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ABSTRACT As knowledge graphs (KGs) become more widely used in various applications, error detection
for KGs has received more attention, which can reduce quality issues such as errors and inconsistencies.
With the development of representation learning, embedding-based methods have significantly improved
error detection performance. The recent error detection algorithm uses KG structural embedding loss and
constructs a reasonable score function, ranking the confidence scores for each triplet. However, these
methods ignore the factual semantics of the triplet itself, which primarily exist in the entities and relations
descriptions text. Therefore, we propose Semantic and Structural Integrated Contrastive Learning(SeSICL)
to simultaneously capture graph structural patterns and deep semantic features from descriptions text. Our
method is based on contrastive learning without data augmentation, which utilizes encoder perturbations
to generate contrasting views, making SeSICL highly suitable for complex error detection tasks and robust
against real-world noise.We evaluate SeSICL on three baseline datasets with abnormal data and fluctuations.
SeSICL outperforms the previous state-of-the-art methods, demonstrating our method’s performance and
robustness in more complex scenarios.

INDEX TERMS Knowledge graph, error detection, semantic embedding, structural embedding, contrastive
learning.

I. INTRODUCTION
In the era of knowledge engineering, knowledge graphs
(KGs) have been widely used in read-word applications,
such as search engines [1], question-answer systems [2]
and recommendation systems [3]. Knowledge graphs can
extract, organize, and effectively manage knowledge from
large-scale data that can greatly improve the quality of
information services [4]. Some automatic and semi-automatic
information extraction(IE) algorithms account for a large
proportion of knowledge graph construction. However, due
to the imperfect performance of IE models, some noise and
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knowledge conflicts were inevitably introduced into KGs.
To ensure the correctness and robustness of downstream
tasks, error detection has become an indispensable part of
constructing and applying knowledge graphs.

Currently, KG representation learning algorithms based on
embedding have been extensively researched. These methods
encode entities and relations as continuous vectors and
can learn feature representations adaptively, reducing the
need for traditional feature engineering [5], [6], [7], [8].
An attractive approach is the embedding of structures, which
reveal general patterns and rules among entities, facilitat-
ing the identification of potential inconsistencies in KG.
Representative methods inculde TransE [9], TransH [10], and
RotatE [11]. In addition, semantic information is also crucial

56088

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0001-1750-2133
https://orcid.org/0009-0002-8185-1044
https://orcid.org/0000-0002-3945-4363


X. Liu et al.: SeSICL: Semantic and Structural Integrated Contrastive Learning

to reducing the ambiguity between entities and relations.
DKRL [12] uses CNN to encode the entity description
information for semantic embedding. The KG-BERT [13]
utilizes entity and relation descriptions as its input to facilitate
KG completion via pre-trained language models. BLP [14]
encodes the entity’s description based on BERT for KG
link prediction. Integrating both structural and semantic
information is crucial for detecting inconsistency in KGs.
StAR [15] proposes a hybrid model of textual encoding
and graph embedding paradigms to learn contextualized
and structured knowledge. LASS [16] utilizes a pre-trained
language model to encode semantic information and ensures
structural coherence using the TransE decoder.

However, in intricate error detection tasks, embedding-
based approaches may struggle to capture error specifics,
resulting in false negatives and positives. Furthermore, the
presence of noise in the data can significantly influence
the effectiveness of these methods. As a representative
of self-supervised techniques, Contrastive Learning (CL)
is a discriminative approach that seeks to minimize dis-
tances between similar samples while maximizing distances
between diverse samples [17]. By doing so, CL can capture
subtle differences between samples, effectively addressing
complex error detection tasks and handling data noise and
fluctuations under various conditions. Zhang et al. [18]
apply contrastive learning in KG error detection tasks,
generating various augmented views based on KG triplets
and using two views for contrastive learning to improve error
detection accuracy. While data augmentation is typically
effective in graph contrastive learning, the inherent semantic
characteristics presentedwithin the knowledge graph can lead
to additional errors, such as incorrect entities and relations,
when constructing random enhanced views.

