
Received 8 March 2024, accepted 28 March 2024, date of publication 4 April 2024, date of current version 11 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3384487

Cooperative Mashup Embedding Leveraging
Knowledge Graph for Web
API Recommendation
CHUNXIANG ZHANG 1, SHAOWEI QIN 1, HAO WU 1, AND LEI ZHANG 2, (Member, IEEE)
1School of Information Science and Engineering, Yunnan University, Kunming 650091, China
2School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210024, China

Corresponding authors: Shaowei Qin (qinshaowei.ynu@gmail.com) and Hao Wu (haowu@ynu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61962061, in part by Yunnan Provincial
Foundation for Leaders of Disciplines in Science and Technology under Grant 202005AC160005, in part by Yunnan High-Level Talent
Training Support Plan: Young Top Talent Special Project under Grant YNWR-QNBJ-2019-188, in part by the Postgraduate Research and
Innovation Foundation of Yunnan University under Grant ZC-22221418, and in part by the Applied Basic Research Project of Yunnan
Province under Grant 2013FB009.

ABSTRACT Creating top-notch Mashup applications is becoming increasingly difficult with an
overwhelming number of Web APIs. Researchers have developed various API recommendation techniques
to help developers quickly locate the right API. In particular, deep learning-based solutions have attracted
much attention due to their excellent representation learning capabilities. However, existing methods mainly
use textual or graphical information, and do not fully consider the two, which may lead to suboptimal
representation and damage recommendation performance. In this paper, we propose a Cooperative Mashup
Embedding (CME) neural framework that integrates knowledge graph embedding and text encoding, using
Node2Vec to convert entities into numerical vectors and BERT to encode text descriptions. A cooperative
embedding method was developed to optimize the entire model while capturing graph and text data
knowledge. In addition, the representations obtained by the framework of the three recommendation models
are derived. Experimental results on the ProgrammableWeb dataset indicate that our proposed method
outperforms the SOTA methods in recommendation performance metrics Top@{1,5,10}. Precision and
Recall have increased from 3% to 11%, while NDCG and MAP have improved from 3% to 6%.

INDEX TERMS Mashup applications, API recommendation, knowledge graph, cooperative embedding.

I. INTRODUCTION
A Web mashup service is created by combining multiple
Web services, programming interfaces (APIs), or data sources
form a new synthetic service or application that offers
additional value and capabilities [1]. Bookfinder is a mobile
app for browsing and searching different book titles (Fig. 1).
The application integrates several APIs from different service
providers, such as Google Books API, Open Library Books
API, Amazon Product Advertising API, and eBay Finding
API. Mashup development methods liberate the workload
of developers, release their innovative ideas, and realize
various novel applications without requiring the high skills of

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

developers. As the number of Web APIs continues to grow,
a large number of heterogeneous APIs/services with complex
relationships compete and collaborate. An ecosystem cen-
tered on API data resources has gradually formed [2]. Online
service registries like ProgrammableWeb, RapidAPI, and
API Harmony are becoming increasingly popular, and thus,
the number of Web APIs that can be accessed has continued
to proliferate [3]. For example, there are 24,000+ registered
Web APIs and 8, 000+ registered mashup applications
covering 500 application categories in ProgrammableWeb.
With so many resources, developers are burdened with
information overload. Consequentially, it is important to
enhance the API recommendation model to optimize the
application of mashups and reduce the burden of people’s
needs [4].

49708

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0006-9287-5665
https://orcid.org/0000-0002-9774-0851
https://orcid.org/0000-0002-3696-9281
https://orcid.org/0000-0001-8749-7459
https://orcid.org/0000-0002-1899-2808

C. Zhang et al.: CME Leveraging Knowledge Graph for Web API Recommendation

FIGURE 1. An example of mashup.

Researchers from academia and industry have developed a
series of recommendation methods and achieved significant
results. Research on recommendation systems can be cate-
gorized into three main types: content-based, collaborative
filtering, and hybrid recommendations. The core of these
methods is to evaluate the correlation between mashup
development requirements and candidate APIs [5]. Whether
the recommended model needs training, it can be roughly
divided into learning and memory-based methods [4]. The
learning methods mainly use topic models [6], [7], [8],
factorization machines [9], [10], deep learning [11], [12], or a
combination of several methods. During the model learning,
prediction accuracy is improved through model training and
continuous parameter adjustment. Deep learning methods
offer robust modeling capabilities for various features,
fostering extensive applications and gradually becoming the
preferred solution. However, most of these works use a
single information source, such as deep learning which
focuses on using textual features, and knowledge graph
embedding which focuses on using graph structure features.
These methods have successfully solved some challenges
but still face some problems. The method based on graph
knowledge can effectively address the problem of data
sparsity and achieve high recommendation accuracy [13],
[14]. However, how to model user requirements is still
a difficult issue, and specifying keyword combinations
is not user-friendly for developers because they must
have solid domain knowledge and development experience.
Content-based requirement understanding can alleviate the
requirements for developers. However, it will seriously affect
the performance of recommendation algorithms when text
features are insufficient. Obviously, without fully considering
the knowledge of text data and graph data, it often results
in sub-optimal solutions for Mashup-oriented Web API
recommendation.

To address this problem, we propose our Cooperative
Mashup Embedding (CME) neural framework. This frame-
work integrates knowledge graph embedding and textual
encoding in a unified manner. In particular, we first encode
the knowledge entailed in the mashup history data with the
graph structure and employ graph embedding algorithms [15]
to transform the entities of Mashups and APIs into numerical

vectors. At the same time, we build a classification model
where BERT [16] is employed to encode the textual descrip-
tion of Mashups into vector representation, and the Web
API recommendation is modeled and solved as a multi-label
classification task. Then, we develop a novel cooperative
mashup embedding method to enable knowledge exchange
between the two different embedding spaces, by which both
knowledge from graph data and text data can be captured
simultaneously. Finally, we derive three recommendation
models to leverage the obtained representations from CME
to realize Web API recommendations.

The main work of this article can be summarized as
follows:

• We propose a neural framework that combines knowl-
edge graph embedding and textual encoding in a unified
manner, by which both knowledge from graphs and text
data can be captured simultaneously.

