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ABSTRACT Deep learning denoising methods are often constrained by the high cost of acquiring real-
world noisy images and the labor-intensive process of dataset construction. Our self-supervised Multi-Scale
Blind-Spot Network with Adaptive Feature Fusion (MA-BSN) addresses these issues, offering an efficient
solution for image denoising. MA-BSN mitigates the challenges of spatial noise correlation preservation
and limited receptive fields, which are prevalent in existing self-supervised denoising approaches. The
network employs a blind-spot architecture that generates sub-images at multiple scales, enhancing denoising
beyond the capabilities of pixel-shuffle downsampling. A depth-wise convolutional Transformer network
(DTN) extracts features across a global receptive field, addressing the convolutional neural networks’
(CNNs) limitations. An adaptive feature fusion module (AFF) is introduced to refine feature learning for
specific regions in the denoised images, leveraging attention mechanisms for improved performance. Our
network’s efficacy is validated through experiments on the SIDD and DND real-world noise benchmark
datasets. Results on the DND dataset show a PSNR/SSIM of 38.41 dB/0.940, surpassing state-of-the-art
self-supervised methods and underscoring our approach’s superior denoising capability.

INDEX TERMS Self-supervised image denoising, multi-scale feature learning, attention mechanism.

I. INTRODUCTION
Various uncontrollable factors can degrade image quality
and interfere with visual perception in image acquisition
and transmission. Therefore, image denoising has become
a widely adopted task in image processing. It typically
serves as a preliminary operation for enhancing image clarity,
accuracy, and overall success in subsequent tasks.

Early studies often assumed that noise is independent
and identically distributed. Additive Gaussian White Noise
(AWGN) is commonly employed to simulate noisy images.
Traditional algorithms, such as filtering techniques and
sparse learning, have been widely utilized to address these
tasks, considering the inherent properties of natural images,
such as self-similarity and low rank. NLM [1] utilizes the
weighted average of all pixels within a search window in
an image to achieve noise removal. BM3D [2] improves
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the sparse representation by iterative filtering. The learned
simultaneous sparse coding (LSSC) [3] introduces the idea
of nonlocal averaging and sparse coding. The weighted
nuclear normminimization (WNNM) [4] employs a low-rank
approach and a priori knowledge to improve the denoising
performance. MCWNNM [5] extends this idea to the field of
multichannel image denoising. LRA-SVD [6] uses singular
value truncation to achieve efficient noise filtering.

Although traditional denoising methods can achieve sat-
isfactory performance, many algorithms are computationally
intensive and time-consuming due to multiple iterations.
Moreover, the non-convex nature of these algorithms makes
it challenging to find the optimal solution. Additionally,
these models often require manual adjustment of numerous
parameters to achieve desirable denoising results, introducing
uncertainty in their performance. Deep neural networks
have been employed for image-denoising tasks to enhance
the capability of learning intrinsic image features. DnCNN
[8] efficiently learns noisy features by learning clean
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FIGURE 1. Visual comparison of various methods on the DND benchmark
dataset [50]. Compared with CBDNet [7], DANet [11], CVF-SID [60], and
AP-BSN [31], Our method only requires a single noisy image as input and
does not require any additional data. DANet exhibits poor noise removal
performance at image edges. AP-BSN still contains noise in the output.

image-noise image pairs in supervised batch. However,
due to the fitting properties of deep neural networks, this
algorithm can only solve the AWGN denoising task for a
given noise level, and it is difficult to generalize to other
noise levels or other types of noise. The convolutional blind
denoising network (CBDNet) [7] adapts itself to images
with different noise levels. VDN [9] uses a variational a
posteriori optimization network with good generalization
ability. DCANet [10] proposes a dual convolutional blind
denoising network, which can remove a wide range of
Gaussian noises. DudeNet [11] proposes a dual denoising
network, which uses the image sparse properties to learn
global and local features of the image.

