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ABSTRACT Big data applications are on the rise, and so is the number of data centers. The ever-increasing
massive data pool needs to be periodically backed up in a secure environment. Moreover, a massive
amount of securely backed-up data is required for training binary convolutional neural networks for image
classification. XOR and XNOR operations are essential for large-scale data copy verification, encryption,
and classification algorithms. The disproportionate speed of existing compute and memory units makes
the von Neumann architecture inefficient to perform these Boolean operations. Compute-in-memory (CiM)
has proved to be an optimum approach for such bulk computations. The existing CiM-based XOR/XNOR
techniques either require multiple cycles for computing or add to the complexity of the fabrication process.
Here, we propose a CMOS-based hardware topology for single-cycle in-memory XOR/XNOR operations.
Our design provides at least 2× improvement in the latency compared with other existing CMOS-compatible
solutions.We verify the proposed system through circuit/system-level simulations and evaluate its robustness
using a 5000-point Monte Carlo variation analysis. This all-CMOS design paves the way for practical
implementation of CiM XOR/XNOR at scaled technology nodes.

INDEX TERMS Artificial intelligence, compute-in-memory, encryption, verification, XOR, XNOR.

I. INTRODUCTION
Academia and industry are pushing their last strides in
keeping Moore’s law alive, demonstrated by IBM’s 2 nm
process technology [1]. However, as the available bandwidth
between the processor and main memory is not growing
commensurately with the advancements in compute units,
the well-known ‘memory wall’ [2] is becoming one of the
toughest challenges for engineers in this exascale (big data)
computing era. The issue with handling this massive data load
is gettingmore acute with unprecedented progress inmachine
learning and artificial intelligence (AI) applications. These
data-intensive applications require frequent access to mem-
ory and hence, von Neumann and memory wall bottlenecks
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becomemore pronounced. As a result, the use of conventional
von Neumann architectures in these applications leads to
negative impacts on energy efficiency, performance, latency,
scalability, complexity, and data movement overhead [3].
Recent reports by Google have shown that a significant
portion of their data center workload is performing bulk
data movement and about 20-42% of the energy is required
to drive the data bus connecting the compute and memory
units [4], [5]. Surprisingly, these data-intensive applications
are often not inherently complicated. Rather, they rely on
simple logic operations at a massive scale. As an alterna-
tive, compute-in-memory (CiM) has garnered attention in the
research community [6], [7], [8]. CiM not only dramatically
reduces the data movements, but also takes advantage of large
internal memory bandwidth and enables massive parallelism
to improve latency. In addition to the endeavor to improve the
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architecture, device engineers are exploring next-generation
memory technologies as the mainstream CMOS memories
are approaching the scaling limit [9], [10], [11], [12]. The
emerging memories are expected to provide a faster yet
more energy-efficient solution in a compact footprint. Com-
bining the best of both worlds, several CiM architectures
have been proposed in recent years with emerging mem-
ory devices [13], [14], [15]. However, with exponentially
increasing data volume, customized solutions are needed for
optimized performance in application-specific scenarios.

With the advent of cloud computing, consumer computer
applications are gradually finding their way into virtual
machines rather than physical devices, thereby leading to
more data in data centers. Keeping this ever-increasing
data in a secured backup is a challenging task in terms
of performance, energy, and memory. While intelligent and
efficient algorithms were proposed for bulk data movement
in data centers using row-level cloning [16], integrity veri-
fication of the copy procedure is also extremely important.
Moreover, in the age of cybersecurity and identity theft,
data encryption is equally crucial. Having such securely
backed-up data is essential for big data applications like
image classification. XOR/XNORoperations are essential for
the above-mentioned applications.

Here, we propose a ubiquitous system to achieve single-
cycle in-memory bitwise XOR/XNOR operation using mod-
ified peripheral sensing circuitry. The novel contributions of
this paper are-

1) Designing an All CMOS-based hardware topology for
single-cycle in-memory XOR/XNOR operations.

