of reg-
ularizers to optimally identify high-quality features, with
a common choice being the l2,p-norm to enforce feature
sparsity. Extensive empirical analyses, as referenced in [19],
demonstrate that applying the l2,1/2-norm significantly
enhances the robustness and discriminative power of the
selected features. Theoretical considerations designate the
l2,1/2-norm as a Hessian regularizer when p = 1/2,
leading to a refined formulation of the objective function to
leverage this advanced regularization approach for feature
selection.

argmin
J,G

tr(JTKJ) + tr((J − L)TV(J − L))

+ β||GTP||
2
F + ϕ · ||P||

1/2
2,1/2, (14)

The optimization of the l2,1/2-norm within the context of
the Hessian regularizer introduces non-convexity into the
problem. To address this, we employ an iterative solution
approach, as outlined in [45], to effectively navigate the
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FIGURE 3. Statistical overview of high-resolution and low-resolution aerial photographs in our dataset.

challenges posed by the non-convex landscape. This iterative
method allows for the gradual refinement of solutions,
ensuring that the feature selection process under the Hessian
regularized framework is both feasible and practical. Conse-
quently, the entire process of categorizing aerial images via
our Hessian-regularized Feature Selection (HRFS) approach
is encapsulated in Algorithm 1, providing a structured
methodological outline for implementation.

IV. EMPIRICAL EVALUATION
A. IMAGE COLLECTION
In our endeavor to semantically annotate a vast collection
of Low-Resolution (LR) and High-Resolution (HR) aerial
images gathered from the Internet (as detailed in the
statistical analysis presented in Fig. 3), we enlisted the
help of 82 volunteers to manually label 14.7% of the LR
aerial images for each major city within our dataset. This
process utilized a total of 47 distinct image-level labels.
Subsequently, a multi-class classification model, such as
Support Vector Machine (SVM), was trained and applied
to infer the image-level labels for the unlabeled portion of
the dataset. These automatically assigned labels were then
meticulously reviewed by the volunteers for accuracy. It was
observed that several image-level labels were associated

with a relatively small number of aerial images, posing
a challenge for the development of a robust classification
algorithm. Consequently, labels representing fewer than
220,000 LR aerial images were excluded from further
analysis, resulting in a final selection of 18 label categories.
Following this curation, 99.973% of the aerial images, across
both resolutions, were found to contain fewer than 4 labels,
with the remainder bearing more complex label associations.
These images often featured numerous small patches (less
than 210 × 210 pixels) that could introduce noise into
the dataset; hence, they were omitted from the study. The
remaining LR and HR aerial images were systematically
organized, with the dataset split such that the first half of
the images for each label category was used for training
our model, while the latter half was reserved for evaluation
purposes.

1) COMPARATIVE ACCURACIES
In assembling our extensive dataset of Low-Resolution (LR)
and High-Resolution (HR) aerial images (statistics illustrated
in Fig. 3), it becomes crucial to semantically annotate these
images. Eighty-two volunteersmanually labeled 14.7%of LR
aerial images for each major city in our dataset, utilizing a
total of 47 distinct image-level labels. Subsequently, a multi-
class classifier such as SVM is trained with these labels
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TABLE 1. Comparison result with many techniques.

TABLE 2. Evaluation of computational efficiency for comparative recognition algorithms (top performances highlighted)).

and used to automatically assign labels to the remaining
unlabeled images. These automatically generated labels were
then meticulously verified by the volunteers. Notably, some
image-level labels were associated with a very small number
of images, posing a challenge for developing an effective
classification algorithm. In this study, labels with fewer than
220,000 associated LR aerial images were excluded, resulting
in 18 remaining label categories. Almost all (99.973%) of the
aerial images across resolutions had fewer than four labels,
while a minority had more. Images typically containing
small and potentially noisy patches (less than 210 × 210)
were excluded from the dataset. The final step involved
organizing the LR and HR aerial images by labels, using
half for training our model and the remaining half for
evaluation.

This experiment evaluates our classification framework
against several leading visual classificationmodels, including
deep learning-based aerial image recognition architectures
and generic visual classification models. Our method was
first benchmarked against seven state-of-the-art deep learning
architectures for aerial image recognition [12], [13], [14],
[15], [16], [17], [18] known for effectively capturing
domain-specific knowledge across different aerial image
categories. Publicly available implementations from [12],
[13], [16], [17] were directly used in our comparative analysis
without modification. For [14], [15], [18], lacking accessible
source codes, we developed our implementations aiming to
match the performance reported in their original publications
as closely as possible.