Researchers have recently found that real-world noise
is more complex than synthetic noise. Noise behaves as
content-dependent rather than independent, and these forms
are spatially variable. Therefore, recent work has focused on
real-world noisy images. In traditional methods, NLH [12]
proposes pixel-level Wiener filtering algorithms that utilize
an image prior to achieving denoising of real-world noise.
TWSC [13] utilizes a trilaterally weighted sparse coding
scheme that describes the real-world noise and the image
prior by introducing a weighting matrix. In the field of
deep learning, numerous algorithms with excellent results
have been proposed [14], [15], [16], [17], [19], [20]. These
methods utilize the powerful inductive bias capability of deep
neural networks to thoroughly learn the potential features of
noisy images in the dataset and fit ground-truth images to
improve the denoising performance.

Although the aforementioned deep learning algorithms
have demonstrated effective denoising capabilities, they
typically rely on a supervised approach for model training,
which entails using clean image pairs with synthetic or real-
world noise. However, image pairs synthesized using content-
independent Gaussian white noise or content-dependent
Poisson noise may not accurately represent the distribution
of real-world noise. Consequently, denoising models that
perform well on synthetic noise tasks may need to be more
competent in handling real noise scenarios. The high cost
of acquiring real noise image pairs limits the training and

deployment of models. In this case, self-supervised denoising
algorithms [21], [22], [24], [25], [26], [27], who require only
noisy images to train the model, do not rely on noisy-clean
image pairs. The pioneering work DIP [25] was the first
attempt to leave the training set behind while not requiring
the original image to be labeled. The whole process requires
only a single noisy image. Although its denoising effect is
worse than supervised deep learning denoising algorithms
in the same period, its innovative ideas have inspired many
subsequent works. Noise2Noise [21] uses pairs of noise for
training, but it is difficult to obtain different pairs of noise
under the same scene due to factors such as illumination. Like
adding masks in MAE [28], Bernoulli sampling is introduced
to Self2Self [27] to improve the denoising level. Noise2Void
[24] proposes Blind-Spot Network (BSN), a practical self-
supervised learning module.

The blind-spot strategy avoids constant mapping by learn-
ing to predict artificially missing pixels using neighboring
pixels. Thus, denoising neural networks can only be trained
with noisy images. References [29] and [30] assume that
noise has content relevance and spatial independence, which
verifies the feasibility of image denoising by sampling noisy
images and training them jointly. Moreover, real-world noise
has spatial continuity; when the noise level is high, the
BSN-based denoising methods [24], [30], [31], [32] are
prone to noise interference in the process of denoising with
neighboring pixels. AP-BSN [31] aims to reduce the spatial
correlation of noise by performing five times pixel-shuffle
downsampling on the input before training, which involves
using a center-masked convolutional kernel and a dilated
convolutional layer to mitigate blind-spot issues during
forward propagation. Due to the effect of sampling on high-
frequency features, the sampling step size requirement is
strict; if the step size of PD is too large, the spatial information
of high frequency will be lost, and if it is too small, it is
difficult to reduce the spatial correlation of noise. The above
BSN denoising method adopts the CNN network for feature
extraction. However, CNN’s local feature extraction ability is
excellent, its receptive field limits it, and its denoising ability
is limited when the noise level or spatial correlation is high.

Inspired by the supervised image denoising method [17],
this paper introduces the Transformer network with strong
global feature extraction ability, combines it with CNN, and
learns the noisy image features from both the local and global
aspects so that the image feature extraction ability can be
further enhanced. AP-BSN [31] adopts a sampled feature
map with a step size of 5 for training, and it is easy to
filter out the high-frequency image information. Therefore,
this paper introduces a pyramid network for multi-scale
feature extraction and an attention-based adaptive fusion
network used to enhance the feature extraction capability
of the network while effectively reducing the loss of image
information.

Enhancing images in low-light conditions has consistently
presented a challenge due to these images often being affected
by additive noise and reduced contrast. In recent years,
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a variety of methods have been proposed to improve the
quality of images captured under these conditions. Notably,
Oh and Hong introduced a Retinex model based on a
nonlinear mapping function in their study, which effectively
enhanced the dynamic range and color restoration of images
[62]. They then further explored the application of mixed
deep learning techniques and a hybrid norm loss function in
low-light image enhancement [63].Moreover, the research by
Duong and Hong [64] introduced EBSD-Net, a deep network
specifically designed for low-light color images, aimed at
enhancing brightness and suppressing image degradation.
In processing images with limited dynamic range, MA-BSN
can be integrated with the Retinex model to enhance the
overall brightness of the image while preserving the details
in shadows and highlights. Particularly in scenarios of color
distortion caused by low-light conditions, the combination
with the Retinex model facilitates more accurate color
correction.