2) Developing a rigorous HSPICE simulation framework
and verifying the functionality of in-memory XOR/XNOR
operations through transient simulations.

3) Highlighting the effects of external variations on the
design through rigorous Monte-Carlo simulations.

4) Comparing the proposed design with the existing
approaches in terms of latency.

5) Demonstrating the speedup advantage of the proposed
design in implementing XNOR-Net neural network.

The rest of the manuscript is arranged as follows. We dis-
cuss the motivation and principle of in-memory XOR/XNOR
in section II. We then present our design methodology and
the simulation framework (section III). Sections IV and V
present the timing simulations and variation analysis, respec-
tively. Section VI presents a comparison with the existing
approaches in literature.

II. MOTIVATION FOR SINGLE-CYCLE IN-MEMORY
XOR/XNOR
Bulk data copy is such an expensive process (in terms of
memory usage and energy demands), that there has been
a separate hardware-level instruction set for it since the
introduction of Intel IA-32 architecture [17]. In cutting-edge
memory chips, an entire row of data is copied from the
memory array to the corresponding row buffer, then to the
destination row, and finally, a validation is performed to

FIGURE 1. A system level view in commercial memory products, where
the memory cells are banked, will help understand the latency
minimization for the proposed CiM XOR in (a) verification of copied data
and (b) data encryption/decryption. (c) CiM configuration can also be
used to deploy binary CNN to image classification problem which is
essentially an XNOR operation.

verify the successful copy [18]. This multi-cycle copy and
verification procedure is a major concern.

For the validation process, parity checking is the most
commonly used algorithm and for that, XOR operations
between the bits copied from and to the memory cells are
performed. A logical ‘0’ XOR output indicates a successful
copy operation (Fig. 1(a)). In addition to having back-ups,
it is also important to ensure its security. Fortunately, the
in-memoryXORoperation is perfectly suited for data encryp-
tion (Fig. 1(b)). Among the known techniques for ciphers,
XOR is the most trustworthy and unbreakable if the key used
is a true random number.

Therefore, the significance of performing suchXOR/XNOR
operations within the memory block (CiM implementation)
is well understood. Now, if each of these XOR operations is
itself a multi-cycle process, the latency will take a serious hit.
All the in-memory XOR operations previously demonstrated
take more than one cycle except for one proposed in [14],
which too is amemristor-only CMOS non-compatible design,
for which the design space will be too complicated. To the
best of our knowledge, ours is the first CMOS-compatible
in-memory XOR that operates in a single-cycle. We propose
a simple all-CMOS-based peripheral circuit design, slightly
modifying the sensing circuitry to employ CiM XOR for
superior performance in bulk data operations. On top of
that, this modification in peripheral circuitry can also be
used in binary neural networks like image classification
problems, which is essentially an XNOR operation (shown
in Fig. 1(c)). Thus, to gain excellent capacity and speed
in an in-memory system, the proposed system can be put
into use.
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FIGURE 2. (a) Non-volatile memory array with modified sense amplifiers.
(b) Mechanism of choosing reference currents. Schematic of (c) the
modified SA for in-memory XOR/XNOR and (d) a current sense amplifier.

