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ABSTRACT With the evolution of mobile networks delivering high-performance network services to
a myriad of devices, accurate mobile traffic prediction has become increasingly important. In recent
years, federated learning (FL) has emerged as a communication-efficient approach, enabling collaborative
model training without the centralized data aggregation. Despite its promising potential, FL-based mobile
traffic prediction has following two major challenges: 1) data heterogeneity across regions: The diverse
communication and mobility patterns inherent to different regions can lead to uneven traffic distribution.
Training on such heterogeneous data can result in the global model failing to capture the unique patterns
of specific regions, compromising consistent prediction performance across all regions; 2) communication
efficiency concerns: The frequent exchange of large model weights during training leads to substantial
signaling overhead in the FL. This added communication can pose a significant burden on the limited
network bandwidth, potentially causing performance degradation in mobile networks. In this paper,
we propose a novel personalized FL framework to address these challenges. Our framework enables a
fine-grained federation through a layer-wise aggregation for the global model. This approach personalizes
the global model to capture unique regional characteristics such as traffic spikes and other irregular patterns.
In addition, we introduce an adaptive layer freezing mechanism to reduce communication costs during
training. By selectively transmitting only the layers that require further training, our framework effectively
enhances communication efficiency without sacrificing prediction performance. Extensive experiments on
a real-world mobile traffic dataset demonstrate that our approach not only provides superior prediction
accuracy compared to baselines but also achieves significant communication cost saving.

INDEX TERMS Mobile traffic prediction, traffic management, personalized federated learning.

I. INTRODUCTION
Mobile traffic prediction is a critical task in mobile networks,
particularly in the context of the upcoming 6G networks.With
the proliferation of high-performance devices and the need to
provide high-quality services, the demand for sophisticated
network management and control is expected to increase
significantly [1]. 6G networks are expected to leverage
AI-based solutions to support advanced use cases such as
autonomous driving, and augmented/virtual reality [2]. These
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use cases require ultra-reliable and low-latency connectivity,
which can be achieved through accurate traffic prediction.

In the field of mobile traffic prediction, deep learning (DL)
algorithms [3] have shown superior performance compared
to conventional statistical-based models such as ARIMA
and HA. DL models, especially those based on recurrent
neural networks (RNNs) [4] and convolutional neural net-
works (CNNs) [5], have been widely used for mobile traffic
prediction tasks owing to their ability to capture complex
temporal and spatial patterns.

A notable recent research trend in the domain of mobile
traffic prediction is the shift from data-centralized DL
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models to data-distributed federated learning (FL) approa-
ches [6], [7]. In contrast to centralized learning which sends
vast amounts of raw data to a central server, FL ensures
that only model weights obtained by local training are
sent to the central server. This approach reduces the
frequent transmission of training data and signaling overhead,
thereby preventing potential adverse effects on payload
transmissions. Furthermore, due to the advancements in edge
computing technology to support high QoS requirements
of specific use cases in mobile networks, powerful data
centers are deployed across multiple regions. This distributed
paradigm has paved the way for FL [8], where data can
be trained locally in each region, and effectively learned
models can be shared. Given these multifaceted advantages,
FL is expected to play a pivotal role in next-generation
communications [9].
Despite its promising potential, mobile traffic prediction

under the FL framework has two major research challenges.
1) Data Heterogeneity across Regions: Traffic distribu-

tion varies across different regions due to the diverse
communication and mobility patterns exhibited by
users in each region. Training on such diverse data
under the FL framework is very challenging because
generalizing these unique regional patterns into a
global model can lead to degradation of performance
in specific regions, making it difficult to achieve
consistently high predictive performance across all
regions.

2) Communication EfficiencyConcerns: FL framework
is generally known to offer communication benefits
over centralized learning. However, when dealing with
small training data and a large number of model
parameters, the expected communication cost savings
are reduced. Given that the relatively low-volume
training data such as communication logs, it is essential
to design FL framework that improves communication
efficiency.

In recent years, there has been a great effort to tackle
these challenges by researchers. For instance, a knowl-
edge distillation-based approach [10] has been leveraged
to personalize local models. The global model is then
refined by fine-tuning itself using the local models from
all regions. Meta-learning has been explored to address the
challenges of heterogeneous mobile data, requiring only
a few steps of fine-tuning on local dataset [11]. Dual-
attention-based FL (FedDA) [12] is another notable attempt
in this domain, which addresses data heterogeneity through
data augmentation strategies. While these approaches have
yielded promising prediction performance, certain limitations
persist. Most notably, the reliance on a single globally-shared
model often fails to effectively capture the unique and rare
traffic patterns to specific regions. Furthermore, a significant
shortcoming in these methods is the lack of consideration
for communication efficiency, which is crucial in mobile
networks.

In this paper, we address the aforementioned challenges
and limitations by introducing a layer-wise personalized FL
framework. This novel approach enables fine-grained FL,
whereby each layer of the global model is trained separately
for personalization. To effectively separate the layers based
on distinct traffic characteristics, we conducted a preliminary
analysis that precisely explores the differences in traffic
across regions. We observe that the decomposition scheme,
which separates traffic data into trend and seasonality
components, provides a detailed comparison of disparate
traffic patterns across regions.

Driven by this observation, our framework adopts a
decomposition scheme that semantically separates the model
layers into trend and seasonality layers. To aggregate these
separated layers in a layer-wise manner, we introduce
a decomposition-based clustering strategy. This strategy
groups clients based on their decomposed traffic character-
istics, aligning clients with similar traffic patterns for more
efficient layer-wise aggregation. Subsequently, the server
combines aggregated layers to obtain a personalized global
model for each specific region. This approach captures
the unique and rare temporal characteristics of individual
regions by multiple global models, each derived from
a distinct combination of learned layers. Consequently,
our framework ensures high prediction performance across
all regions.

Furthermore, to enhance the communication efficiency of
our framework, we incorporate an adaptive layer freezing
mechanism. This technique allows selective updating of
model layers based on the difference of weight changes after
each communication round. Those layers with relatively sta-
ble weights are frozen, curtailing the transmission costs and
enhancing communication efficiency. Themain contributions
of this paper are as follows:

• We propose a novel personalized FL framework that
separately trains each layer of the global model. This
fine-grained FL enables a granular understanding of
mobile traffic patterns, achieving a personalized global
model tailored to capture unique regional characteristics.