Themain contributions of our work are outlined as follows:

1) We introduce the concept of multi-scale feature extrac-
tion into the blind-spot network, which effectively
mitigates the degradation of high-frequency informa-
tion in images caused by pixel-shuffle downsampling.
This is the first attempt to incorporate such a concept
in this context.

2) We employ a depth-wise-based Transformer to jointly
learn image features across channels by integrating
the sampled sub-images. This approach enhances
capturing and utilizing contextual information for
denoising tasks.

3) We propose an adaptive feature fusionmodule based on
attention mechanisms, which enables image stitching
to focus more on the content of the images. This
module improves the overall denoising performance
by effectively integrating relevant information from
different parts of the image.

4) The proposed MA-BSN achieves denoising tasks in a
self-supervised manner, requiring only a single noisy
image. It demonstrates advanced performance on real-
world noise image benchmark datasets such as SIDD
and DND, showcasing its effectiveness in practical
scenarios.

II. RELATED WORK
A. UNSUPERVISED IMAGE DENOISING
Unsupervised image denoising is briefly introduced in the
introduction to provide an overview of the methodology
employed in this paper. In recent years, significant efforts
have beenmade to address the challenges in supervised image
denoising. These efforts can be broadly categorized into three
general directions, as outlined below.

1) GENERATE SYNTHETIC NOISE-CLEAN IMAGE PAIRS
As external factors change in real-time, real-world noise-
clean image pairs are difficult to obtain accurately.
Synthetic real-world noise-clean image pairs are extended

by noise domain adaptation using the generative method
ADGAN [36]. UIDNet [30] utilizes a self-supervised
denoising network for further feature extraction. C2N [38]
considers real-world scenes with various noise generation
factors to achieve more accurate noise synthesis.

2) GENERATE PSEUDO-NOISE IMAGES
Although the real noise-clean image pairs are difficult to
obtain, using the zero-mean property of the noise distri-
bution to obtain relatively independent noise images, and
constructing real noise-true noise image pairs for training, can
also achieve good performance. noise2noise uses multiple
noise images for training without introducing the ground
truth image. OCT-NGAN [37] trains the discriminator to
distinguish between actual noise samples and pseudo-noise
samples generated by the denoiser in the absence of clean
images, and the discriminator guides the generator to denoise.
Neighbor2Neighbor [26] constructs noisy image pairs by
obtaining sub-images from sampling random neighborhoods.
Self2self [27] utilizes Bernoulli sampling to obtain noisy
image pairs and achieves good performance through iterative
denoising, but a single noisy image often consumes several
hours and is computationally inefficient. NAC [39] treats
the noisy image used for denoising as ground truth and
synthesizes it with another similar noisy image for training.
A similar noisy image is synthesized with another corre-
sponding image used for training.

3) TRAINING ON NOISY IMAGES ONLY
As in the above two points, There is also a self-supervision
approach for training directly on a single noisy image without
constructing image pairs for training. Noise2Void [24]
proposes novel self-supervised Blind-Spot Networks (BSNs),
which utilize a blind-spot strategy to avoid network identity
mapping, forcing the network to learn features from pixel
neighborhoods. Noise2Self [22] utilizes the independence of
inter-pixel noise to recover the image. Laine19 [29] achieves
the effect of a ‘‘blind spot’’ at the center of the receptive
field by masking the receptive field in different directions.
D-BSN [30] uses center blind-spot convolution and dilated
convolution layer (DCL) to construct the BSN. The approach
taken here involves further filtering out the noise, which
is key to destroying the spatial correlation. AP-BSN [31]
performs 5-pixel stepwise pixel-shuffle downsampling on
the image during training and uses a blind-spot convolution
kernel with a center mask to independently recover the image.
Mask’s blind convolutional kernel and dilated convolutional
layer (DCL) to achieve feature learning. However, AP-BSN
employs a large PD step size to reduce noise correlation,
which results in some high-frequency information being
filtered out and reduces the image recovery effect. The CNN-
based network architecture also limits the learning of global
image features.