This paper proposes a Semantic and Structural Integrated
Contrastive Learning (SeSICL) framework for Knowledge
Graph Error Detection. SeSICL combines semantic and
structural embeddings to capture deep semantic information
about triplets, as well as the local and global structural char-
acteristics of the KG. In the training phase, inspired by the
SimGRACE approach [19], we avoid specific data augmenta-
tion techniques and instead leverage encoder perturbations to
generate diverse contrasting views. This approach smoothly
simulates potential errors and discrepancies within the KG,
better preserving the original distribution characteristics of
errors in KG and ensuring the robustness of contrastive
learning. The contributions are summarized as follows.

• We propose a framework, SeSICL, that integrates
semantic and structural information and uses a con-
trastive learning approach to capture deep features.
This self-supervised method can effectively improve the
accuracy and robustness of KG error detection tasks
without additional manual annotation costs.

• We propose a two-layer approach that incorporates
semantic and structural information. Based on a
pre-trained language model, the semantic layer captures
deep semantic information from entity and relation

description text. The structural layer combines local and
global structural information.

• We adopt a contrastive learning approach without data
augmentation, incorporating Gaussian-based perturba-
tions. Compared to specific contrastive learning data
augmentation techniques, Gaussian-based perturbations
smoothly simulating complex variations and noise
within the KG, thereby adeptly preserving the original
semantics of the KG. This contributes to a more robust
KG error detection process.

• We validated the effectiveness of SeSICL on three real-
world datasets, and the experiment results demonstrate
that SeSICL achieves superior performance compared to
previous state-of-the-art error detection models.

II. RELEVANT WORK
A. KNOWLEDGE GRAPH ERROR DETECTION
Knowledge graph error detection is a crucial task in the
refinement of knowledge graphs [20], involving the identi-
fication of errors within the KG, rectifying knowledge incon-
sistent with objective facts. Initially, manual crowdsourcing
[21], [22] and rule-based [23], [24], [25] error detection
methods were employed. However, for large-scale KGs,
inherent challenges such as high costs and poor scalability
emerged. In contrast, statistical approaches offer superior
applicability and efficiency. These include distribution-based
outlier detection methods [26], [27], classical machine
learning algorithms [28], [29] and graph exploration-based
error detection techniques [30], [31]. In recent years, with
the advancement of deep learning and neural networks,
embedding-based error detection methods have garnered
extensive research attention. Researchers attempt to map
nodes and edges into continuous low-dimensional vector
spaces while preserving KG structure and semantic features.
For instance, [32] incorporates entity type information into
the model, [33] explores using contextual information from
text corpora to extend KG semantic structure, and [34]
represents and models triplets and rules in a unified
framework to enhance the model’s predictive capabilities
regarding facts.

B. KNOWLEDGE GRAPH EMBEDDING
Knowledge graph embedding aims to map a knowledge
graph into a dense, low-dimensional feature space that
can retain as much structural and attribute information
of the graph as possible and facilitate computations of
entities and relationships. Embedding methods can be
divided into two categories: (i)triplet fact-based models and
(ii)additional semantic information-based models. Triplet
fact-based models treat the knowledge graph as a collection
of all facts in the form of triplets, including models based
on translation [9], [10], [35], [36], [37], tensor factorization
[11], [38], [39], [40], and neural networks [41], [42], [43],
[44]. However, methods that solely utilize factual triplets for
knowledge embedding overlook the potential knowledge that
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FIGURE 1. Overview of SeSICL. The semantic layer encodes entities and relations text descriptions, which serve as inputs for the structural layer. The
structural layer integrates global and local scores through comprehensive optimization, ultimately providing the confidence score in the triplets.

the knowledge graph may contain, which hinders the precise
representation of knowledge.