• We introduce a decomposition-based clustering strat-
egy within our FL framework, designed for layer-
wise aggregation. This strategy groups clients based
on refined temporal characteristics obtained through
decomposition.

• We introduce an adaptive layer freezing mechanism
that minimizes the communication cost for train-
ing. By selectively transmitting model layers based
on their convergence, the framework reduces com-
munication overhead without sacrificing prediction
accuracy.

• Our extensive experiments with real-world mobile
traffic datasets demonstrate the superior performance of
our framework over existing methods, highlighting its
effectiveness in both improving prediction accuracy and
reducing communication costs.
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Our findings demonstrate that the decomposition-based
layer-wise approach effectively achieves model personaliza-
tion. This enhanced personalization capability successfully
captures region-specific traffic patterns, leading to improved
prediction accuracy compared to existing works. Further-
more, our framework addresses the issue of communication
efficiency during training, a critical challenge in FL for
mobile traffic prediction not thoroughly explored by existing
works.

The rest of this paper is organized as follows. The
related literature in mobile traffic prediction is introduced
in Section II. Next, the preliminary analysis and problem
description are presented in Section III. The proposed frame-
work and learning procedure are described in Section IV. The
prediction performance comparison with real-world datasets
is presented in Section V. The conclusions and plans for
future work are presented in Section VII.

II. RELATED WORKS
In this section, we provide a review of existing research in the
field of mobile traffic prediction, focusing on recent trends
that incorporate FL approaches.

A. MOBILE TRAFFIC PREDICTION
In recent years, the field of mobile traffic prediction has
gained significant attention due to the increasing demand
for accurate traffic modeling and prediction in various
telecommunication tasks. This problem is essentially a time
series prediction task, and existing methods can be broadly
categorized into two groups: statistical-basedmodels andDL-
based models.

Statistical-based models predict mobile traffic using statis-
tical and probabilistic tools. There are well-known prediction
methods such as the Historical Average (HA) [13] and
Autoregressive Integrated Moving Average (ARIMA) [14].
HA predicts future values based on the average or the
last observation of historical data. While these methods are
straightforward to implement, they often fail to capture the
underlying patterns in mobile traffic, resulting in relatively
poor prediction performance. ARIMA has been explored to
characterize the self-similarity and bursty nature of mobile
traffic. Variants of ARIMA [15] have also been proposed
to handle different aspects of mobile traffic prediction,
such as decomposing traffic into regularity and randomness
components. Another variant, SARIMA, highlighted for its
ability to capture seasonal patterns, was effectively used
in [16] for improved mobile traffic prediction.

In the meantime, with the advancements in machine
learning and AI techniques, DL-based models [17] have
emerged as strong competitors to statistical-based models in
mobile traffic prediction. Particularly, DL-based models have
demonstrated their potential to capture complex patterns in
temporal and spatial domains. Various DL frameworks, such
as RNN and LSTM, have been applied to capture the spatial
and temporal dependencies among different cells in mobile
networks. In [4], spatiotemporal correlations was proposed

to explore similarities and differences between cells using
RNNs within a multi-task learning framework [18]. Addi-
tionally, [5] proposed a densely connected CNN to model
the nonlinear dynamics of mobile traffic, complemented
by a novel fusion scheme to learn the influence of spatial
and temporal dependencies. Beyond using mobile traffic
data, [19] proposed a spatial-temporal cross-domain neural
network (STC-N) model, leveraging data characteristics from
similar services and regions.

While the aforementioned works mainly focus on central-
ized approaches for mobile traffic prediction, our proposed
framework in this paper takes a different approach. We aim to
solve themobile traffic prediction problem using a distributed
learning architecture with FL, leveraging the benefits of
communication efficiency.

B. FEDERATED LEARNING
The recent trend in mobile traffic prediction research
notably shifts from data-centralized DL models toward
data-distributed FL approaches [6], [7]. The adoption of FL
maintains data privacy across multiple devices or nodes by
eliminating the need to share raw data. Moreover, FL also
minimizes the communication overhead by performing
computations on the edge devices themselves, instead of
transmitting massive amounts of raw data to a central server.
This not only leads to more efficient use of network resources
but also enables rapid analytics and decision-making in
distributed mobile network environments.

Therefore, many recent studies over the past few years have
leveraged the potential of FL within the domain of mobile
traffic prediction. For example, widely known as FedAvg [7],
this foundational FL approach aggregates parameters from
client models across various regions and averages them
to obtain a global model. Similarly, FedAtt [20] enhances
this approach by introducing an attention mechanism to
the aggregation process, which assigns weights to client
contributions based on their relevance. These studies reveal
that when the client data is independent and identically
distributed (IID), models achieve good performance, but there
is a significant performance degradation with non-IID data.
This degradation also manifests in the context of mobile
traffic, which inherently exhibits non-IID characteristics
due to its uneven distribution across different regions. This
challenge has led to the adoption of personalized FL,
a strategy that tailors models to better fit the specific
data distributions of each client, thereby enhancing model
performance and accuracy in mobile traffic prediction.

One such strategy is the Dual-attention-based FL
(FedDA) [12], which demonstrates enhanced predic-
tion performance by leveraging data augmentation to
address data heterogeneity. Similarly, the Graph Attention
Spatial-Temporal Network (GASTN) [10] employs knowl-
edge distillation to mitigate the heterogeneity issue in mobile
traffic prediction. Another notable approach is a federated
meta-learning model [11], which adapts to heterogeneous
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data through minimal local dataset fine-tuning. While these
proposed methods utilize various personalized techniques
to handle the heterogeneity of mobile traffic in the FL
framework, they still have areas that can be enhanced.
A single globally-shared model frequently falls short in
capturing rare traffic patterns inherent to certain regions.
Moreover, these methods often do not extensively consider
the aspect of communication efficiency. In contexts where
network resources are limited and numerous clients (i.e.,
base stations, mobile devices) participate, minimizing
communication cost becomes crucial.