• We derive three recommendation models for mashup-
oriented Web API recommendation to leverage the
intermediate presentations of different entities.

• We have conducted intensive experiments and analysis
to show the merits of our proposed method compared
with the state-of-the-art techniques.

The rest of the article is structured as follows: Section II
introduces the preliminary knowledge. Section III shows
the overall framework of our model. Section IV details the
experimental results and analysis. Section V describes the
related work. The paper is summarized in Section VI.

II. PRELIMINARIES
A. PROBLEM DEFINITION
• A mashup m =< Fm,Tm,Am,X >∈ M comprises
a textual description Fm, a set of categories Tm that
indicate its functions, a bundle of APIs Am, and a set
of meta-elements X to prepare for composition [4].

• A Web API a =< Fa,Ta,X >∈ A consists of
a textual description Fa, a set of categories Ta to
index its classification or functions, a set of meta-
elements X , such as quality attributes, input ports, and
output ports [4].

• Web API recommendation is defined as a process
where, given a textual description of mashup (it
can be seen as the development requirement in our
scenario), the recommendation algorithm generates a
list of Web APIs according to their relevance to the
mashup.

The symbols and notations are given in Table 1.

B. KNOWLEDGE GRAPH EMBEDDING WITH Node2Vec
Knowledge graph embedding is a crucial step in utiliz-
ing knowledge graphs for machine learning tasks [17].
Node2Vec [18] is a popularmethod to learn vector representa-
tions for entities in a knowledge graph by utilizingWord2Vec
and randomwalks. In this section, we’ll delve into the process
of creating entity embeddings using Node2Vec.

VOLUME 12, 2024 49709

C. Zhang et al.: CME Leveraging Knowledge Graph for Web API Recommendation

TABLE 1. Symbols and notations.

FIGURE 2. An example of knowledge graph. Mashups are represented by
rectangles, APIs are represented by triangles, other entities are
represented by circles, and edges represent entity relationships.

1) KNOWLEDGE GRAPH CONSTRUCTION
We primarily focus on two types of entities: mashups
and APIs. Our graph represents the relationships between
entities as undirected edges. For example, the ‘‘Related
API’’ between an API and a mashup means that an
API was invoked by a mashup. The remaining features
associated with Web APIs and mashups(such as category,
type, company, and so on) are treated as attributes of
the respective entities. Fig. 2 depicts a simple knowledge
graph.

2) GENERATING NODE SEQUENCES VIA RANDOM WALK
Node2vec is an extension of DeepWalk which combines ran-
dom walks of both depth-first search (DFS) and breadth-first
search (BFS) neighborhoods. It controls whether the model
leans more towards BFS or DFS by adjusting the directional
parameters. BFS can better reflect the ‘‘structure’’ of graph
networks, as the sequences generated by BFS often consist of
network structures around the current node. DFS can better
reflect the ‘‘homogeneity’’ of graph networks, as DFS is
more likely to travel to nodes far away from the current
node.

3) NODE EMBEDDING VIA SKIP-GRAM
Following the same approach as Word2Vec, Node2Vec
learns an embedding for each node by Skip-Gram. Once
we have obtained the vector representations for entities,
we can leverage them for various downstream tasks like
classification, clustering, or recommendation systems.

C. TEXT EMBEDDING WITH BERT
BERT, short for Bidirectional Encoder Representation from
Transformers, which is a pre-trained language representation
model that diverges from traditional unidirectional language
models and their shallow concatenations. Instead, BERT
employs a novel masked language model to generate
profound bidirectional language representations [16]. As a
result, BERT has become a fundamental component in
forming various downstream tasks. In this study, we uti-
lize BERT as the default text encoder to construct our
framework.

1) TEXT PREPROCESSING
BERT encodes each word in a sentence into three vec-
tors: Token Embedding, Segment Embedding, and Position
Embedding. We break down the text description of each
mashup into a series of subwords and encode them using
BERT’s vocabulary. Additionally, we append the [CLS] tag
to the beginning of the input sequence as the input start for
the classification task and use the [SEP] tag to separate the
text description and other information.

2) TEXT ENCODING
By feeding the preprocessed text sequence into the BERT
model, we acquire an embedding vector for each subword,
including the cls vector or the vector of the last token.
We utilize the ‘‘cls’’ vector since it captures the semantic
information and contextual representation of the entire
sentence, allowing us to categorize it effectively.

III. METHODOLOGY
A. COOPERATIVE MASHUP EMBEDDING LEVERAGING
KNOWLEDGE GRAPH
Our objective is to devise an innovative CollaborativeMashup
Embedding (CME) framework that seamlessly integrates
the strengths of Node2Vec and BERT. This integration
aims to embed mashups, harnessing both graph-based
and text-based knowledge, thereby enhancing the perfor-
mance of mixture-oriented Web API recommendation tasks.
As depicted in Fig. 3, the CME framework is structured
to facilitate effective feature exchange between two crucial
components.

e0m = FC0(BERT(Fm)),

ê1m = tanh(FC1(e0m)),

ê2m = sigmoid(FC2(e0m)). (1)

Within the BERT component, we introduce three fully
connected (FC) layers, carefully crafted to enhance feature
selection and facilitate interaction between the text domain
and the knowledge graph domain. The FC0 layer serves as
a linear transformation without an activation function, acting
as a pooling mechanism to prevent overfitting and maintain
feature stability. After passing through the FC0 layer of
the BERT model, the Mashup text descriptions generate the
e0m feature vector. In contrast, the FC1 and FC2 layers employ

49710 VOLUME 12, 2024

C. Zhang et al.: CME Leveraging Knowledge Graph for Web API Recommendation

FIGURE 3. The framework of CME. Node2Vec realizes knowledge graph embedding, and
BERT fulfills the text embedding. Two modules will exchange and share knowledge from two
embedding spaces in cooperative training.

nonlinear transformations through the adoption of tanh and
sigmoid activation functions, enabling BERT to learn and
execute more complex tasks.