Additional semantic information-based models such as
entity category information and text description, to enhance
the performance of the traditional model. Xie et al. [32]
proposed a TKRL model, which incorporates entity hier-
archical type information and constraints between entities
and relationships. In many practical large-scale knowledge
graphs, detailed description information about entities and
relationships exists. Xie et al. [12] also proposed a knowledge
graph embedding model called DKRL, which employs two
embedding models to encode the semantic descriptions
of entities, integrating text information into the represen-
tation model to enhance representation learning. Further,
Belth et al. [45] used soft rules extracted from text to
improve the embedding model, allowing it to predict labels
for unlabeled triplets and improve knowledge representation.
KG-BERT [13] takes entity and relation descriptions as
input and utilizes pre-trained language models for the KG
completion task. LASS [16] involves fine-tuning pre-trained
language models (LMs) to acquire a structured loss, where
the forward pass of the LMs captures semantics, and the
loss reconstructs structures. DLR-GAE [46] integrates both
semantic and topological graph information, showcasing
exceptional performance in semi-supervised classification
tasks.

The above research shows that improving knowledge graph
representation models with additional semantic information
can improve their effectiveness. This is crucial for reducing
the ambiguity between entities and relationships, which
consequently improves the accuracy of downstream KG
applications. However, existing research methods are not yet
mature and still require considerable exploration.

C. GRAPH CONTRASTIVE LEARNING
In recent years, with the development of graph learning
methods, a series of efforts have been made to improve
the robustness and applicability of graph representations to

better address real world challenges [47], [48], [49]. Notably,
contrastive graph learning has shown its effectiveness in
various graph-related knowledge tasks. Yang et al. [50]
developed a versatile knowledge graph contrastive learning
framework (KGCL) to mitigate information noise in recom-
mendation systems. They incorporated additional supervised
signals from the KG augmentation process to guide the
cross-view contrastive learning paradigm. On the other hand,
Zhang et al. [18] proposed a novel framework for contrastive
knowledge graph error detection (CAGED), which extends
the KG to different hypergraphs by treating each relationship
triplet as a node. This incorporation of contrastive learning
contributes to improving the efficiency of KG embeddings.
In a related approach, Tan et al. [51] applied contrastive
learning to the graph completion task, introducing more
negative samples through contrastive learning to alleviate the
sparsity often encountered in KGs.

III. PROPOSED METHODOLOGIES
We propose SEmantic and Structural Integrated Contrastive
Learning (SeSICL), a novel framework to detect errors in the
knowledge graph, which jointly learns semantic and struc-
tural information without manual annotation. As sketched
in FIGURE 1, SeSICL consists of two main modules:
the semantic layer and the structure layer. We utilize a
pre-trained language model in the semantic layer to capture
deep semantic representations of head entities, tail entities,
and relations. The structure layer complements the semantic
embedding to reconstruct the structural information of
knowledge graphs, extracting local and global structural
embeddings to derive triplet and node score functions.
SeSICL effectively computes triplet confidence scores by
optimizing local and global contrastive losses, facilitating
efficient error identification in knowledge graphs.

A. PROBLEM STATEMENT
Knowledge graph error detection: Given a KG composed of
triplets as G = {(h, r, t)}, where h, t ∈ E and r ∈ R. E and
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R indicate the set of entities and relations. The objective
of this task is to develop a confidence scoring model f :

(h, r, t) → R(0,1) that assigns confidence scores to triples
within a range of 0 to 1. These confidence scores indicate the
likelihood that a given triple is correct. A higher confidence
score signifies a higher probability that the triple is accurate
and reliable.

B. SEMATIC LAYER
In most existing large-scale knowledge graphs, entities,
and relationships are accompanied by detailed descriptive
information. Utilizing language models pre-trained on exten-
sive textual corpora allows the capture of deep semantic
information related to head entities, relationships, and tail
entities. Computing the semantic similarity among these
elements is crucial for verifying the accuracy of erroneous
triplets. For instance, let us examine two triplets: (Thomas
Edison, invent, light bulb) and (Thomas Edison, improve,
light bulb). Although these two triplets have solid structural
similarity, a closer examination of the specific semantic
descriptions reveals that Thomas Edison played a role in
enhancing the electric light bulb rather than being its original
inventor. Consequently, the triplet (Thomas Edison, improve,
Light bulb) is assigned a higher confidence score.