In contrast to the methods mentioned above, our approach
stands out with several unique features that set it apart. Firstly,
while traditional methods typically train a single global
model for all clients, our approach trains multiple global
models tailored to individual clients. This means each client
maintains its own personalized model, a crucial differenti-
ation for addressing heterogeneity in the traffic data across
regions. Secondly, by employing layer-wise aggregation with
decomposed trend and seasonality layers, our method enables
a fine-grained FL among clients that exhibit similar temporal
patterns. Lastly, we design our method to emphasize on
communication efficiency, minimizing communication costs
during the learning process.

III. PRELIMINARY ANALYSIS AND PROBLEM
DESCRIPTION
In this section, we first introduce the mobile traffic dataset
sourced from Telecom Italia,1 covering the regions of Milan
and Trento, and detail its structure and key attributes.
Next, we present a decomposition approach to the dataset,
separating the raw traffic data into trend and seasonality
components, and conduct a spatial correlation analysis that
unveils intriguing disparities in correlation when considering
the original data versus its decomposed constituents. Lastly,
we define the primary problem we aim to address in
this paper.

A. MOBILE TRAFFIC DATA
Themobile traffic dataset used in this paper, which is publicly
available as part of the Big Data Challenge [21], is sourced
from Telecom Italia. This dataset, covering both Milan and
Trento in Italia city, was collected from data spanning from
11/01/2013 to 01/01/2014, recorded in 10-minute intervals.
The areas of Milan and Trento are composed of grid
overlays of 10,000 and 6,575 squares, respectively. Each
square, approximately 235 × 235 meters, is referred to as
a cell. Within every cell, three different types of mobile
traffic are recorded: short message service (SMS), Call
service, and Internet service. For any given service type s
chosen from { SMS, Call, Internet }, we can represent the

1This dataset is recognized for its accurate representation of regionally
distributed mobile traffic. As one of the most comprehensive publicly
available datasets, it continues to be widely utilized in various research
domains.

city’s mobile traffic as a spatiotemporal sequence labeled
as Xs = {Xs,t|t = 0, 1, 2, . . . ,T }, where T denotes the total
count of time intervals. Xs,t denotes the traffic matrix for the
t-th interval across an area segmented into M × N cells and
it can be described as

Xs,t =


x(1,1)s,t x(1,2)s,t · · · x(1,n)s,t

x(2,1)s,t x(2,2)s,t · · · x(2,n)s,t
...

...
. . .

...

x(m,1)
s,t x(m,2)

s,t · · · x(m,n)
s,t

 , (1)

where x(m,n)
s,t denotes the mobile traffic of service type s in

(m, n) cell at time t .
Fig.1a, Fig.1b, and Fig.1c illustrate the temporal dynamics

of mobile traffic, where the x-axis denotes the time index
(scaled to hours), and the y-axis represents the volume of
a specific traffic type. SMS and Call traffic exhibit strong
daily and weekly periodic characteristics. In contrast, Inter-
net traffic exhibits relatively complex temporal dynamics,
characterized by a mixture of weak periodicity and irregular
peaks and troughs. Fig.1d displays the spatial distribution
of Internet traffic in Milan within a specific time interval.
To effectively visualize the entirety of the city, cells from
across the city are uniformly sampled to represent the region
and are mapped onto a 20 × 20 grid (i.e., x and y axes),
with the z-axis indicating the volume of Internet traffic. This
visualization reveals that traffic is distributed unevenly across
the city, highlighting the need to consider the heterogeneity
of traffic across different regions.

B. KEY OBSERVATION
To explore the dataset in detail, we decompose the raw traffic
data into trend and seasonality components. As illustrated
in Fig.2a, the decomposition scheme offers a clear under-
standing of the temporal characteristics in traffic dynamics.
The decomposition process also yields a residual component,
representing the portion of the original traffic data that
remains after the extraction of trend and seasonality values.
Although the residual is not utilized in our study, it is
depicted in Fig.2a to ensure completeness in demonstrating
the decomposition concept. In Fig.2c, the trend values
represent the continuous changes in the data over time,
capturing consistent patterns essential for understanding the
overarching trajectory of the traffic. On the other hand,
in Fig.2d, the seasonality values represent the repetitive and
periodic fluctuations in the data, often observed within fixed
intervals. Decomposing the traffic into trend and seasonality
provides a more granular insight into its unique patterns
across different regions.We define the trend τ and seasonality
σ of each region as follows:

τ
(m,n)
s,t =

1
w

w−1
2∑

e=−w−1
2

x(m,n)
s,w+e, (2)

σ
(m,n)
s,t = x(m,n)

s,t − τ
(m,n)
s,t , (3)
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FIGURE 1. The temporal and spatial dynamics of mobile traffic data.

FIGURE 2. Spatial correlation analysis using SMS traffic data: raw data to
decomposed components.

where t is the time index, w denotes and odd window size and
e denotes the offset from the central data point.

Before decomposition, we analyze the spatial correlation
of the original traffic, selecting SMS traffic as a case study for
our analysis, using the Pearson correlation coefficient [17],
denoted as ρ.2 The ρ value between a target cell (m, n) and
its neighboring cell (m′, n′) is calculated as:

ρ(m,n),(m′,n′) =
Cov

(
x(m,n)
s,t , x(m

′,n′)
s,t

)
δx(m,n)

s
· δ
x(m
′,n′)

s

, (4)

where Cov represents the covariance operator which mea-
sures the linear relationship of the traffic data of the
two cells, and δ is the standard deviation, indicating the

2The Pearson correlation coefficient is widely used to measure the linear
relationship between two sets of data, in this case, SMS traffic volumes.

extent to which the traffic data in cells (m, n) and (m′, n′)
deviate from their respective mean value. A target cell
within an 11 × 11 cell grid is selected as an example
to show the spatial correlation. The obtained ρ values,
representing correlations between the target cell (6, 6) and
its neighboring cells, are demonstrated in Fig.2b. After
decomposing the original traffic data into its trend and
seasonality components, the spatial correlation analyses for
the same target cell are demonstrated in Fig.2c and Fig.2d,
respectively.