III. DESIGN METHODOLOGY & SIMULATION
FRAMEWORK
For a conventional memory array comprised of access tran-
sistors and memory cells, the sense line (SL) currents are
collected and sensed via a current-based sense amplifier
at the periphery (Fig. 2(a)). In our work, we utilize the
current-based sense amplifier (CSA) reported in [19] as the
building block for the modified peripheral circuitry to realize
the in-memory XOR/XNOR. Here, we use a ReRAM as
the NVM cell, but the peripheral circuit modification (all
CMOS) to realize the in-memory XOR/XNOR operation is
a memory-agnostic design. Irrespective of the memory used,
when in computationmode, two-word lines (WL) are asserted
in a single sensing line to select the memory cells that will
undergo the XOR/XNOR operation. The current contribution
of the two selected cells along with the unselected ones of that
column is fed into themodified SA. Themodified SA consists
of a current mirror to copy the SL current, two current-based
SAs (CSA), one inverter, and one AND gate as shown in
Fig. 2(c). Fig. 2(d) shows the circuit schematic of each CSA
used in the SA. The SL current being fed into the two CSAs
sets a gate voltage through the current mirror circuit. This
set voltages then being compared to the reference voltages,
produce binary outputs. As for XOR/XNOR operations, two
different reference current levels are being used, they will
produce two different logic outputs. These two different logic
outputs, one negated through an inverter and the other one
intact, fed into the AND gate, give out XOR/XNOR logic.
Here it is noteworthy that, the complementary reference cur-
rent level is set for two CSAs for giving out XOR/XNOR
logic output. Different levels of SL current corresponding to
different logic conditions along with the reference currents
are shown in Fig. 2(b). It can be seen from the illustration

that reference current levels are set in between the I00 and
I11 current levels. The reference currents are set in such an
intelligent way that an AND operation of the outputs of two
CSAs gives out the desired XOR/XNOR result. The sense
amplifiers being exactly similar in construction in a CMOS
process separates the two extreme cases of both the selected
cells storing either ‘0’ or ‘1’ using two reference currents
(I00 < IREF1 < I01&I01 < IREF2 < I11). This slight
modification in peripheral sensing circuitry allows normal
memory mode operation as well as single cycle XOR/XNOR
operation, which can be very crucial in certain specific appli-
cation scenarios. Not only that, but this design can also be
used to implement other logic operations like AND/NAND,
OR/NOR, etc. by carefully choosing the two reference current
levels.

In this work, a rigorous SPICE simulation is done for the
CiM provision in the memory array. For simulation, a phe-
nomenological compact model of resistive RAM (ReRAM)
is used as the non-volatile memory (NVM). The model is
calibrated and matched with the experimental data for the
Cu/HfO2/Pt stack published in [20]. The low resistance state
(LRS) and the high resistance state (HRS) are set at 10 k�
and 3 G�, respectively. 14 nm PTM (Predictive Technology
Model) [21] transistors are utilized to simulate the CMOS
transistors (FinFETs) used in the memory array and periph-
eral circuitry. A detailed Monte-Carlo variation analysis is
also shown to determine the limitation of the effect of vari-
ation on the number of allowed rows in the memory array
along with sense margins for the successful operation.

IV. FUNCTIONAL VERIFICATION
Upon setting up the simulation framework, functional verifi-
cation was performed for the in-memory XOR/XNOR oper-
ation in HSPICE. The memory array functions as expected
in the memory mode, allowing successful write operations
shown in Fig. 3. In the memory mode of operation, the bit
lines (BL) are kept precharged and the access transistors are
turned on for the selected cell applying suitable biases to the

FIGURE 3. (a) Write ‘0’ → ‘1’ (HRS → LRS) and (b) ‘1’ → ‘0’ (LRS → HRS)
operations upon applying suitable WL and BL biases.
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WLs and SLs. 0.4 V (-0.15 V) is applied to the corresponding
BL for writing ‘1’ (‘0’) into the memory cell, as per the
non-volatile memory material we are using from [20]. Later,
when WLs are asserted, the accessed cell gets the write
voltage applied to the BL. The biasing scheme for write
operations is designed in such a way that the half-accessed
and unaccessed cells are not accidentally disturbed. Also,
reading from the memory cell, we propose to use the same
SA designed for the in-memory XOR/XNOR operation to
make the peripheral circuitry universal for both memory and
compute mode.