To achieve effective feature exchange, we draw inspiration
from the classical encoder-decoder architecture but introduce
innovative modifications. Specifically, we incorporate two
decoders that decode the output of the BERT encoder into
distinct semantic spaces: the knowledge graph embedding
space and the API-specific space. In the knowledge graph
embedding space, we utilize the embeddings of mashups as
training labels, while in the API-specific space, we employ
multi-hot vectors of Web APIs as training labels. This
design enables our framework to simultaneously capture
Mashup-API calling patterns, Mashup/APIs co-occurrence
patterns, and textual information of mashups, thereby enrich-
ing the representation ofmashups and enhancing the accuracy
of Web API recommendations.

1) DURING THE TRAINING PHASE
we adopt an alternating training strategy to optimize both
Node2Vec and the encoder-decoder model. Through collabo-
rative training, we align the deep representations of Mashups
encoded by BERTwith the shallow representations generated
by Node2Vec for Mashups, facilitating the integration of
textual and graphical data. This process iterates repeatedly
until the model converges, significantly enriching knowledge
embeddings and enhancing BERT’s encoding capabilities
for Mashup texts, ultimately improving recommendation
accuracy.

Algorithm 1 Training CME
Require: M , A, GlobalEpoch, LocalEpoch, Batch Size, . . . ;
Ensure: Model Parameters;
1: Initialize parameters of Node2Vec, BERT, Full-Connection layers: FC0, FC1,FC2;
2: Create knowledge graph G, and generate entity embeddings with Node2Vec;
3: for i = 1 to GlobalEpoch do
4: /* Finetune BERT and FC Layers*/
5: for j = 1 to LocalEpoch do
6: for each mashup/minibatch m ∈ M do
7: Forward propagation on BERT and FC∗ by Eq. 1;
8: Fetch the Mashup embedding em as a pseudo label of regression task;
9: Transform Am to a multi-hot vector vm as label of classification task;
10: Calculate loss: L = mse(em, ê1m)+ bce(vm, ê2m);
11: Minimize L with back-propagation and gradient descent;
12: end for
13: end for
14: /* Finetune Node2Vec*/
15: for j = 1 to LocalEpoch do
16: for each mashup/minibatch m ∈ M do
17: Perform the forward propagation: ê1m = tanh(FC1(e0m));
18: Re-initialize the embedding in Node2Vec: em ← ê1m;
19: end for
20: Re-run Node2Vec to adjust the graph-based embeddings;
21: end for
22: end for
23: return The model parameters of CME.

2) DURING THE TESTING PHASE
we leverage the diverse representations generated by the
CME model to construct various recommendation algo-
rithms. These algorithms take the textual descriptions of
Mashups as input and recommend Web APIs based on
their association strengths with the input. For classification
models, we directly output the probability distribution of
all Web APIs, enabling the sorting of APIs based on their
probabilities.

VOLUME 12, 2024 49711

C. Zhang et al.: CME Leveraging Knowledge Graph for Web API Recommendation

B. MASHUP-ORIENTED WEB API RECOMMENDATION
MODELS
Based on our framework, we can generate representations of
mashups and Web APIs, these vector representations provide
us with an opportunity to develop various recommendation
algorithms in different principles.

1) CLASSIFICATION MODEL (CM)
This model treats the Web API recommendation as a
multi-label classification task that takes the text-based
representation of mashup as the classifier’s input, and the
Web APIs are used as a label for training the classifier.
In the recommendation phase, when a new mashup is fed
into the classifier, it outputs the probability of each candidate
API. A recommendation list will be generated by sorting all
candidates by the probability value.

R(mi, a) ≜ Pr(a|mi) = sigmoid(FC2(e0m)) (2)

2) RETRIEVAL MODEL (RM)
This model considers the Web API recommendation as a
retrieval process, assuming that both the mashup requirement
and the candidate APIs are expressed in the same semantic
space. Then, a recommendation list can be generated by
calculating the similarity between the mashup and candidate
APIs.

R(mi, a) = tanh(FC1(e0m)) · e
T
a (3)

3) COLLABORATIVE FILTERING (CF)
Collaborative filtering is a classic way to construct recom-
mender systems. It is a commonly accepted notion that users
who share similar interests and preferences are likely to prefer
similar items. This also applies to API recommendation
scenarios, wheremashups with similar requirements aremore
likely to reuse similar combinations of Web APIs. In extreme
cases, we can completely reuse the existing solution if a new
requirement is the same as a known mashup. Given a fresh
mashup mi, its text description (to indicate the development
requirements) will be encoded by BERT. Then, we find a
top-similar set N (mi) that is similar to mj based on their
text-based representation. The relevance score between the
mashup mi and an API a is decided by aggregating all
relevance scores from N (mi) to a,

R(mi, a) =

∑
mj∈N (mi) Sim(mi,mj) · R(mj, a)∑

mj∈N (mi) Sim(mi,mj)
, (4)

where Sim(mi,mj) = cosine(e0mi , e
0
mj) is the cosine similarity

between two mashups, e0mi , e
0
mj are the intermediate vector

representations of two mashups. Finally, we can generate a
recommendation list by sorting all candidate APIs on their
relevance to mi.
To introduce the recommendation process, we have

summarized the details of Web API Recommendation in
Algorithm 2.

Algorithm 2Web API Recommendation
Require: Trained model of CME,Mtest , A;
Ensure: Top-ranked Web APIs;
1: for each test mashup m ∈ Mtest do
2: Perform the forward propagation: e0m = FC0(BERT(Fm));
3: for each Web API a ∈ A do
4: if CM is used: then
5: Calculate relevance R(m, a) by Eq.2;
6: end if
7: if RM is used: then
8: Calculate relevance R(m, a) by Eq.3;
9: end if
10: if CF is used: then
11: Calculate relevance R(m, a) by Eq.4;
12: end if
13: end for
14: Sort all candidate APIs according to R(m, a);
15: end for
16: return Top-ranked APIs for each test mashup

IV. EXPERIMENTS AND ANALYSIS
A. DATASET
The data used in the experiment comes from Pro-
grammableWeb.com, which lists the Internet company’s open
Web API and mashup, covering multiple categories. The
dataset in this paper contains 6404 mashups, 1629 Web APIs
that have been invoked at least once, and 459 categories.
Each mashup calls an average of 2.061 Web APIs. For each
mashup, the obtained data mainly contains four kinds of
metadata: mashup name, description information, category
information, and Web API call information. For each API,
the data contains three main types of metadata: API name,
description information, and main category. Table 2 shows
the statistics of the experimental dataset.