An interesting observation derived from the spatial analysis
is that the correlation of the original traffic data is not
sufficient to fully capture the trends and seasonality. This
suggests that even if the correlation coefficient ρ of the
original traffic data is relatively high or low, the ρ for the
trend or seasonality may not be. For example, the top-right
portion of Fig.2b shows a moderate correlation; however,
its corresponding trend correlation in Fig.2c is high, while
its seasonality correlation in Fig.2d is low. Conversely,
the bottom-left portion of Fig.2d shows a high correlation
with the target cell, but its trend correlation in Fig.2c is
relatively low and its seasonality correlation in Fig.2d is
high. Based on the above observations, it becomes evident
that the decomposed scheme enables a detailed comparison
of disparate traffic patterns across regions. Inspired by this
realization, we considered integrating this decomposition
approach into the FL framework. In the context of FL,
understanding the subtle similarities and differences across
regions is critical for model performance. The details
of the proposed approach are addressed in subsequent
section.

C. PROBLEM DESCRIPTION
In this paper, our goal is to collaboratively train personalized
models across multiple regions. We consider a mobile
network with I clients (i.e., base stations) geographically
distributed with each client i covering one of these regions.
As described in Section III-A, each client i covering region
(m, n) has local data x is,t corresponding to the traffic matrix.
For this data, let yis,t denote the ground truth value. Here,
client i is associated with a specific region represented by
coordinate (m, n). Note that the notation for service type s
is omitted in the following, implying that both x is,t and y

i
s,t
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are simplified to x it and y
i
t respectively. This is to improve

readability, as the formulation is the same for each service
type.

Let X i
t = {x

i
t−o+1, x

i
t−o+2, . . . , x

i
t } denote the sequential

mobile traffic for client i at the time index t , where o
is the length of observation. Correspondingly, the ground
truth values over the prediction horizon are represented
by Y it = {yit+1, y

i
t+2, . . . , y

i
t+p}, where p is the length

of prediction. Each client i has a local data set denoted
by Di = {X i

k ,Y
i
k}
K
k=1, where i ∈ {1, 2, . . . , I } and K is

the number of data sets obtained using a sliding window
scheme. Then, mobile traffic prediction of client i at time t is
as follows:

Ŷ it = F(X i
t ; θ

i), (5)

where F(·) denotes the prediction model and θ i denotes its
parameters.

To be concrete for our layer-wise personalized federated
scenario, let F(·; θ i) denote a personalized model for client i,
parameterized by θ i. The objective function is:

argmin
2

I∑
i=1

Li(Di; θ i), (6)

where 2 is the set of clients’ model parameters denoted by
2 = {θi}

I
i=1. The loss function is formulated as

Li(Di; θ i) =
1
K

K∑
k=1

(F(X i
k ; θ

i)− Y ik )
2
. (7)

For layer-wise aggregation, client i model parameters θ i

are split into θ it for the trend layer and θ is for the seasonality
layer, denoted by θ i = {θ it , θ

i
s}. During training, model

parameters θ i = {θ it , θ
i
s} from all participating clients are

aggregated at the server via

θ̄t =
1
I

I∑
i=1

θ it,(r), θ̄s =
1
I

I∑
i=1

θ is,(r), (8)

where θ̄t and θ̄s represent the aggregated parameters of the
trend and seasonality layers, respectively, at the r-th global
communication round. Then, client i updates its local model
F(Di; θ i) using the aggregated parameters from the server,
represented as F(Di; θ̄t , θ̄s). Therefore, the loss function (7),
can be rewritten as follows:

Li(Di; θ̄t , θ̄s) =
1
K

K∑
k=1

(F(X i
k ; θ̄t , θ̄s)− Y

i
k )

2. (9)

Consequently, the detailed objective function is defined as:

argmin
2

I∑
i=1

(
1
K

K∑
k=1

(F(X i
k ; θ̄t , θ̄s)− Y

i
k )

2

)
, (10)

where 2 = {θ1, θ2, . . . , θ I } represents the collection of
parameter sets for personalized models of each client i.

IV. PROPOSED FRAMEWORK
In this section, we present a layer-wise personalized FL
framework. We first introduce the client clustering strategy
designed for layer-wise aggregation approach. Next, we out-
line the overall workflow of our proposed framework and
describe on the specifics of each step. Lastly, we address our
adaptive layer freezing to enhance communication efficiency
during the training process.

A. DECOMPOSITION BASED CLIENT CLUSTERING
For our personalized FL approach, it is needed to perform
clustering based on the decomposition of mobile traffic per
region. Firstly, the trend and seasonality values of each
region are determined using (2) and (3). Subsequently, each
client prepares proxy datasets3 intended for clustering on the
server-side:

1) Trend Proxy Dataset: For each client i, the trend proxy
dataset, denoted as PT

i, comprises the directly computed
trend values over all time steps. These trend values τ is,t are
calculated by (2) for t = 0 to T . Specifically, for every time
step, the trend proxy dataset can be expressed as:

PT
i
= τ is,t , ∀t ∈ [0,T ] (11)

2) Seasonality Proxy Dataset: For each client i, the
seasonality proxy dataset, denoted asPS

i, is constructed using
the Fast Fourier Transform (FFT) to transform the seasonality
values σ is,t from the time domain to the frequency domain for
every t . The FFT is given by:

FFT [σ is,t ](f ) =
N−1∑
t=0

σ is,te
−j(2π ft/N ), (12)

whereN is the total number of samples in σ is,t , f represents the
frequency domain components, and j is the imaginary unit.
From the FFT spectrum, we identify the top 3 predominant
frequency components, hypothesized to correspond to daily,
weekly, and monthly seasonality. The selected frequencies,
denoted as f1, f2, f3, correspond to the three largest mag-
nitudes in the FFT spectrum. Thus, the seasonality proxy
dataset for client i can be expressed as:

PS
i
=

{
FFT [σ is,t ](fk )

}3
k=1

,∀t (13)

Note that these proxy datasets encapsulate the necessary
information about the client’s data, allowing the server to
perform clustering without direct access to the full local
datasets. This not only facilitates efficient clustering at the
server-side but also aligns with the principles of FL.