To demonstrate the successful operation with our design,
we simulated a 3 × 3 array shown in Fig. 2(a). Here, all the
bit lines (BL) are pre-charged with a 100mV supply. After the
WLs corresponding to two computing rows are asserted, cur-
rent starts to flow through the memory cells. Fig. 4(a) shows
the biasing scheme for the in-memory operations. Now, based
on the assumedmemory states for the accessed cells, different
current levels are obtained in the SLs. The SL current levels
for different combinations of memory states in the columns
are well distinguishable as shown in Fig. 4(c). Considering
the unaccessed cells in HRS, the SL currents are obtained
as 100 pA, 7.87 µA, and 15.7 µA for ‘00’, ‘01’/‘10’, and
‘11’ logic combinations in the accessed cells, respectively.
The reference current levels of the sense amplifiers need to
be carefully set in based on these numbers.

For verifying the XOR operation, we set the reference
currents as IREF1 = 4µA and IREF2 = 12µA.When the SEN
(Sense Enable) is enabled, the CSAs sense the current levels
and result in logic ‘1’ or ‘0’ depending on the SL currents
and the reference currents (Fig. 4(c)). As seen, the output of
the XOR operation becomes logic ‘1’ only for ‘01’/‘10’ logic
combination. Note, the SL currents are readily available in the
sense amplifiers when WLs and BLs are asserted. Therefore,
the XOR operation only requires a single cycle. However, for
XNOR operation, the reference currents are set in the exact
opposite fashion (IREF1 = 12 µA and IREF2 = 4 µA) which
also requires single-cycle.

V. VARIATION ANALYSIS
It is seen in Fig. 4(c) that the SL currents are well-
distinguishable for different memory combinations in the
cells in a single column. However, a quantitative analysis was
performed to full-proof the robustness of the design. Even
when a cell is not accessed (WL not asserted), a small leakage
current flows through those cells: 28 pA for HRS and 774 pA
for LRS. The leakage currents through the unaccessed cells
contribute to the SL current of the column, which causes a
risk of identifying the SL current of one logic combination
as another. Therefore, the leakage current (depending on the
LRS and HRS values) puts a restriction on the maximum
number of rows allowed in an array. Also, average power
consumption and area are two very important parameters that
directly affect the scaling of the memory system. Fig. 5(a)
and 5(b) show the effects of a number of fins on the power
consumption and area of the CSA and the effects of HRS and

FIGURE 4. (a) The application of required voltages to WLs, BLs, and SEN.
(b) Reference current levels chosen for XOR and XNOR operations. (c) SL
currents and logic outputs of XOR and XNOR operations.

FIGURE 5. (a) Effect of number of fins of the transistors on the CSA circuit
and (b) memristor on/off ratio on the array size. Histogram plots of
(c) the current distributions and (d) voltages of nCELL and nREF nodes set
by the distributions in input and reference current levels, respectively.

LRS values on the maximum number of rows in the array,
respectively. In Fig. 5(b), we show the effects of variation in
both HRS and LRS separately which shows that the variation
in LRS affects more significantly compared to that in HRS.
With a fixed HRS, when we vary the LRS by changing the
HRS/LRS ratio (black line in Fig. 5(b)), we observe that
a larger HRS/LRS ratio results in higher scalability. This
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FIGURE 6. Comparison of our design with the existing works based on the implementation of a XNOR-based CNN.

analysis not only lets a designer be aware of the size limitation
of the memory array but also opens up a new window of
research from the perspective of the material choice.

Furthermore, a rigorous 5000-point Monte-Carlo simula-
tion is performed to ensure that different current levels are
well-distinguishable even with the process variations. In our
variation analysis, we consider a Gaussian distribution for
LRS and HRS with a mean value of 10 k� and 3 G�

(respectively) and a 3σ variation of 10% of the mean value.
We also consider a variation in the threshold voltages of the
transistors with a standard deviation of 25 mV. The results are
shown in Fig. 5(c) and 5(d). Fig. 2(d) shows the schematic of
a conventional current sense amplifier with different impor-
tant nodes marked. The distribution in SL currents shown in
Fig. 5(b) leads to a distribution of voltages at the nCELL node
of the sense amplifier. Finally, the digital output at the OUT
node is obtained based on the difference between the voltages
set at nCELL and nREF nodes.