TABLE 2. The statistics of the experimental dataset.

We split theMashup dataset into training and testing sets to
evaluate performance using an 8:2 ratio. The API collection
serves dual purposes - it is used for both training the model
and assessing its recommendation performance. This means
that all APIs will be considered as candidates, and after
ranking, the top-k APIs will form the recommended list.
During training data preparation, wemust create a knowledge
graph, which includes entities and relationships based on
the schema depicted in Fig. 2. Notably, the Mashups in the
test set do not contribute to creating a knowledge graph,
resulting in the absence of entity nodes. As a result, our model
training falls under inductive learning instead of transactional
learning. It is important to mention that since the task of Web
API recommendations aims at assisting mashup creation, the
mashups in the testing set are cold-start and lack any input.
To address this, we utilize the text to emulate the potential
functional needs of mashups.

49712 VOLUME 12, 2024

C. Zhang et al.: CME Leveraging Knowledge Graph for Web API Recommendation

B. EVALUATION INDICATORS
An important part of recommender system research is to
evaluate the performance of recommendation algorithms, and
different evaluation measures can evaluate the model from
different perspectives. For Web API recommendations, four
widely used indicators of Recall, NDCG, Precision, andMAP
can evaluate the accuracy of the model, and the higher the
value of these four indicators, the better the performance.

Precision focuses on the correctness of the recommenda-
tion results, that is, whether the recommendedWebAPImeets
the interests and needs of mashups.

Prec@N =
|APIsreal ∩ APIsTop−N|
|APIsTop−N|

(5)

Recall: A high recall rate indicates that the recommender
system can better cover APIs that users may be interested in
but does not pay attention to the ranking of recommendation
results.

Recall@N =
|APIsreal ∩ APIsTop−N|

|APIsreal|
(6)

NDCG (Normalized Discounted Cumulative Gain): Con-
sidering the ranking order and relevance of the recom-
mendation results, the higher the ranking for the API the
user is interested in, the better. NDCG values are between
0 and 1, and closer to 1 indicates better sorting quality of
recommended results. A common description of NDCG is:

DCG@N =
N∑
i=1

2reli − 1
log2(i+ 1)

, IDCG@N =
|GT|∑
i=1

1
log2(i+ 1)

,

(7)

where GT = APIsreal ∩ APIsTop−N, reli = 1/0 indicates
whether the i-th Web API is truly relevant to the current
mashup. NDCG@N is achieved by standardizing DCG@N
with the ideal candidate list DCG: NDCG@N = DCG@N

IDCG@N .
IDCG@N is pre-computed by computing all the real-world
APIs that participate in developing the target mashup.

AP (Average Precision): AP considers the ranking order
and relevance of recommended results and calculates the
average precision. A higher AP value indicates better
sorting quality of recommendations. Average AP@N obtains
MAP@N on all test samples.

AP@N =
N∑
i=1

reli ∗ Prec@i∑N
i=1 reli

(8)

C. EVALUATION METHODS
For comparison, we consider the representative recommen-
dation methods covering different principles, such as topic
modeling, random walks, and deep learning.
• SPR uses topic-modeling techniques to effectively
model the relationship betweenmashup descriptions and
APIs, providing highly accurate API recommendations
based on thorough topical structure analysis [8].

• RWR encodes mashup-specific contexts in a knowledge
graph and estimates relevance to Web APIs via random
walks based on keyword requirements [5].

• NCF is a classic neural model in recommender sys-
tems [19] which combines the naive matrix factorization
and multi-perceptron layer-based matrix factorization.

• FC-LSTM is based on LSTMwith a functional attention
mechanism and a contextual attention mechanism to
help select the appropriate services [20].

• MTFM exploits a convolutional neural network to
encode the textual requirement of mashup and interact
with the features of APIs [4]. The recommendation for
Web API is modeled as a multi-label classification task,
co-optimized with category judgment.

• FSFM integrates structural relationships in the MAHN
to derive embedding vectors and generates requirement
semantic vectors for Mashups and APIs, ultimately
combining all representation vectors for feature fusion
to produce a list of candidate APIs [21].

• BERT-CM is the simple classification model based on
BERT where the Web API recommendation is also
modeled as a multi-label classification task [22].

• CME-CM. The recommendation algorithm in the prin-
ciple of classification model with CME.

• CME-RM. The recommendation algorithm in the prin-
ciple of retrieval model with CME.

• CME-CF. The recommendation algorithm in the princi-
ple of collaborative filtering model with CME.

Regarding the baselines, SPR, RWR, NCF, FC-LSTM,
FSFM, and MTFM adopt the source code released by
Duan et al.1 For the remaining models, we implement them
using Pytorch framework.

D. METHODS PERFORMANCE ANALYSIS
The recommendation performance of different models with
cutoffs of N=1,5,10 is presented in Table 3. Considering
the baseline models, it is easy to find that FSFM performs
best in the baseline model with a N range of 5 to 10, as
it integrates the advantages of semantic functions, MAHN
structures, and feature fusion. BERT-CM shows excellent
performance at N=1. This is mainly due to the advantages
of directional encoder representation from transformers. For
CME-CF, its ranking performance on N=1 outperforms
all baseline models, indicating that traditional collaborative
filtering algorithms still have advantages. For CME-RM,
its ranking performance is similar to BERT-CM except for
top-1 recommendations. For CME-CM, it outperforms all
competitors in the Top-5 recommendation. Especially, a per-
formance gain of 3.07% to 11.1% on Precision@N, 3.30% to
10.7% on Recall@N, 3.07% to 6.06% on NDCG@N, 3.07%
to 4.29% on MAP@N was achieved respectively compared
with BERT-CM. Due to BERT-CM being seen as a degraded
version of CME-CM without injection of domain knowledge
provided by Node2Vec. This confirms that injecting domain

1https://github.com/whale-ynu/MTFM

VOLUME 12, 2024 49713

C. Zhang et al.: CME Leveraging Knowledge Graph for Web API Recommendation

TABLE 3. Performance comparison of Web API recommendation. The best values regarding baselines and our proposed methods are marked by Italic
and Bold.

knowledge into the classifier model through cooperative
mashup embedding significantly strengthens the model’s
expressive capability and thus benefits recommendation
performance.