Upon receiving the aforementioned proxy datasets, the
server independently conducts k-means clustering for both
trend and seasonality. The number of clusters for both trend

3In the domain of machine learning, proxy datasets are typically
summarized versions of the original datasets, designed to approximate
distributions of the full data without including every detail. In our context,
they encapsulate the essential features of the original mobile traffic data,
allowing the server to perform clustering efficiently without directly
accessing the complete data from each client.
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FIGURE 3. The framework of the proposed method for mobile traffic prediction.

Algorithm 1Client Clustering StrategyWith Decom-
position Components
Input: Xs,t - Traffic volume matrix for service type s

at time point t from all clients;
Output: t_id - trend cluster id for each client; s_id -

seasonality cluster id for each client;
1 // Client-side
2 for each client i do
3 if given x is,t then
4 Compute trend values τ is,t by (2)
5 Compute seasonality values σ is,t by (3)
6 Compute FFT [σ is,t ] by (12)
7 Construct proxy datasets PT

i and PS
i by (11),

(13), respectively
8 Send proxy datasets PT

i and PS
i to the server

9 // Server-side
10 Perform k-means clustering on all received trend

proxy datasets and assign t_id for each client
11 Perform k-means clustering on all received

seasonality proxy datasets and assign s_id for each
client

and seasonality is empirically determined based on silhouette
scores4 As an outcome of this clustering process, the server
determines the t_id and s_id for each client. Our detailed
clustering strategy is summarized in Algorithm 1.

4Silhouette scores measure the quality of clusters in a dataset. They
indicate how similar an object is to its own cluster compared to other clusters.
A higher score indicates better-defined clusters. They are commonly used to
determine the optimal number of clusters.

B. LAYER-WISE PERSONALIZED FEDERATED LEARNING
APPROACH
In traditional FL, a generic global model is trained uniformly
across different data distributions. However, mobile traffic
data from various regions inherently exhibit diverse temporal
characteristics and patterns due to differences in local behav-
iors, infrastructure, population density, and other factors. This
diversity can result in compromised performance when using
a generalized global model.

To tackle this challenge, we introduce the layer-wise
personalized FL, an approach that separately aggregates
each layer decomposed into trend and seasonality. This
novel approach enables fine-grained FL what each layer
of the global model is learned separately. The proposed
approach is illustrated in detail in Fig.3 and the whole
procedure is described in Algorithm 2. Note that layer-wise
freezing mechanism in Algorithm 2 will be addressed in next
subsection. Specifically, our framework consists of seven
steps:

1) Model initialization: The server initializes a model
with a pre-defined architecture and random weights.
Each client i then downloads this initializedmodel from
the server.

2) Local training: Each client i trains locally using its
datasetDi, leading to an updated local model. The local
update for client i during communication round r is
given by:

θ i(r+1) = θ i(r) − η1∇L(Di; θ i(r)) (14)

where θ i(r) is the model parameter for client i at
communication round r , η1 is the learning rate, and∇L
denotes the gradient of the loss function.

3) Layer-wise aggregation:After the local training, each
client i provides its updated weights θ i. These weights
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Algorithm 2 Proposed Layer-Wise Personalized FL

Input: Di = {X i
k ,Y

i
k}
K
k=1 - Mobile traffic data; f -

Fraction of the client; R - Number of
communication rounds; η1, η2 - Learning rates
for local training and local adaption,
respectively; t_id , s_id - Cluster identifiers for
trend and seasonality respectively by
Algorithm [algo1]1; ϵ - Threshold for layer
freezing.

Output: 2 = {2local,1, 2local,2, . . . ,2local,I
} - Set of

clients’ personalized model weights;
1 Initialize a global model on the server: θ init

2 for each client i do
3 Download the initialized model from the server:

θ i← θ init

4 for communication round r = 1 to R do
5 p← max(I · f , 1)
6 Si← a random set of p clients
7 // Client-side
8 for each client i ∈ Si do
9 θ i(r+1)← θ i(r) − η1∇L(Di; θ i(r))
10 Selectively send θ i(r+1) to the server based on

its freezing status

11 // Server-side
12 for each θ i from client i ∈ Si do
13 if t_id(i) = a then
14 CT

a ← CT
a ∪ {θ

i
t }

15 if s_id(i) = b then
16 CS

b ← CS
b ∪ {θ

i
s}

17 θ t,a←
1
|CTa |

∑
i∈CTa

θ it , θ s,b←
1
|CSb |

∑
i∈CSb

θ is

Determine layers to freeze based on ϵ

18 for each client i ∈ Si do
19 Obtain 2̃i with θ t,a and θ s,b

20 Send 2̃i to client i and notify about the
freezing status

21 // Client-side again
22 for each client i ∈ Si do
23 Receive 2̃i from the server
24 2local,i

← 2̃i
− η2∇L(Di; 2̃i)

contain information about both trend and seasonality,
which can be represented as θ it and θ is. The server
then aggregates these trend and seasonality weights
separately for all clients. After aggregation, the weights
are categorized and assigned to their respective clusters
by t_id and s_id .

4) Averaging intra-cluster weights: The server averages
the weights for both the trend and seasonality layers
of clients that belong to the same cluster using the

following equations. For the trend layer in a given
cluster CT

a :

θ t,a =
1
|CT

a |

∑
i∈CTa

θ it , (15)

where a is the cluster identifier for the trend layer, θ t,a
is the averaged weight for the trend layer, θ it is the
weight from client i’s trend layer. For the seasonality
layer in a given cluster CS

b :

θ s,b =
1

|CS
b |

∑
i∈CSb

θ is, (16)

where b is the cluster identifier for the seasonality layer,
θ s,b is the averaged weight for the seasonality layer, θ is
is the weight from client i’s seasonality layer.

5) Global model personalization: During this step,
the server personalizes the global model for each
participating client. For client i with specific t_id and
s_id , the server fetches weights from the respective
trend and seasonality clusters. Formally, for client i
with t_id = a and s_id = b, the personalized global
model’s weights are:

2̃i
= {θ̄t,a, θ̄s,b}, (17)

where θ̄t,a are the averaged weights from the trend clus-
ter a, θ̄s,b are the averaged weights from the seasonality
cluster b, and 2̃i represents the personalized weights
for client i.