B. SUPERVISED IMAGE DENOISING
The significance of self-supervised learning in image
denoising lies in its ability to reduce data annotation
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FIGURE 2. Comparison of sub-images obtained using pixel-shuffle downsampling with different strides. The subscript
indicates the stride value. When the stride is 2, the image features are relatively intact. However, as the stride increases,
the degree of damage to the image edges gradually increases. The figure shows that when the stride is 5, the spatial
correlation of the texture on the hat is severely disrupted.

costs, enhance model generalization, adapt to various noise
environments, minimize human intervention, and be adaptive
to diverse tasks. This renders self-supervised methods an
economically efficient, versatile, and highly adaptive solution
for image denoising, with the potential to deliver outstanding
performance across a range of noisy scenarios.

Like the development process of self-supervised image
denoising tasks, early supervised image denoising tasks are
mainly based on CNN networks [16], [33], [34], [35], which
utilize the excellent feature learning ability of CNNs for local
regions to improve denoising performance.

Although convolutional neural networks have achieved
advanced performance, there are areas for improvement, such
as the convolutional kernel being trained to form a fixed
weight matrix, which cannot adapt to the input of different
image contents. Its scale is often small, which makes it
challenging to extract feature information in a large receptive
field, and if downsampling is used to expand the receptive
field, the detailed information will be lost.

The self-attention mechanism has been introduced into
the field of image processing [41], [42], [43] to make up
for the shortcomings of the CNN module. The self-attention
mechanism uses learning to extract features from the global
region of an image. It computes weights for different regions
to increase the importance of the regions with larger weights
so that they can play a more significant role in the learning
process.

Although the receptive field of the Transformer based
on attention mechanisms is more significant than that of
CNN, and more effective information can be extracted, its
computational cost is relatively higher, and its computational
complexity grows quadratically with the increase of the
receptive field, so it is more demanding on the operating
equipment. The use of the scenarios is limited, and it

only applies to high-computing-power equipment and low-
resolution images. The image denoising task studied in this
paper differs from the advanced computer vision tasks such as
image classification and semantic segmentation that focus on
the image as a whole, focusing more on the pixel-level scene
and requiring higher image resolution. Hence, the above
Transformer variant does not apply to image denoising. There
are relatively few existing Transformer variants for image
denoising [17], [47], and in order to reduce the computational
cost, these methods decompose the whole image into non-
overlapping image blocks and then perform self-attention
operations on these blocks. SUNet [18] leverages the local
attention mechanism of the Swin Transformer to effec-
tively handle details and textures in images, demonstrating
exceptional denoising performance under complex noise
conditions. SwinIR [46], with its innovative multi-scale
processing strategy and effective feature fusion technique,
achieves significant results in various image restoration tasks,
including denoising. Supervised deep learning denoising
methods have been developed over the years and can learn
features from images better than unsupervised denoising
methods that started relatively late.

III. METHODS
A. MOTIVATION AND MODELING
This section begins by introducing the motivation behind
our work. Subsequently, the architecture of MA-BSN is
described, as shown in Figure 3.
Although current algorithms perform well in simple syn-

thetic noise removal, self-supervised denoising methods have
strong spatial noise correlation due to exploiting pixel spatial
neighborhood features, leading to significant performance
degradation when dealing with real-world noise, which
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FIGURE 3. MA-BSN architecture. Downsampling the noisy image into multi-scale feature maps enhances the self-supervised learning capability. The
transformer module increases the receptive field of the network, further improving the denoising performance. The Adaptive Feature Fusion (AFF) module
enhances attention to the image by combining denoised images from multiple branches.

means that the assumption on which most state-of-the-art
methods are based, i.e., the pixel-level spatial independence
of the noise, is not justified. These methods assume that the
clean signal of each pixel depends on the neighborhood, while
the noise is independent. Therefore, in real scenarios, they
inevitably misinterpret spatially correlated noise as a clean
signal, making it difficult to recover a clean image efficiently.
Therefore, considering the spatial correlation of noise is
necessary for self-supervised real-world noise removal.