E. COMPUTATIONAL COSTS ANALYSIS
In this section, we quantitatively analyze the computa-
tional cost with the selected models. We utilize a Dell
Precision 7920 Tower Workstation equipped with Ubuntu
22.04 LTS, an Intel Xeon Gold 6234 Processor, 128GB of
memory, and an Nvidia Quadro RTX8000 GPU. As shown

TABLE 4. Comparison of the computational cost.

in Table 4, due to the use of BERT as the text encoder,
the BERT-CM and CME models are 6 times larger than
MTFM and 4 times larger than FSFM, the single-round
training cost of BERT-CM is more than that of them. Due
to the integration of graph embedding, alternate training, and
other mechanisms, a single-round training of CME requires
more time, approximately five times that of BERT-CM, under
the same configuration. However, the training time of CME
can be significantly reduced by increasing batch size. For

example, doubling the batch size can save 40% of the training
time.

F. CASE-STUDY ANALYSIS
In this study, we aim to evaluate different methods for
suggesting APIs for mashups, which are Web applications
that combine data or functionality from multiple sources.
Table 5 shows the top five suggestions for four target
mashups, which cover different types of applications.

Maps Compare compares the mapping service APIs
of different providers. BERT-CM and CME-RM suggest
the three target APIs well compared to other methods.
CME-CM not only perfectly suggests all target APIs but also
suggests a much more relevant candidate Yahoo Geocoding
which is a geocoding Web service that helps developers
make their applications location-aware. Seesu uses vk.com,
soundcloud.com, ex.fm, last.fm, and youtube.com to give
users a music player and socialize. Since there are six APIs
involved and the text information is insufficient, it is hard to
suggest the right candidates. Most of the methods can only
match YouTube and Last.fm while CME-CM significantly
outperforms them by identifying four real APIs. eSignature
Gateway provides document signature functionality for all
email clients and includes electronic storage, data analytics,
and workflow capabilities. Most methods only select one
option. BERT-CM, FSFM, RWR, and MTFM can match
both DocuSign Enterprise and Twilio SMS. CME-CM
performed better in this situation, matching three targets.
BlockWild has a relatively sufficient text description. Most
models can suggest three target APIs: Google Maps,
Facebook, and Twitter. In contrast, CME-CM can predict

49714 VOLUME 12, 2024

C. Zhang et al.: CME Leveraging Knowledge Graph for Web API Recommendation

FIGURE 4. Impact of the dimensionality of FC1 layer w.r.t CME-CM.

four target APIs, including Upcoming.org, a service that
helps you share and keep track of your events, which all
remaining competitors omit.

G. PARAMETER IMPACT
In the CME framework, the mashup embeddings of known
nodes from the knowledge graph are used as pseudo labels
to co-optimize and inject additional knowledge into the
BERT module. An important way to measure knowledge
graph embedding quality is to observe its embedding
dimension’s impact on recommendation performance. The
dimensionality of the FC1 layer is equivalent to the node
embedding dimension. Moreover, the FC2 layer acts as a
feature selection bottleneck, and only by compressing global
features into an appropriate dimension, the downstream
classification task can achieve optimal performance [23].
Therefore, we explored the influence of the dimensionality
of FC1 and FC2. To simplify hyperparameter settings,
we always keep the dimensions of the two layers the
same.

To provide both qualitative and quantitative analysis,
Fig. 4 shows how FC1 affects the recommendation accuracy
of CME-CM, and Fig. 5 shows how FC2 affects the
visualization of mashup representations. Generally speaking,
smaller dimensions lead to information loss, which will
limit the expressive ability of the model and make it
impossible to distinguish tiny differences between different
representations (see Fig. 5a and 5b). Relatively speaking,
increasing the embedding dimension helps to enhance the
expressive power. From Figs.4a and 4b, it can be seen that the
ranking indicator of recommendation results has significantly
improved while also improving the performance of the
recall rate with the increase of embedding dimension. Larger
dimensions introduce sparsity problems, which are also
not conducive to similarity calculation and recommendation
(see Fig.4c), also cause model overfitting and hinder the
model’s expressive ability (see Fig. 5d). For our scenario,
128 is a better choice for FC1 and FC2 according to the
analysis.

V. RELATED WORKS
Web API recommendation for mashups is a crucial task
that has been studied extensively by researchers. There are

two main approaches to this problem: content-based and
collaborative filtering (CF).

Content-based methods involve representing mashup
requirements and candidate Web APIs as vectors and
calculating their similarity. For instance, Xia et al. [7] pro-
posed clustering services into categories and recommending
them based on their relevance to the mashup require-
ments. Zhong et al. [8] reconstructed service profiles using
an author-topic model to identify important features that
could be used for recommendation. Another content-based
approach is to use deep learning techniques, such as those
proposed by Xue et al. [24], who developed a method for gen-
erating mashups using real-world data integration and natural
language processing. Xiong et al. [11] also employed deep
learning to integrate invocation interactions and functionality
into their recommendation system. In addition, Shi et al. [20]
combined collaborative filtering and text content methods
to characterize the complex relationships between mashups
and Web APIs. Their approach leveraged both user behavior
and semantic information to provide accurate recommen-
dations. Kang et al. [25] leveraged attentional factorization
machines to capture the complex feature interactions and
the matching importance. Cao et al. [26] employed bilinear
graph representation and deep factorization machines to
develop recommendation models. Wu et al. [4] treated
the Web API recommendation problem as a multi-label
classification task [12] and introduced a framework called
MTFM, which generated representations of requirements
and modeled feature interactions between mashups and Web
APIs. Wang et al. [21] integrates deep neural networks to
capture complex nonlinear structures and semantic infor-
mation of requirements, emphasizing the significance of
different feature levels to deliver compound and diverse
API recommendations. Overall, these studies demonstrated
the potential of content-based recommendation strategies
for improving the efficiency and accuracy of Web API
recommendation systems. Additionally, more recent efforts
try to enhance the text presentation, a.k.a., pose more efforts
on outstanding the semantics of requirements by using a
more powerful representation of learning techniques [22],
[27]. By leveraging different techniques and approaches, they
aim to provide better support for mashup development and
promote the reuse of existing Web APIs.