For a triplet (h,r,t), the head entity sequence h, the
relation r, and the tail entity sequence t can be represented
as Sh = (sh1, s

h
2, . . . , s

h
kh), S

r
= (sr1, s

r
2, . . . , s

r
kr ), S

t
=

(st1, s
t
2, . . . , s

t
kt ). We represent the model’s input sequence by

concatenating the sequence of the head entity, relationship
sequence, and tail entity sequence with [CLS] and [SEP],
which is in the following format: S = [CLS] Sh [SEP]
Sr [SEP] S t [SEP]. Next, we utilize a pretrained language
model to convert all elements in each batch input into one-
dimensional vectors, representing their distributed represen-
tations. The embedding and encoding output of LM can be
expressed as E.

Eh,Er ,Et = TextEncoder(S) (1)

Here, the process of embedding using the pre-trained
language model is denoted as TextEncoder , which varies
depending on the chosen model. The collection of nodes after
semantic embedding is represented as EE, and the set of
relationships is denoted as ER. Specifically, for each triplet,
we have the head and tail entities as Eh,Et ∈ EE, and the
relationship as Er ∈ ER.

C. STRUCTURE LAYER
Structural information is crucial in assessing triplet correct-
ness, comprising local and global aspects. Local structural
information focuses on the internal representation of the
triplet (h,r,t) itself. In contrast, global structural information
considers the broader knowledge graph structure, encom-
passing higher-order relationships and the overall topological
organization among entities. In this paper, we design a
combined embedding approach incorporating local and
global structural information.

1) LOCAL EMBEDDING
Firstly, we randomly initialize low-dimensional vector
representations for each entity and relationship in the
knowledge graph using Gaussian distribution sampling.
Next, we construct local structural embeddings based on
the semantic embeddings and the fundamental assumption
head + relation ≈ tail. The triplet-level score function is
defined accordingly.

f (h, r, t) = ∥Eh + Er − Et∥22 (2)

2) GLOBAL EMBEDDING
The global structural embedding considers the global topo-
logical information between nodes and their direct or indirect
neighbors. We adopt a graph attention network to mitigate
potential erroneous associations in the knowledge graph. This
model assigns attention scores to each relationship path,
leading to more reliable and informative representations.

In the global structural embedding part, we employ a
shared attention mechanism by computing the inter-feature
correlations among nodes. The input consists of the charac-
teristic representations of neighbors a = {e⃗1, e⃗2, . . . , e⃗K },
where e⃗j ∈ EE and K is the number of entities. The attention
coefficient between entities is calculated using the following
formula.

eij = softmax
(
α(We⃗i,We⃗j)

)
(3)

Here, W ∈ Rm×n is the weight matrix, where n represents
the number of features for the node e⃗i The attention control
function α : Rm

× Rm
→ R calculates the attention

coefficients, following the approach in [52], and applies the
softmax function for normalization.

Based on the attention coefficients between entities,
we define the fused representation of node features, which
incorporate the global structural information, as follows.

xi = sigmoid(
K∑
j=1

eije⃗i) (4)

Simultaneously, we compute the attention coefficients after
introducing perturbations.

e′ij = softmax
(
α

(
W ′e⃗i,W ′e⃗j

))
(5)

where W ′
∈ Rm×n is the perturbed version of the weight

matrix, represented as follows.