6) Personalized global model update: In this step, the
server disseminates the personalized global model
weights to the respective participating clients. For each
client i, the server sends the corresponding weights 2̃i

in (17). The client then updates its local model using:

2updated,i
= 2̃i, (18)

where 2updated,i represents the local model weights for
client i after receiving the personalized weights.

7) Local adaption: Upon receiving its personalized
global model weights from the server, client i proceeds
to fine-tune its model on its local dataset. Using
these personalized weights as a starting point, the
client adjusts its model to better fit its unique data
distribution. This can be represented as:

2local,i
= 2updated,i

− η2∇L(Di;2updated,i) (19)

where η2 is the local learning rate and ∇L represents
the loss function evaluated on the local datasetDi. Once
the local adaptation is complete, the updated weights
from client i are ready to be sent back to the server for
the next communication round.

To provide an intuitive understanding of our approach,
we refer to a simple example as depicted in Fig.3. Consider
client N which has a local dataset visualized in black. The
traffic data of client N displays a nearly consistent trend with
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minimal fluctuations, yet it prominently exhibits a marked
seasonality pattern. Through our approach, client N not only
refines its model based on its own unique data but also
benefits from the learned patterns of other clients with similar
seasonality characteristics, specifically clients C and B.

FIGURE 4. The concept of adaptive layer-wise aggregation.

C. ADAPTIVE LAYER-WISE FREEZING
To consider the communication cost in the training phase,
we introduce an adaptive layer-wise freezing technique.
As illustrated in Fig.4, client A typically transmits both θt
and θs to the server and subsequently updates its local model
with personalized global model’s weights 2̃i

= {θ̄t,a, θ̄s,b}.
In contrast, client N only sends θt owing to the frozen
state of the cluster associated with the seasonality layer.
Consequently, client N receives only θ̄t,a and updates its
local model as 2̃i

= {θ̄t,a, θ̄s,b,(r−1)}. Thus, as illustrated
in Fig.5, avoiding the transmission of frozen layers results
in more substantial communication cost savings than the full
model aggregation approach. Such a design is motivated by
the fact that frequent transmission of model weights between
the server and the clients can be a significant source of
communication overhead.

To determine which layers of the model should be frozen
and which should be updated, we perform an analysis on
the magnitude of weight changes after each communication
round. Those layers where the weights remain relatively
stable are considered for freezing, implying that their weights
will not be sent in the subsequent communication rounds.
For each model layer associated with the trend cluster CT

a ,
the difference between the current averaged weights θ t,a,(r)
and the weights from the previous round θ t,a,(r−1) is
computed by (20). Similarly, for the seasonality cluster CS

b ,
the difference is computed between the current averaged

FIGURE 5. The comparison of our layer-wise aggregation and full model
aggregation.

weights θ s,b,(r) and the weights from the preceding round
θ s,b,(r−1) by (21). If the difference is under a predetermined
threshold ϵ, the corresponding layer is frozen:

1θ t = ||θ t,a,(r) − θ t,a,(r−1)||2 (20)

1θ s = ||θ s,b,(r) − θ s,b,(r−1)||2 (21)

if 1θ t < ϵ or 1θ s<ϵ, then freeze the corresponding layer.

(22)

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we conducted extensive experiments to
validate the effectiveness of our proposed method for
mobile traffic prediction. We detail a prediction model used
for FL, along with the experimental settings. Subsequently,
we explain the evaluation and baselines for comparison.
We then present a comparative analysis of the prediction
performance between the proposed method and baselines
on various kinds of mobile traffic. Notably, predictions and
ground truth from arbitrarily chosen cells within the city
are provided. Moreover, we emphasize how our method
outperforms in both prediction accuracy and communication
efficiency.

A. FEDERATED MODEL AND EXPERIMENT SETTINGS
We utilized Dlinear [22] as our federated model, which
has recently demonstrated remarkable performance in time
series forecasting. Dlinear is a decomposition scheme model
that separates the model into trend and seasonality layers.
We trained the Dlinear model to predict mobile traffic for
each region and exchanged the model weights during the FL
process.

For this experiment, ensuring no loss of generality,
we randomly selected 100 cells from each dataset and
conducted experiments on three types of mobile traffic from
these cells. A span of seven weeks was used for training
and the last week for testing. Both the training and test
datasets were constructed using a sliding window scheme
with a sequence length o = 72 and a prediction length
p = 1. For the Dlinear model, we set the hyperparameters
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as follows: the number of channels c was set to 1 and the
kernel size was set to 25 as usual. The FL-related parameters
are as follows: The fraction of the client f , determining the
number of participating clients in the training, was set to 0.1.
The model was trained for 100 consecutive communication
rounds R with a batch size of 32, utilizing the Adaptive
Moment Estimation (Adam) optimizer with learning rates
α = 0.01. During local adaptation, we also employed Adam
with a learning rate of α′ = 0.0001. The whole parameters
used in experiments are summarized in Table 1 for quick
understanding.

TABLE 1. Experiment setup parameters.

B. BASELINES AND EVALUATION METRICS
To demonstrate the effectiveness of our proposed method,
we primarily compare it with other widely used FL methods.
For a comprehensive evaluation, we also include comparisons
with popular statistical and DLmodels. The baseline methods
used in our study are described as follows:
• HA [13]: Utilizes past traffic data to predict future
patterns through simple averaging, serving as a baseline
for its simplicity and direct approach.

• ARIMA [14]: A widely recognized basic model that
captures various aspects of time series data such as
mobile traffic.

• SARIMA [16]: An extension of ARIMA that specifically
incorporates seasonality, enhancing prediction accuracy
for traffic patterns with clear cyclical behaviors.

• MLP [23]: A fundamental neural network architecture
for regression, offering a solid comparison point for
traffic prediction models. In our experiments, the MLP
model is designed with three fully connected layers,
configured with 64, 128, and 64 units, respectively.

• GRU [24]: Optimized for sequential data, GRU is
capable of capturing temporal dependencies of traffic
with a more efficient training process than traditional
RNNs. In our experiments, the GRU model comprises
three hidden layers each with 64 units.

• LSTM [25]: Designed to capture short-term and
long-term dependencies in time series data such as

traffic prediction. In our experiments, the LSTM model
comprises five hidden layers each with 64 units.