Additionally, we compared our algorithm against various
cutting-edge deep object classification models including
Spatial Pyramid Pooling CNN (SPP-CNN) [55], Clean-
Net [56], Discriminative Filter Bank (DFB) [57], Multi-
layer CNN-RNN (ML-CRNN) [36], Multi-label Graph
Convolutional Network (ML-GCN) [37], Semantic-specific
Graph (SSG) [38], and Multi-label Transformer (MLT) [39].
Given that LR aerial image classification can be regarded
as a subset of scene categorization, we also conducted
an in-depth comparison with three contemporary scene
recognition methods [10], [27], [40].
For the algorithms we implemented, configurations were

as follows: For [14], we utilized ResDep-192 [20] as the
backbone, modifying it for multi-label classification. Unlike

TABLE 3. Comparative evaluation of average classification accuracies
across six feature selection algorithms.

the fully connected layer settings, we adapted the rest of
the architecture based on ResDep-128 [42], with ResNet-
128 [20] serving as the core framework. The learning
rate and decay were set to 0.002 and 0.06, respectively,
with network loss computed using mean squared error.
For [10], the established Object Bank [41] was employed for
18 selected LR aerial image classes, utilizing an average-
pooling approach. For this experiment, we evaluated our
Hessian-Regularized Feature Selection (HRFS) framework
against several prevalent feature selection algorithms in
the domain of aerial photography classification, including
Information Theory Feature Selection (ITFS) [53], CNN
Feature Reduction (CNNFR) [54], Feature Selection for Land
Cover Classification (FSLC) [55], PCA Feature Reduction
(PCAFR) [56], and CNN-based Dimensionality Reduction
(CNNDR) [57]. The comparative analysis focused on average
classification accuracies, as summarized in Table 3. Our
HRFSmethod demonstrated superior performance among the
competitors. This advantage is attributed to HRFS’s ability
to effectively leverage the intrinsic geometric distribution of
samples within the high-dimensional feature space, where
aerial image features are likely situated, hence optimizing
the feature selection process for aerial image classification
tasks.

2) COMPARATIVE COMPUTATIONAL COST
In the evaluation of visual classification methods, compu-
tational efficiency during both training and testing phases
is a critical metric of effectiveness. Comparative analysis
of time consumption, as detailed in Table 2, reveals that
during the training phase, two algorithms outperform our
model, attributed to the less complex and more efficient
architectures of [33], [37]. However, it’s noted that these
models underperform by approximately 4.1% in per-class
accuracy compared to our approach. Importantly, our pro-
posed algorithm demonstrates superior speed during the
testing phase, underscoring the advantage of optimizing for
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faster evaluation times, given that training is typically an
offline process.

Reflecting on our Low-Resolution (LR) aerial image
classification framework, it incorporates three pivotal com-
ponents: 1) a deep low-rank model for Gaze Shift Path (GSP)
generation, 2) the Hessian-Regularized Feature Selection
(HRFS), and 3) a kernelized classifier for label prediction.
The time invested in each component during the learning
phase is reported as: 11 hours and 4 minutes for the GSP
generation, 3 hours and 54 minutes for HRFS, and 7 hours
and 21 minutes for the kernelized classifier. During the
evaluation phase, the respective durations are 203 ms for
the GSP generation, 321 ms for HRFS, and 32 ms for the
kernelized classifier. It is noteworthy that the bulk of the
time is consumed in the first component during training,
which can be significantly reduced in practical AI applica-
tions through the employment of Nvidia GPUs, potentially
achieving a tenfold speed increase via parallel processing
techniques.

B. STEP-BY-STEP PERFORMANCE VALIDATION
In this study, we meticulously assess each constituent of our
Low-Resolution (LR) aerial image categorization framework
to ascertain its overall efficiency. Initially, we explore the
effectiveness of our chosen active learning strategy by exclud-
ing it and instead opting for a random selection of K image
patches (denoted as S11). Alternatively, we simulate human
visual preference by selecting central K patches within each
aerial image (denoted as S12), given the propensity of human
vision to focus on central image areas. Results, indicated in
the second column of Table 4, reveal significant performance
degradation under both alternate conditions, underscoring the
vital role of emulating human visual perception in accurately
representing LR aerial imagery.