VOLUME 12, 2024 49715

C. Zhang et al.: CME Leveraging Knowledge Graph for Web API Recommendation

FIGURE 5. The visualization of representations in FC2 layer by TSNE.

Collaborative filtering (CF) achieved recommendations
by mining the correlation between mashups and Web
APIs. Yao et al. [9] proposed a matrix factorization (MF)
method with implicit correlation regularization to solve
the recommendation problem and enhance the diversity
of recommendations. Similarly, Fletcher [28] regularized
MF with implicit embeddings of user preference for API
recommendation. Yin et al. [29] proposed a framework that
contains joint MF and cognitive knowledge mining, by which
the hidden relationships among users and APIs can be mined
to enhance the ensemble model. Wang et al. [5] proposed a
graph-based framework for API recommendation of mashup
creation. The authors created a comprehensive knowledge
graph that captured various aspects of mashup development,
including developer preferences, API functionalities, and
usage patterns. They employed a random walk approach
to traverse the graph and identify candidate APIs for a
given requirement. Wang et al. [13] further introduced
an unsupervised deep method based on random walks
on the knowledge graph. Specifically, the low-dimensional
embedding representations of entities were learned from
truncated random walks by treating walks as the equivalent
of sentences. Ma et al. [30] proposed a deep neural
network called MISR to analyze three types of interactions
between services and mashups. The neural network learns to
extract hidden structures and features from these interactions,
allowing it to recommend services that are compatible with a
given mashup. Wang et al. [31] used a graph-based method
called CRN to represent relationships between mashups and

Web APIs. The approach calculates semantic similarities
between developer requirements and mashups to identify
candidate mashup nodes in the graph and then uses the graph
to find relevant Web APIs.

Some studies use a combination of methods for recom-
mendations to better the recommendation performance. For
example, Cao et al. [32] first developed a two-level topic
model leveraging the relationship among Mashup services
and then performed clustering on Mashups. Finally, they
designed a CF algorithm that exploits the co-invocation
pattern of Web APIs to recommend diverse APIs for each
cluster of Mashups. Liu et al. [14] proposed a dynamic
graph neural network-based model to tackle the evolution
of service and the semantic gap between services and
mashups. Besides, some works concentrate on other aspects
of Web API recommendation, such as the diversity and
compatibility of API candidate sets [33], [34], [35]. For
instance, Kou et al. [36] solved an automatedWebAPI recom-
mendation task as a nondeterministic polynomial problem.
Chen et al. [35] proposed a keyword-based deep-reinforced
Steiner tree search to recommend compatible services for
mashup creation. Qi et al. [37] described a new approach to
recommendingWebAPIs for mashup creation, which utilizes
historical mashup creations to ensure compatibility among
the recommended APIs and includes a textual description
mining step to precisely capture the developers’ functional
requirements. Qi et al. [38] further proposed a correlation
graph-based approach for personalized and compatible
interface recommendations in mobile APP development.

49716 VOLUME 12, 2024

C. Zhang et al.: CME Leveraging Knowledge Graph for Web API Recommendation

TABLE 5. Case-study analyses where the API is the right answer.

Gong et al. [39] focused on the privacy-preservation issue
regarding Web API recommendations under edge computing
scenarios.

Our solution can be viewed as a hybrid approach that com-
bines the strengths of knowledge graph embedding and text
encoding to provide improved Web API recommendations.
Unlike existing methods, our approach focuses on creating
a novel cooperative mashup embedding (CME) method
that enables knowledge exchange between two distinct

embedding spaces. By doing so, we can utilize on-shelf
neural components to establish a learning framework without
modifying the underlying functionality of knowledge graph
embedding and text encoding. Moreover, the CME method
allows us to derive three unique recommendation models that
capitalize on the obtained representations to provideWebAPI
recommendations. These models offer fresh perspectives on
how to develop recommender systems for Web APIs, setting
our approach apart from conventional methods.

VOLUME 12, 2024 49717

C. Zhang et al.: CME Leveraging Knowledge Graph for Web API Recommendation

VI. CONCLUSION
We have presented a novel framework for mashup-oriented
Web API recommendations, which combine a cooperative
mashup embedding strategy and three recommendation
algorithms. Our approach leverages pre-trained neural com-
ponents, such as BERT, to reduce computational complexity
and improve accuracy. The CME method enables knowledge
sharing across domains, leading to more accurate recom-
mendations. The derived recommendation models provide
personalized recommendations that cater to the unique needs
of mashup developers.

For future work, we plan to explore the use of more
advanced components to further enhance the effectiveness
of representation learning. For instance, we aim to replace
Node2Vec with graph neural networks for knowledge graph
embedding. Additionally, we intend to optimize the model
using multi-task learning or contrastive learning, which
can potentially improve the overall performance of the
recommendation system.

REFERENCES
[1] M. Imran, S. Soi, F. Kling, F. Daniel, F. Casati, and M. Marchese, ‘‘On the

systematic development of domain-specific mashup tools for end users,’’
in Web Engineering. Berlin, Germany: Springer, 2012, pp. 291–298.

[2] W. Tan, Y. Fan, A. Ghoneim, M. A. Hossain, and S. Dustdar, ‘‘From the
service-oriented architecture to the Web API economy,’’ IEEE Internet
Comput., vol. 20, no. 4, pp. 64–68, Jul. 2016.

[3] M. Tang, H. Zhou, and X. Guo, ‘‘The API-mashup ecosystem: A
comprehensive study of ProgrammableWeb,’’ Int. J. Embedded Syst.,
vol. 15, no. 2, pp. 132–138, 2022.

[4] H. Wu, Y. Duan, K. Yue, and L. Zhang, ‘‘Mashup-oriented Web API
recommendation via multi-model fusion and multi-task learning,’’ IEEE
Trans. Services Comput., vol. 15, no. 6, pp. 3330–3343, Nov. 2022.