• FedAvg [7]: It is a foundational approach in FL that
averages model parameters across multiple clients. It is
known for its simplicity in many federated scenarios.

• FedAtt [20]: Introducing an attention mechanism, this
method refines the aggregation process in FL. By doing
so, it gives more weight to more relevant client models,
potentially enhancing the overall model accuracy.

• FedDA [12]: It utilizes a unique data augmentation
approach to handling data heterogeneity of mobile
traffic in FL. By grouping clients into clusters based
on augmented datasets and using a dual attention mech-
anism, it achieves a more accurate model aggregation
compared to simply averaging weights.

We evaluate our method and baselines with two commonly
usedmetrics:Mean Squared Error (MSE) andMeanAbsolute
Error (MAE). MSE is a statistical metric that calculates the
average of the squares of the errors or deviations between
the predicted values and the ground truth values. MAE is a
statistical metric used to quantify the average magnitude of
the errors between the predicted values and the corresponding
ground truth values. These twometrics are defined as follows:

MSE =
1
I

I∑
i=1

T∑
t=1

(Y it − Ŷ it )2, (23)

MAE =
1
I

I∑
i=1

T∑
t=1

∣∣∣Y it − Ŷ it ∣∣∣ , (24)

where Ŷ it and Y it are the predicted value and ground truth of
mobile traffic for each client i at time step t , i.e., each client
represents a region in the target city, and I is the total number
of clients.

TABLE 2. Performance comparisons on SMS traffic.

C. COMPARISONS OF PREDICTION PERFORMANCE
First, we present a detailed performance comparison of our
proposed method against traditional statistical methods and
centralized DL models. Tables 2,3, and 4 show the results
of these comparisons for SMS, Call, and Internet traffic,
respectively. For SMS traffic inMilano, our proposed method
achieves a 58.62% gain in MSE and a 45.60% gain in MAE
over the best-performing statistical-based method (SARIMA).
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FIGURE 6. Comparison of prediction performance for three mobile traffic types in Milano and Trento.

TABLE 3. Performance comparisons on call traffic.

TABLE 4. Performance comparisons on internet traffic.

For Call traffic, it shows an 80.40% gain in MSE and a
54.22% gain in MAE. For Internet traffic, it shows a 61.43%

gain in MSE and a 45.10% gain in MAE. When compared to
the best-performing DL-based method (LSTM), our method
achieves a 45.05% gain in MSE and a 20.19% gain in MAE
for SMS traffic. For Call traffic, the gains are 63.49% inMSE
and 36.33% in MAE. Lastly, for Internet traffic, the gains are
32.77% gain in MSE and 15.76% gain in MAE.

Statistical-based methods are effective in predicting reg-
ular traffic patterns but often fail to capture the full range
of traffic across different regions. While DL-based methods
excel in generalizing across diverse traffic patterns, they
typically struggle with unique and rare temporal patterns
(e.g., traffic spikes). However, our method leverages FL to
train a global model, ensuring generalization that covers
traffic patterns across all regions. Additionally, our approach
personalizes the global model through layer-wise aggrega-
tion, where regions with similar temporal characteristics are
grouped together for training. The combination of generaliza-
tion and personalization capabilities is the key reasonwhy our
method achieves superior prediction performance. It adeptly
captures both the broad regular traffic applicable across all
regions and the unique, region-specific patterns crucial for
precision in each local prediction.

After comparing our method’s performance with tradi-
tional statistical-based and DL-based methods, the next phase
of our analysis focuses on its efficacy relative to other
FL baselines. The results, as depicted in Fig.6, extend our
evaluation to three distinct types of mobile traffic. Among all
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the sub-figures, the first row represents results from Milano
and Trento for the SMS dataset in terms of MSE and MAE.
Similarly, the second row represents results for the Call
dataset, and the third row represents results for the Internet
dataset.

As depicted in Fig.6, our proposed method consistently
outperforms all baselines across both datasets. Specifically,
we observe significant performance gains when compared to
the best-performing baselines for each dataset. For the SMS
dataset in Milano, our method achieves gains of 4.27% and
4.46% in MSE and MAE metrics over FedDA, respectively.
For the Call dataset in Milano, our method achieves gains
of 3.57% in MSE and 1.78% in MAE over FedAvg. For
the Internet dataset in Milano, our method achieves gains
of 16.68% in MSE and 16.77% in MAE against FedAvg.
Similarly, for the SMS dataset in Trento, our method achieves
gains of 16.95% and 9.75% in MSE and MAE metrics over
FedDA, respectively. For the Call dataset in Trento, our
method achieves gains of 11.63% inMSE and 6.44% inMAE
over FedAvg. Lastly, for the Internet dataset in Trento, our
method achieves gains of 14.79% inMSE and 9.11% inMAE
against FedAvg.

The performance enhancements observed are primarily
due to two factors: 1) Our method enables a fine-grained
federation among regions that share similar temporal charac-
teristics. 2) Our method trains the global models tailored for
local traffic data in each specific region. This personalized
approach yields more accurate predictions compared to a
coarse-grained global model designed for all regions. Note
that there is a variation of our proposed method, represented
as proposed*, specifically introduced to evaluate the impact
of local adaptation. This variant omits the local adaptation
process and focuses solely on personalization at the server
side. By comparing the performance of this variation, we can
ascertain the effectiveness of our local adaptions step.

To further evaluate the predictive capabilities of our
method and the baseline models, prediction results and
ground truths are presented in Fig.7. The x-axises denote the
time index of the test dataset and the y-axises are the mobile
traffic volume. The cells are randomly selected for each
service type in the Milano and Trento datasets, respectively.
Each sub-figures show our method can accurately predict
the values for all the kinds of mobile traffic. Especially,
we can see that our proposed method demonstrates not only
enhanced accuracy in predicting peaks and troughs compared
to baselines but also maintains a minimal error when irregular
patterns occurs. This can be attributed to our approach’s
ability to better capture the local characteristics of a specific
region.

D. PERSONALIZATION ANALYSIS
In Fig.9, we explore the trained layers across clusters to
verify model personalization. The weights of the layers are
visualized as a 2D heatmap. The x-axis represents the length
of the input data, corresponding 72 time index in the past.
The y-axis represents the length of the output prediction,

FIGURE 7. Prediction results and ground truth compared to the baseline
for randomly selected cells in each of the two citys.

corresponding to the prediction value for the subsequent
time index. This heatmap provides a visual representation
of how much each point in the input data affects the
predicted value.