W ′
= W + ε · 1W (6)

where ε is the perturbation coefficient, representing the
magnitude of perturbation, and 1W is the perturbation term
following a Gaussian distribution. Gaussian distribution is
characterized by continuity and smoothness, enabling it to
simulate variations and noise present in real-world data. This
can be expressed as:

1W ∼ N(0, σ 2) (7)
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where the mean of the Gaussian distribution is 0, and the
variance is represented by σ 2. Gaussian perturbations are
applied to each layer’s parameters of the encoder, with
the magnitude controlled by ε and the randomness of
the perturbation determined by the parameters σ of the
normal distribution. This perturbation mechanism introduces
a degree of uncertainty during training, enabling the model
to adapt more effectively to various data variations and
noise, thereby enhancing generalization performance. The
node characteristic representation after the introduction of
perturbations is as follows.

xi′ = sigmoid(
K∑
j=1

e′ije⃗i) (8)

The global-level score function for a node, which integrates
the global structural features, is defined as the similarity
between the node feature representations before and after
introducing perturbations.

g(xi, x′i ) =
xiT xi′

∥xi∥∥xi′∥
(9)

D. TRAINING OBJECTIVE
We employ a combined training strategy involving local and
global losses during the training phase. Firstly, we compute
the local loss using the triplet-level score function to ensure
that the positive triplets score is higher than the negative
triplets.

Llocal

=

∑
(h,r,t)∈G

∑
(h′

,r ′ ,t ′ )∈G′

max(0, γ + f (h, r, t) − f (h
′

, r
′

, t
′

))

(10)

where γ > 0 is the boundary hyperparameter, and
G′ represents randomly generated negative triplets. The
generation rules follow the work of [37], which involves
randomly replacing the head, tail, or relation of the triplet to
create negative examples.

G′

= {(h′, r, t)|h′
∈ E} ∪ {(h, r, t ′)|t ′ ∈ E} ∪ {(h, r ′, t)|r ′

∈ R}

(11)

Next, we utilize the contrastive loss to compute the global
loss based on the global-level score function. During training,
we randomly select a minibatch of size N to form a subgraph.
For each node feature xi and its perturbed representation xi′,
we create positive pairs (xi, xi′) and negative pairs (xi, xj ′)
with the perturbed representations of other N-1 nodes xj ′. The
contrastive learning loss aims to bring positive pairs closer
together, minimizing the global-level score function g(xi, xi′)
while pushing negative pairs further apart, increasing the
g(xi, xj ′).

Lglobal = −log
exp

(
g(xi, xi′)

)∑n
j=1,j̸=i exp

(
g(xi, xj ′)

) (12)

We define the final confidence score function as follows.

C(h, r, t) = sigmoid(g(h, h′) + g(t, t ′) − θ · f (h, r, t))

(13)

where θ is a scaling factor used to balance the scores of
different dimensions of the triplets. Finally, we use the
sigmoid function to map the score to the range [0,1]. A higher
confidence score indicates that the triplet is more likely to be
correct.

IV. EXPERIMENT
In this section, we conduct experiments to evaluate SeSICL
and answer the following questions.

• Q1: How does the efficiency of SeSICL compare with
other error detection methods?

• Q2: How do the semantic and structural components
contribute to SeSICL?

• Q3: How do hyperparameters influence SeSICL?

A. EXPERIMENT SETUP
1) DATASETS
In this paper, we evaluate our model SeSICL on three
popular benchmarks: FB15K-237, WN18RR and UMLS.
FB15K-237 and WN18RR are general-purpose datasets,
while UMLS represents a dataset from the medical domain.
Their statistical information is summarized in TABLE 1.
To answer Q1, we utilized three datasets to validate the
model’s performance across different knowledge graphs. For
Q2 and Q3, we chose the general datasets FB15K-237 and
WN18RR for validation instead of domain-specific datasets
like UMLS, which can avoid introducing more irrelevant
factors from specific domain characteristics.

TABLE 1. The statistics for datasets.

The FB15K-237 dataset is an extension of the Freebase
knowledge graph. It contains 237 relations, which is a
reduced number compared to the original FB15K dataset.
During its creation, the inverse relations present in the
original dataset were removed, resulting in a more compact
and diverse set of relations.