We employ pixel-shuffle downsampling (PD) to disrupt
the correlation of authentic noise. Compared to other
downsampling methods, such as bicubic interpolation and
max pooling, PD maintains the integrity of image content by
rearranging pixels, particularly preserving texture and edge
information. Moreover, this technique is reversible, allowing
the network to restore to the original resolution losslessly in
later stages, which is advantageous for precise reconstruction
in self-supervised learning.

While current self-supervised image denoising methods
have shown advanced performance, there are still some
limitations. Firstly, AP-BSN [31] utilizes only PD2 and PD5
(subscript represents step size) to sample sub-images, which
limits the network’s learning capacity when dealing with
complex feature maps. Inspired by feature pyramid networks
[44], we have added additional scale branches. Specifically,
we attempt to fill the gap between PD2 and PD5 by
introducing PD3 and PD4 for sub-image sampling, further
enhancing the network’s ability to learn features at different
scales. Secondly, in pyramid networks, different-scale feature
maps are combined through a simple concatenation, without
emphasizing the importance of image features. Inspired
by [40], we propose an adaptive feature fusion method.
Lastly, previous self-supervised methods often rely solely
on CNNs to learn image features, which can limit the
network’s receptive field. In recent years, Transformers

have been widely adopted for their large receptive fields.
Inspired by [48], we introduce Transformer suitable for image
denoising [20] to enhance the network’s learning capability.
Sub-images obtained through multi-scale sampling are

independently processed by the network for denoising,
incorporating information from various scales and angles
to enhance BSN’s comprehensive noise feature capture.
Parallel processing of these sub-images enables BSN to learn
noise distribution from multiple perspectives, enhancing
denoising accuracy and robustness. The denoised sub-images
are then adaptively fused to reconstruct a full-resolution
image, optimizing visual quality by considering the denoising
effect of each sub-image and employing a fusion strategy.

In summary, we present a self-supervised image denoising
method with feature enhancement and adaptive fusion at
multiple scales. Benefiting from the strong generalization
ability of self-supervised learning, MA-BSN samples input
noisy images into multi-scale feature sub-images and uses
Transformers to self-supervisedly learn their image features
in a larger receptive field. Furthermore, an attention-based
feature fusion mechanism further enhances image denoising
capabilities.

Based on the above explanation, we now introduce the
overall architecture of our method. As shown in Figure 3.
The single input noisy image is initially subjected to feature
transformation using a 1 × 1 convolution. Subsequently,
multiple sets of sub-images at different scales are obtained
through pixel-shuffle downsampling (PD) with varying
strides. In parallel, the blind self-supervised denoising
network (BSN) is applied to each set of sub-images for
denoising. The depth-wise transform network (DTN) is then
employed to learn image features with a large receptive
field. The inverse of the pixel-shuffle downsampling is used
to obtain the initial denoised image. The adaptive feature
fusion (AFF) module is utilized to fuse the features from

49724 VOLUME 12, 2024



H. Tang et al.: Self-Supervised Real-World Image Denoising

the previous three branches in an adaptive manner. The final
denoised image is obtained through the fusion of featuremaps
derived from two branches. The conventional PD-refinement
[23] employs a fixed pixel replacement strategy, which
leaves correlations among the replaced noise that affect the
denoising performance. The Random-replacing refinement
[31] addresses this issue by adopting a random pixel
replacement strategy. In a manner akin to the configuration
of AP-BSN, we set the quantity N for random-replacing
refinement at 4. The proposed method is trained using the
L1 loss function:

E = ∥IN − IC∥1 (1)

where IN represents the input noise image. IC is obtained
from IN by MA-BSN as:

IC = AFF(
5∑
i=3

PD−1
i (I∗i )) (2)

where AFF denotes the daptive feature fusion module, PD−1

stands for the inverse of the pixel-shuffle downsampling.
The denoised images I∗i from each branch can be combined
through the Adaptive Feature Fusion (AFF) to obtain IC .