Fig.9a shows the trend layer’s attention to the input
sequence for each cluster. For cluster 0, the attention given
to the data around time point 60 significantly influences
predictions. This reveals the model’s effective learning from
areas where recent trends remain consistent. On the other
hand, cluster 1 places its attention more on the latest data,
indicating the recent data strongly influences the prediction.
This reveals the model’s effective learning from areas where
recent trends change significantly. In Fig.9 (b), we can
pinpoint the areas where the seasonality layer directs its
attention within the input sequence for each cluster. The
visualization of the seasonal layer reveals the nature of
periodic patterns learned by each cluster. Cluster 1 shows
a strong periodic pattern with a cycle close to 24 units,

VOLUME 12, 2024 53137



S. Lee et al.: Layer-Wise Personalized FL for Mobile Traffic Prediction

FIGURE 8. The communication cost induced during whole training.

FIGURE 9. Visualization of weight for trend and seasonality layers.

while cluster 0 shows a periodicity close to 20 units.
Conversely, cluster 2 shows a weak periodic pattern and more
irregular pattern.

The visualization results demonstrate that each cluster
has effectively learned the temporal patterns for specific
regions. By combining these learned layers on the server,
a personalized global model is tailored to the characteristics
of each region. We conclude that our personalized approach
provides a more precise learning of regional mobile traffic
patterns, yielding improved prediction accuracy.

E. COMMUNICATION COST ANALYSIS
To evaluate the communication efficiency of our proposed
method, we measured the communication cost throughout
the entire learning process, as illustrated in Fig.8. The x-axis
denotes the communication rounds, representing global FL
rounds with clients from diverse regions, while the y-axis
indicates the communication cost required for training. The
vertical green line represents the points at which layer
freezing occurs (i.e., when communication costs start to
save). It is evident that the earlier and more frequent
layer freezing occurs, the greater the efficiency in terms of
communication costs.

The varied timing of layer freezing across the data can
be attributed to the different complexities associated with
learning mobile traffic data patterns for various service
types. Layers in clusters that learn simpler trend and
seasonality patterns tend to converge and freeze faster than
their counterparts. This early layer freezing indicates the
presence of consistent patterns in the traffic of specific
regions, suggesting that some service traffic exhibits stable
trends and distinct periodic behaviors (e.g., traffic patterns
with minimal fluctuations in trend or those showcasing
pronounced seasonality).

VI. DISCUSSION
In this study, we presented a novel personalized FL frame-
work, specifically tailored formobile traffic prediction.When
comparing our results with existing statistical methods and
DL methods, including other FL approaches, several key
distinctions become evident. Our approach has the capability
for both generalization and personalization, offering accurate
predictions of each region’s unique temporal characteristics.
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This contrasts with traditional statistical models, which
typically lack the ability to capture complex non-linear
relationships. On the other hand, DL methods excel in
generalization but often fall short in personalization, leading
to lower accuracy for atypical patterns in specific regions.
Moreover, our method stands in contrast to existing FL
approaches. Existing FL methods typically train a single
global model across all regions, which may not efficiently
capture unique regional traffic characteristics. Our person-
alized FL framework, however, separately trains each layer
of the global model. This fine-grained approach allows for
a more granular understanding of mobile traffic patterns,
thereby achieving a prediction model that is precisely tailored
to regional specifics.

However, it is important to note that the practical
implementation of our method necessitates computational
resources at the base station or edge server in each
region. Looking forward, with the progression towards
beyond 5G and 6G networks, anticipated advancements
in edge computing are expected to significantly enhance
the decentralization of computing resources [8], [26]. This
evolution will likely make our approach even more feasible
and effective by providing the necessary computational
resources at the local level, further bolstering the capabilities
of implementations [27].
Unfortunately, our study used 4G data due to the lack

of publicly available datasets for more advanced networks
like 5G. However, it is essential to recognize that with the
advent of the beyond 5G and 6G era, mobile traffic is
expected to display increasingly complex patterns [28]. This
complexity will stem from a broader range of communication
and mobility patterns generated by a variety of devices,
including IoT devices, AR and VR systems, and autonomous
vehicles [29]. Such diversity in device types and their
respective applications is likely to lead to significant regional
variations in traffic patterns. Traditional single-global model
approaches are likely to face limitations in capturing
these regional characteristics and making accurate traffic
predictions. In contrast, our proposed personalized approach
is designed to adaptively learn models that are specifically
tailored to the unique characteristics of each region.We antic-
ipate that this approach will be increasingly effective in
handling the evolving complexity of mobile traffic data over
time.

VII. CONCLUSION
In this paper, we focus on FL-based mobile traffic prediction
for future mobile networks. There are two primary challenges
in this domain: First, data heterogeneity stems from the varied
communication andmobility patterns across regions, posing a
challenge for maintaining consistent predictive performance.
Second, the challenge of communication efficiency arises
as the frequent transmission of a large number of model
parameters significantly increases communication costs.
To address these challenges, we propose a layer-wise FL
framework that enables fine-grained training of each layer in

the global model. This fine-grained federation personalizes
the model for each region, effectively addressing the data
heterogeneity issue. Additionally, we integrate an adaptive
layer freezing mechanism that selectively updates model
layers based on their convergence, reducing communication
costs during training. The experiment results highlight
the superiority of our approach, attributing the enhanced
performance to its robust personalization capabilities that
adeptly capture rare and unique temporal patterns across
different regions. Additionally, our method significantly
reduces communication costs by strategically updatingmodel
parameters only when necessary, without compromising
prediction accuracy.

In future work, we intend to explore additional per-
sonalization techniques to capture rare traffic patterns in
specific region. Furthermore, a comprehensive convergence
analysis of layer-wise FL is planning to be explored. Proving
the convergence of our approach theoretically would be
an interesting direction of future research. Additionally,
an intriguing extension of this work for future study is the
exploration of joint problems, such as addressing traffic
congestion, where our method could be further applied.
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