TheWN18RR dataset is sourced from theWordNet knowl-
edge graph and consists of triples representing relationships
between entities in the form of (subject, relation, object).
It is an improved version of the WN18 (WordNet 18)
dataset. Compared to WN18, WN18RR has been fixed for
some errors and inconsistencies, and some relations with
insufficient information have been removed.

The UMLS (Unified Medical Language System) dataset
is a comprehensive biomedical resource featuring concepts,
terms, and relationships. The UMLS dataset includes triples
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representing relationships between entities in the form of
(subject, relation, object). Each triple encapsulates valuable
biomedical information, linking entities such as medical
concepts, terms, or entities involved in healthcare-related
contexts.

Regarding data descriptions, we follow the approach used
in KG-BERT [13]. Specifically, for the WN18RR dataset,
we employ Synsets from WordNet as entity descriptions.
Initially, we retrieve synonyms through Synsets, concatenate
multiple synonyms, and remove unnecessary symbols. For
the FB15k-237 dataset and the UMLS dataset, we initially
search Wikipedia for relevant entity descriptions. For entities
successfully found in the search, we utilize a text sum-
marization algorithm to produce concise entity summary
information as entity descriptions. In cases where entities
could not be found in Wikipedia, we use the entity names
as entity descriptions. For all datasets, we directly employ
relationship names as relationship descriptions.

2) EVALUATION METRICS
We adopt a reverse ranking approach for all triplet confidence
score results, where higher-ranked triplets indicate a higher
probability of being errors. Using this method, we identify the
top K elements as anomalies. Following previous work [53],
we assess the effectiveness of all methods using Precision and
Recall, which are defined as:

Precision =
TP

TP+ FP
=

TP
| K |

(14)

Recall =
TP

TP+ TN
=

TP
| Total Errors |

(15)

where (TP) denotes the real error triplets correctly identified
among the top K triplets. K is set to be equal to the number
of total errors, resulting in equal Precision and Recall.

3) IMPLEMENTATION DETAILS
We use the NVIDIA RTX 3080 GPU server to train our
proposed framework and all baselines. Our optimizer is
Adam, with a learning rate 2e-5, and the batch size is fixed
at 8. In our hyperparameter exploration, the perturbation
coefficient ε varies from 0 to 10, the boundary hyperparam-
eter γ from 0.1 to 1.0, and we fix the scaling factor θ at
0.1. The parameters of the normal distribution σ is set to 0.1.
Additionally, we evaluated all methods by introducing a 5%
anomaly into the standard dataset.

B. COMPARING WITH OTHER MODELS ON KG ERROR
DETECTION TASK
To answer Q1, we compare SeSICL with various knowledge
graph embedding methods, including self-supervised and
semi-supervised approaches such as TransE [9], CKRL [37],
KGTtm [31], KGIst [45], CAGED [18], KAEL [54]. And the
experimental results are shown in TABLE 2.
Our proposed model achieved superior performance com-

pared to typical KG embedding methods, and the results have
been significantly improved on the baseline datasets. This is

TABLE 2. Comparing KG error detection precision with baselines models.

attributed to our model incorporating semantic and structural
information (including local and global structures) embed-
dings and contrastive learning training methods. Without the
need for additional annotated data, our model learns more
discriminative deep features, enabling effective identification
of potential errors in the knowledge graph.

C. ANALYZING THE CONTRIBUTION OF COMPONENTS
To address Q2, we conducted experiments to validate the
effectiveness of different model components. Specifically,
we performed experiments on three components: the seman-
tic layer, the structural layer and the contrastive learning
part. For the semantic layer, we replaced it with pre-trained
language models of varying parameter sizes, including Albert
and Bertsmall . For the structural layer, we replaced it with
different encoders such as SAGE and GCN. In addition,
we explored various methods to generate contrastive views,
specifically comparing the effectiveness of randomly per-
turbing edges, including deletion and addition, as well as
randomly deleting nodes (according to [55]). The results are
presented in TABLE 3.