VI. COMPARATIVE STUDY
The surge in compute-in-memory research because of the
‘memory wall’ problem led to many recent publications.
Studies have shown that the ReRAM crossbar array can
implement logic operations in the crossbar array [22]. How-
ever, some of them are not necessarily fitted to the CiM
concept as they use the memory technique to implement pro-
cessing units. They still pay for the expensive data fetching
from the memory and are limited by the memory bus band-
width. Those that implement the in-memory computation, are
tailored to do basic logic operations like AND, OR, etc., some
to make ADD operations. Our work can be distinguished
from those works in terms of bulk data application in an all-
CMOS process.

Based on the required operation steps and overhead cir-
cuitry, a comparison with the existing relevant works [14],
[22], [23], [24], [25] is presented in Table 1. Our work
promises the most efficient solution in terms of latency. Also,
an all-CMOS design makes it easy to implement.

We also extend the comparison to the application level
using XNOR-Net which uses XNOR operation to replace the

TABLE 1. Comparison of our design with the existing works.

computationally complex convolution operations in convo-
lutional neural networks (CNN). XNOR-Net is a CNN that
uses binary filters and XNOR operations to decrease memory
cost and decrease computational cost by around 58× [26].
Fig. 6(a) shows a single convolutional block of XNOR-Net.
In the beginning, XNOR-Net performs batch normalization
and then performs binary activation that binarizes the inputs
and generates the scaling factors K and a. From there, the
XNOR convolution is performed. We propose using our
XNOR processor to accelerate this part of the network.
After calculating the XNOR convolution, we then perform
element-wise multiplication with the scaling factors (K and
a) that we calculated before the XNOR operations. While
these operations must be done outside of our accelerator,
there are far fewer of these operations than XNOR operations,
making our approach still viable despite this limitation. The
theoretical speedup due to the use of XNOR convolution is
given by [26]-

S =
cNWNI

1
NO
cNWNI + NI

Here, c is the number of channels, NW is the width times
the height of the filter, NI is the width times the height of the
input of the layer, and NO is the number of XNOR operations
that can be done in a single clock cycle. In [1], c = 256,NW =

142, and NI = 32 were used since layers with these parame-
ters are common in ResNet [27]. While using a CPU, NO will
be 64, which will be our baseline. Fig. 6(b) shows the speedup
of our approach compared to XNOR-Net being executed
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in CPU. The speedup of this application compared to the
CPU is significantly higher for our XNOR Implementation.
We also compare our design with the existing works that
require two or three cycles for XNOR operation. Addition-
ally, our design scales better for larger array sizes than the
existing designs. In addition to XNOR net, our design could
also be used for XOR-Net [28], a version of XNOR-Net that
uses XOR and reduces the required number of full precision
operations significantly. Using this algorithm, we should see
similar speedups and scaling as we did with XNOR-Net,
though they will be slightly closer to the ideal S =

NO
64

speedup since XOR-Net reduces the full precision operations
in a layer with our given parameters by 39.84% [28].

VII. CONCLUSION
In this paper, an all-CMOS single-cycle in-memory
XOR/XNOR operation is proposed with a slight modification
in the peripheral circuitry. The use of the proposed design
is not limited to any specific memory technology. It can
be used for all the non-volatile memory technologies to
make them capable of performing in-memory XOR/XNOR
operations in a single-cycle. Our design allows for a reduced
number of cycles and a leap in latency performance. For
bulk data operations, even an incremental improvement can
be tremendously advantageous. This circuit topology has
the potential to revolutionize bulk data copy, verification,
and encryption process by reducing the number of cycles
required to perform XOR/XNOR operations. The proposed
system can also be used in modern and upcoming heavy data
applications like binary convolutional neural networks for
image classification tasks. Since the designed sense amplifier
is CMOS-based, it will not face any difficulty in integrating
with the existing memory architectures. The only challenge it
will face is higher area needed for the sense amplifier which
can be justified by the advantages of in-memory computing
and single-cycle XOR/XNOR operations.
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