I∗i = DTN(BSN(PDi(IN ))) (3)

where DTN denotes the depth-wise Transformer network,
BSN denotes the blind-spot network, PD indicates the pixel-
shuffle downsampling. The subscript i denotes the step size
of PD, where i ∈ 1, 2 and 3. Firstly, the input noise image IN
is decomposed into sub-images through PD, and then BSN
is applied to the sub-images to achieve self-supervised image
denoising. Finally, the PD inverse operation is performed to
obtain IC . Minimize the L1 loss of IN and IC to achieve self-
supervised training of the network. The denoised image ID is
obtained by:

ID =
1
N

N∑
j=1

BSN(IPj(x,y)) (4)

where N denotes the quantity of random-replacing refine-
ment, set to 4. IPj represents the fused image obtained on the
j-th occurrence, obtained by the following equation:

IPj(x,y) = Pj(x, y) ⊙ I2 + (1 − Pj(x, y)) ⊙ IC (5)

where matrix Pj(x, y) signifies the value of P j
∈ 0, 1 at

the index (x,y) with a probability p = 0.16 [31]. ⊙ denotes
element-wise multiplication.

In comparison to the L2-norm, the L1-norm achieves supe-
rior denoising performance. This is attributed to the nature
of noise present in natural images, which typically does
not adhere to a normal distribution but rather approximates
a Laplace distribution with a kurtosis value exceeding 3.
The adoption of an L1-norm loss function is more adept
at conforming to the actual distribution of image data,
given its heightened sensitivity to outliers, such as noise
within images. Consequently, this facilitates the effective
suppression of noise [61].

B. BLIND-SPOT NETWORK
In this task, BSN and the multi-resolution sub-images
obtained through Pixel-Shuffle Downsampling (PD) together
to achieve an efficient and effective denoising strategy. BSN
is a powerful denoising network that does not rely on pre-
defined noise models and does not require paired clean and
noisy training samples. BSN can adaptively learn and process
various noises present in input images.

The function of PD is to generate multi-resolution sub-
images. Through PD, we can obtain sub-images of different
resolutions from the original image, which retain important
features of the original image. This method allows BSN to
perform denoising on images of different resolutions, thereby
better adapting to and processing various types and levels of
noise.

The BSN we utilized is inspired by the AP-BSN [31],
Figure 4 visualizes its detailed architecture. The workflow
consists of four steps. First, a linear transformation is applied
to the input noisy image using a 1 × 1 convolution layer, and
output features containing complete image information are
obtained in parallel through several PD with different strides,
resulting in sub-images of various resolutions. Second, the
sub-images from each branch go through 3 × 3 and 5 ×

5 centrally masked convolutions in parallel, predicting the
central image from the neighborhood. Third, the predicted
sub-images are processed through a Dilated Convolution
(DC) module, Incorporated within each dilated convolution
module is a 3 × 3 dilated convolutional layer featuring
distinct stride values s. Specifically, s = 2 is employed for
the upper path of the network, while s = 3 is applied to the
lower path.

Different stride values to hierarchically expand the recep-
tive field. The s = 2 in the upper pathway facilitates
the network in capturing a broader range of contextual
information, while the s = 3 in the lower pathway aids in
acquiring more refined image details. This configuration of
stride variation enables the network to effectively integrate
global and local information, thereby enhancing denoising
performance. Finally, the sub-images output from the two
branches are merged using Adaptive Feature Fusion (AFF),
yielding the output of the BSN. It is noteworthy that, we have
tailored the AFF module for a scenario with only two multi-
scale input feature maps, a departure from the original three.
This adjustment is necessitated by the outputs from the BSN,
which provides two distinct scale feature maps. The fusion
operation has been streamlined to merge these two inputs,
potentially reducing computational load and model com-
plexity. The adaptive fusion mechanism employs a Softmax
activation to recalibrate the feature maps, utilizing the derived
attention weights to enhance the model’s focus on relevant
features, rather than relying on concatenation operations.