TABLE 3. Comparing KG error detection precision with different
components.

Firstly, by replacing the semantic layer with pre-trained
language models of different sizes, we observed that the
model’s performance improved with increasing param-
eter size. However, large pre-trained models carry the
risk of overfitting downstream contrastive learning tasks.
By choosing an appropriate size for the pre-trained language
model, we enable the model to generalize better to limited
downstream task data.

Secondly, when replacing the classical graph convolutional
encoders like SAGE and GCN in the structure layer, the
performance of the models was inferior to our proposed
SeSICL model. Our model employs a structure encoding
approach based on attention mechanisms, which can partially
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FIGURE 2. Impact of hyperparameters.

filter noisy triplets and alleviate the impact of poor-quality
knowledge graphs on error detection effectiveness.

Finally, we replaced the Gaussian-based perturbation
method with traditional contrastive learning data augmenta-
tion techniques, including random node deletions and random
edge perturbations. Experimental results demonstrate that
introducing Gaussian perturbations during the training phase,
as opposed to traditional graph contrastive learning data
augmentation methods, allows for a smoother adjustment of
data representations. This effectively characterizes potential
errors present in the KG, enabling the model to more easily
capture invariant features of the KG and thereby improving
error identification effectiveness.

D. ANALYZING THE EFFECTS OF HYPERPARAMETERS
For Q3, we varied the values of two hyperparameters in
the model, namely the boundary hyperparameter γ and the
perturbation coefficient ε. The results are shown in Figure 2.

The parameter γ is the boundary hyperparameter in
the triplet-level score function, which controls the distance
between positive and negative sample pairs. A smaller margin
produces stricter constraints, bringing positive sample pairs
closer together, while a larger margin relaxes the constraints
and allows for larger distances between positive sample pairs.
We set γ to vary between 0.1 and 1.0. It can be observed
that different values of γ have minimal effect on the training
results of the model, indicating that the model is already
close to a local optimum in the hyperparameter space. Further
adjustments to the margin may not significantly improve the
model performance. Additionally, the model exhibits strong
robustness, as changes in the margin have a minimal impact
on its performance.

The perturbation coefficient ε represents the magnitude
of perturbation in contrastive learning. We varied ε between
0 and 10. When the perturbation gradually increases, our
model’s performance initially improves gradually. Increasing
the perturbation allows the model to learn invariant feature
representations between perturbations better. However, when
the perturbation becomes too large, it leads to a significant
decline in model performance, possibly because of the
perturbation of the inherent structure of the graph.

Furthermore, the anomaly quantity K is also an important
metric for evaluating the effectiveness of the error detection

model. We introduced errors at different proportions (5%,
10%, 15%, 20%) to simulate potential variations in the data
quality of knowledge graphs in the real world and observed
changes in model evaluation metrics. It is evident that under
varying error proportions, the model’s accuracy does not
experience significant declines and consistently maintains
an acceptable level. The experimental results affirm that the
proposed error detection model can reliably and consistently
deliver good performance, even when confronted with
substantial fluctuations in the quality of the underlying
knowledge graph. This indicates that our model exhibits good
stability and can be applied to error detection scenarios in
knowledge graphs with significant variations in data quality.

V. CONCLUSION
In this paper, we propose SeSICL, an effective model
designed to identify erroneous triplets in knowledge graphs
accurately. Our model leverages both semantic and structural
information of the knowledge graph, enabling it to detect
factual errors as well as schema errors. Additionally,
our model employs a self-supervised contrastive learning
approach, eliminating the need for additional data annotation
while capturing deep coherence features within the data.
Experimental results demonstrate that our model outperforms
existing methods for KG error detection and maintains stable
performance even when applied to knowledge graphs with
significant variations in quality. In the future, we plan to
explore further various knowledge graph refinement tasks
based on our proposed model and validate its effectiveness
in specific domain applications.
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