[5] X. Wang, H. Wu, and C.-H. Hsu, ‘‘Mashup-oriented API recommen-
dation via random walk on knowledge graph,’’ IEEE Access, vol. 7,
pp. 7651–7662, 2019.

[6] B. Cao, M. Tang, and X. Huang, ‘‘CSCF: A mashup service recommenda-
tion approach based on content similarity and collaborative filtering,’’ Int.
J. Grid Distrib. Comput., vol. 7, no. 2, pp. 163–172, Apr. 2014.

[7] B. Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, and C. Wu, ‘‘Category-aware
API clustering and distributed recommendation for automatic mashup
creation,’’ IEEE Trans. Services Comput., vol. 8, no. 5, pp. 674–687,
Sep. 2015.

[8] Y. Zhong, Y. Fan, W. Tan, and J. Zhang, ‘‘Web service recommendation
with reconstructed profile frommashup descriptions,’’ IEEE Trans. Autom.
Sci. Eng., vol. 15, no. 2, pp. 468–478, Apr. 2018.

[9] L. Yao, X. Wang, Q. Z. Sheng, B. Benatallah, and C. Huang, ‘‘Mashup
recommendation by regularizing matrix factorization with API co-
invocations,’’ IEEE Trans. Services Comput., vol. 14, no. 2, pp. 502–515,
Mar. 2021.

[10] B. Cao, M. Peng, Y. Qing, J. Liu, G. Kang, B. Li, and K. K. Fletcher, ‘‘Web
API recommendation via combining graph attention representation and
deep factorization machines quality prediction,’’ Concurrency Comput.,
Pract. Exper., vol. 34, no. 21, p. e7069, Sep. 2022.

[11] R. Xiong, J. Wang, N. Zhang, and Y. Ma, ‘‘Deep hybrid collaborative
filtering for web service recommendation,’’ Expert Syst. Appl., vol. 110,
pp. 191–205, Nov. 2018.

[12] H. Wu, S. Qin, R. Nie, J. Cao, and S. Gorbachev, ‘‘Effective collaborative
representation learning for multilabel text categorization,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 33, no. 10, pp. 5200–5214, Oct. 2022.

[13] X. Wang, X. Liu, J. Liu, X. Chen, and H. Wu, ‘‘A novel knowledge graph
embedding based API recommendationmethod for mashup development,’’
World Wide Web, vol. 24, no. 3, pp. 869–894, May 2021.

[14] M. Liu, Z. Tu, H. Xu, X. Xu, and Z. Wang, ‘‘DySR: A dynamic graph
neural network based service bundle recommendation model for mashup
creation,’’ IEEE Trans. Services Comput., vol. 16, no. 4, pp. 2592–2605,
Jul. 2023.

[15] P. Ristoski, J. Rosati, T. Di Noia, R. De Leone, and H. Paulheim,
‘‘RDF2Vec: RDF graph embeddings and their applications,’’ Semantic
Web, vol. 10, no. 4, pp. 721–752, May 2019.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-
training of deep bidirectional transformers for language understanding,’’
in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum.
Lang. Technol. Minneapolis, MI, USA: Association for Computational
Linguistics, vol. 1, Jun. 2019, pp. 4171–4186. [Online]. Available:
https://aclanthology.org/N19-1423

[17] Q. Wang, Z. Mao, B. Wang, and L. Guo, ‘‘Knowledge graph embedding:
A survey of approaches and applications,’’ IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 12, pp. 2724–2743, Dec. 2017.

[18] A. Grover and J. Leskovec, ‘‘node2vec: Scalable feature learning for
networks,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, San Francisco, CA, USA, Aug. 2016, pp. 855–864.

[19] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, ‘‘Neural
collaborative filtering,’’ in Proc. 26th Int. Conf. World Wide Web, Perth,
WA, Australia. New York, NY, USA: ACM, Apr. 2017, pp. 173–182.

[20] M. Shi, Y. Tang, and J. Liu, ‘‘Functional and contextual attention-based
LSTM for service recommendation in mashup creation,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 5, pp. 1077–1090, May 2019.

[21] X. Wang, M. Xi, and J. Yin, ‘‘Functional and structural fusion based Web
API recommendations in heterogeneous networks,’’ in Proc. IEEE Int.
Conf. Web Services (ICWS), Jul. 2023, pp. 91–96.

[22] X. Wang, P. Zhou, Y. Wang, X. Liu, J. Liu, and H. Wu, ‘‘ServiceBERT:
A pre-trained model for web service tagging and recommendation,’’ in
Proc. 19th Int. Conf. Service-Oriented Comput. (ICSOC), in Lecture
Notes in Computer Science, vol. 13121. Berlin, Germany: Springer, 2021,
pp. 464–478.

[23] J. Liu, W.-C. Chang, Y. Wu, and Y. Yang, ‘‘Deep learning for extreme
multi-label text classification,’’ in Proc. 40th Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., Tokyo, Japan, Aug. 2017, pp. 115–124.

[24] Q. Xue, L. Liu, W. Chen, and M. C. Chuah, ‘‘Automatic generation and
recommendation for API mashups,’’ in Proc. 16th IEEE Int. Conf. Mach.
Learn. Appl. (ICMLA), Cancun, Mexico, Dec. 2017, pp. 119–124.

[25] G. Kang, J. Liu, Y. Xiao, B. Cao, Y. Xu, and M. Cao, ‘‘Neural and
attentional factorization machine-based Web API recommendation for
mashup development,’’ IEEE Trans. Netw. Service Manage., vol. 18, no. 4,
pp. 4183–4196, Dec. 2021.

[26] B. Cao, L. Zhang, M. Peng, Y. Qing, G. Kang, and J. Liu, ‘‘Web
service recommendation via combining bilinear graph representation
and xDeepFM quality prediction,’’ IEEE Trans. Netw. Service Manage.,
vol. 20, no. 2, pp. 1078–1092, Jan. 2023.

[27] C. Sang, X. Deng, and S. Liao, ‘‘Mashup-oriented Web API recommenda-
tion via full-text semantic mining of developer requirements,’’ IEEE Trans.
Services Comput., vol. 16, no. 4, pp. 2755–2768, Feb. 2023.