Further, to validate the importance of maintaining the
geometric distribution of samples during the feature selection
process, we juxtapose our Hessian-Regularized Feature
Selection (HRFS) approach against four renowned feature
selection techniques (referenced as S21, S22, S23, S24)
prevalent in the field. Notably, these comparative methods do
not inherently preserve sample distribution. The outcomes,
detailed in Table 4, illustrate that omitting this consideration
in feature selection invariably leads to a minimum 4

Lastly, we examine the performance of ourHRFS-enhanced
classifier in the classification of each LR aerial image.
This examination encompasses three scenarios: S31 employs
an aggregation-guided multi-layer Convolutional Neural
Network (CNN) to accumulate labels from all patches within
an aerial image for final image label determination; S32
and S33 respectively substitute our linear kernelized feature
representation with polynomial and radial basis function
kernels. The variations in classification accuracy, as tabulated
in Table 4, reveal that the aggregation approach (S31)
markedly diminishes classification efficacy, highlighting the
pivotal contribution of our HRFS and kernelized classifier in
the categorization process.

TABLE 4. Optimization and decline in performance through module
modification.

FIGURE 4. Change of classifying accuracy by changing K .

C. CATEGORIZATION BY ADJUSTING PARAMETERS
In our aerial image classification framework, two critical
parameters require optimization: the quantity of attractive
image patches selected via active learning and the number
of features chosen for classification. This part of our
study explores how varying these parameters influences
the performance of Low-Resolution (LR) aerial image
classification.

The first parameter under examination is K , representing
the number of actively selected, visually compelling image
patches. We incrementally adjust K from one to ten, holding
other parameters constant at their default settings. These
default values are established through 5-fold cross-validation
on a dataset comprising 12,000 aerial images. According to
the performance graph shown in Fig. 4, an increase in K
initially leads to a rise in classification accuracy, achieving
a peak before gradually declining. This trend underscores the
significance of carefully calibrating the number of selected
image patches to optimize classification effectiveness. In a
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FIGURE 5. Change of objective function value by tuning the number of
iterations.

FIGURE 6. Variation in objective function value with iteration number
adjustments.

subsequent experiment, we investigate the impact of varying
the number of selected features on visual categorization
accuracy. Observations, as detailed in the lower portion of
Fig. 4, indicate a marked improvement in categorization
performance when the number of selected features ranges
from one to five. Beyond this range, accuracy levels off,
suggesting no significant benefit from selecting additional
features. Consequently, for an efficient and effective Low-
Resolution (LR) aerial image classification framework,
we establish the optimal number of features to be five.

Subsequently, we evaluate the performance of our active
learning algorithm by varying the number of iterations.
The results, depicted in Fig. 5, demonstrate a consistent
and gradual decrease in the objective function value with
an increase in iteration numbers. The objective function
stabilizes upon reaching 130 iterations, indicating minimal
benefit from further iterations. To balance efficiency and
efficacy, we thus set the iteration count to 130 for our
experiments.

In a final series of tests, we explore the impact of varying
the percentage of labeled aerial photographs from 10% to

100%, in increments of 10%. These labeled samples are
chosen randomly, and the process is repeated 20 times to
derive average categorization accuracies. Results, illustrated
in Fig. 6, reveal that our methodology effectively manages
aerial photo categorization with a minimum of 40% labeled
photographs, implying it can accommodate up to 60%
unlabeled Low-Resolution (LR) aerial photos. This capability
is deemed highly beneficial for practical applications in LR
aerial photo categorization.

V. SUMMARY
The task of categorizing low-resolution (LR) aerial images
is pivotal in the development of intelligent systems, drawing
significant attention in recent research efforts [22], [23], [24],
[25], [26]. This study introduces an innovative framework
for LR aerial image recognition, leveraging deep Gaze Shift
Path (GSP)-based visual representations, enhanced through
the analysis of high-resolution (HR) aerial imagery. Our
comprehensive approach includes: 1) deploying an active
learning paradigm for the generation of GSPs across various
resolutions of aerial imagery, and 2) implementing a novel
Hessian-regularized feature selection (HRFS) strategy to
isolate the most informative features. The efficacy of our
framework is substantiated through a series of rigorous
experimental validations.

Constructing an effective categorization system for
real-world LR aerial photographs presents a myriad of
challenges, which are acknowledged but not fully addressed
within the scope of this paper. These challenges include
managing the temporal, spatial, and spectral variability
of aerial images, adapting to diverse weather conditions,
integrating human visual perception insights, and overcoming
the limitations in human resources for annotating extensive
datasets. To tackle the scarcity of labeled samples, our
research introduces a semi-supervised HRFS. Additionally,
we incorporate GSPs to embed aspects of human visual
perception into the aerial image categorization process.
To mitigate the effects of temporal and spectral variances
in our experimental dataset, preliminary image processing
and selective manual sample curation were employed. It is
important to note, however, that this study does not address
spectral discrepancies among aerial images directly. Future
work will aim to develop a holistic and integrative system for
understanding LR aerial photographs, equipped to address
the aforementioned challenges through dedicated modules
for each specific issue.
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