[28] K. Fletcher, ‘‘Regularizing matrix factorization with implicit user prefer-
ence embeddings for Web API recommendation,’’ in Proc. IEEE Int. Conf.
Services Comput. (SCC), Jul. 2019, pp. 1–8.

[29] Y. Yin, Q. Huang, H. Gao, and Y. Xu, ‘‘Personalized Apis recommendation
with cognitive knowledge mining for industrial systems,’’ IEEE Trans. Ind.
Informat., vol. 17, no. 9, pp. 6153–6161, Sep. 2021.

[30] Y. Ma, X. Geng, and J. Wang, ‘‘A deep neural network with multiplex
interactions for cold-start service recommendation,’’ IEEE Trans. Eng.
Manag., vol. 68, no. 1, pp. 105–119, Feb. 2021.

[31] Y. Wang, A. Zhou, Q. Huang, X. Wang, and B. Jiang, ‘‘PAREI: A
progressive approach for Web API recommendation by combining explicit
and implicit information,’’ Inf. Softw. Technol., vol. 162, Oct. 2023,
Art. no. 107269.

[32] B. Cao, X. F. Liu, M. M. Rahman, B. Li, J. Liu, and M. Tang,
‘‘Integrated content and network-based service clustering and Web
APIs recommendation for mashup development,’’ IEEE Trans. Services
Comput., vol. 13, no. 1, pp. 99–113, Jan. 2020.

[33] F. Wang, L. Wang, G. Li, Y. Wang, C. Lv, and L. Qi, ‘‘Edge-cloud-enabled
matrix factorization for diversified APIs recommendation in mashup
creation,’’World Wide Web, vol. 25, no. 5, pp. 1809–1829, Sep. 2022.

[34] W. Gong, X. Zhang, Y. Chen, Q. He, A. Beheshti, X. Xu, C. Yan, and
L. Qi, ‘‘DAWAR: Diversity-aware Web APIs recommendation for mashup
creation based on correlation graph,’’ in Proc. 45th Int. ACM SIGIR Conf.
Res. Develop. Inf. Retr., Madrid, Spain, Jul. 2022, pp. 395–404.

[35] H. Chen, H. Wu, J. Li, X. Wang, and L. Zhang, ‘‘Keyword-driven service
recommendation via deep reinforced Steiner tree search,’’ IEEE Trans. Ind.
Informat., vol. 19, no. 3, pp. 2930–2941, Mar. 2023.

49718 VOLUME 12, 2024

C. Zhang et al.: CME Leveraging Knowledge Graph for Web API Recommendation

[36] H. Kou, J. Xu, and L. Qi, ‘‘Diversity-driven automated Web API
recommendation based on implicit requirements,’’ Appl. Soft Comput.,
vol. 136, Mar. 2023, Art. no. 110137.

[37] L. Qi, H. Song, X. Zhang, G. Srivastava, X. Xu, and S. Yu, ‘‘Compatibility-
aware Web API recommendation for mashup creation via textual
description mining,’’ ACM Trans. Multimedia Comput., Commun., Appl.,
vol. 17, no. 1s, pp. 1–19, Jan. 2021.

[38] L. Qi, W. Lin, X. Zhang, W. Dou, X. Xu, and J. Chen, ‘‘A correlation
graph based approach for personalized and compatible Web APIs
recommendation in mobile APP development,’’ IEEE Trans. Knowl. Data
Eng., vol. 35, no. 6, pp. 5444–5457, Jun. 2023.

[39] W. Gong, W. Zhang, M. Bilal, Y. Chen, X. Xu, and W. Wang, ‘‘Efficient
Web Apis recommendation with privacy-preservation for mobile app
development in Industry 4.0,’’ IEEE Trans. Ind. Informat., vol. 18, no. 9,
pp. 6379–6387, Sep. 2022.

CHUNXIANG ZHANG received the B.S. degree
in computer science from Henan University,
Kaifeng, China, in 2019. He is currently pursuing
the master’s degree with Yunnan University. His
current research interests include service comput-
ing, recommender systems, and deep learning.

SHAOWEI QIN received the B.S. degree in
computer science from Tianjin Agricultural Uni-
versity, Tianjin, China, in 2018. He is currently
pursuing the Ph.D. degree with Yunnan University.
He has published in IEEE TRANSACTIONSONNEURAL

NETWORKS AND LEARNING SYSTEMS, Knowledge-
Based Systems, Applied Intelligence, and Neural
Computing and Applications. His current research
interests include deep learning and text mining.

HAO WU received the Ph.D. degree in computer
science from Huazhong University of Science and
Technology, in 2007. He is currently a Professor
with the School of Information Science and
Engineering, Yunnan University, China. He has
published more than 80 papers in peer-reviewed
journals and conferences, e.g., IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE
TRANSACTIONS ON MOBILE COMPUTING, IEEE
TRANSACTIONS ON NEURAL NETWORKS AND LEARNING

SYSTEMS, IEEE TRANSACTIONS ON SERVICES COMPUTING, IEEE TRANSACTIONS

ON INSTRUMENTATION AND MEASUREMENT, IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT,
NeuNet, WWWJ, FGCS, KBS, PUC, ASE, ACL, NAACL, ICWS, and
ICSOC. He has coauthored two monographs published in World Scientific.
His research interests include service computing, edge computing, and web
intelligence.

LEI ZHANG (Member, IEEE) received the
Ph.D. degree from Southeast University, in 2011.
He was a Research Fellow with IPAM, UCLA,
in 2008. He is currently an Associate Professor
with the School of Electrical and Automation
Engineering, Nanjing Normal University. He has
published more than 50 papers in peer-reviewed
journals and conferences, e.g., IEEE TRANSACTIONS

ON MOBILE COMPUTING, IEEE TRANSACTIONS ON

SERVICES COMPUTING, IEEE TRANSACTIONS ON

INSTRUMENTATION AND MEASUREMENT, IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE
TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, IEEE TRANSACTIONS ON EMERGING

TOPICS IN COMPUTATIONAL, IEEE TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT, and ACM TECS. His research interests include machine
learning, service computing, the IoT, and computer vision.

VOLUME 12, 2024 49719