C. DEPTH-WISE CONVOLUTIONAL TRANSFORMER
NETWORK
In our work, we integrate a modified Transformer struc-
ture optimized for image denoising, drawing from the
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FIGURE 4. Visualization of blind-spot network architecture. Similar to our multi-scale denoising network, the input image is divided into two branches for
parallel processing. Different sizes of centrally masked convolution are applied in each branch. Dilated convolution is utilized to increase the receptive
field. The proposed Adaptive Feature Fusion (AFF) is employed to adaptively fuse the feature maps from both branches.

FIGURE 5. Visualization of depth-wise convolutional transformer network architecture (DTN). Using 1 × 1 convolution and 3 × 3 depth-wise convolution,
image features can be learned from both spatial and channel dimensions. The multi-heads module further enhances learning ability.

advancements by Restormer [20], shown in Figure 5. This
structure is designed to fully capture image features across
various scales while being computationally efficient for
high-resolution images. Unlike the standard Transformer,
which suffers from high computational costs due to the
self-attentive structure, our adapted model employs a multi-
head transposition attention network that utilizes depth-wise
convolution. This allows for self-attention operations to be
performed in the channel dimension, thereby reducing com-
plexity to O(W 2H2) and facilitating the extraction of global
information without partitioning the image into chunks.

The self-attention mechanism is redefined to compute
an implicit attention map across channels, as opposed to
an explicit pixel-level interaction. This is achieved by the
following operations:

T = Reshape(Dconv(Conv1(X ))) (6)

Q,K = Norm(Reshape(T )), V = Reshape(T ) (7)

Ẋ = Conv1(V ⊗ Softmax(K ⊗ Q/α)) + X (8)

where X and Ẋ denote the input and output of the attention
network, respectively, while T represents the transformed
feature map. The matrices Q, K , and V are derived from
the input through a series of convolutions and reshape
operations, with α being a learnable scaling factor that
normalizes the attention weights. Norm, Conv1, Dconv, and
Reshape correspond to layer normalization, 1×1 convolution,
3 × 3 depth-wise convolution, and feature map dimension
reshaping, respectively.

Furthermore, the feed-forward network (FFN) is refined to
process spatial features more efficiently:

Z = Dconv(Conv1(Norm(X ))) (9)

X̃ = Conv1(Z ) ⊙ GELU(Z ) + X (10)

where Z represents the intermediate feature map, and X̃ is
the output of the FFN. The gating mechanism, indicated
by element-wise multiplication with the activation function
GELU, selectively enhances information flow, focusing on
pertinent spatial details.
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This streamlined method preserves the Transformer’s
capacity for global and local feature processing, optimized
for high-resolution image denoising. It obviates the need
for partitioning the image into blocks, utilizing depth-wise
convolution for efficient feature extraction in both channel
and spatial dimensions, thus reducing parameter count.

It is worth noting that layer normalization due to its inde-
pendence from batch size and its focus on the normalization
of individual feature channels, is preferentially employed in
image denoising tasks to ensure consistent performance even
in small batch processing. Compared to batch normalization,
layer normalization circumvents the amplification of noise
or loss of crucial details caused by intra-batch variability,
which is essential for maintaining the structural integrity of
denoised images. Consequently, layer normalization is more
suitable for image denoising as it preserves the authenticity
and consistency of image details throughout the denoising
process.

D. ADAPTIVE FEATURE FUSION NETWORKS
Neurons in the human visual cortex have the feature of
changing their reception area according to external stimuli
[40]. Inspired by this, feature fusion and adaptive feature
selection can be performed in neural networks using convolu-
tional neural networks on multi-scale feature maps. The more
common feature fusion methods are stitching or summation.
However, the different scale feature maps are related to the
image content, and simple stitching or summation will limit
the feature representation, so neither of these approaches
is the best choice. In this paper, we adopt a self-attentive
mechanism for the adaptive fusion of multi-scale feature
maps called Adaptive Feature Fusion Module (AFF).

The denoising method for multi-scale feature map fusion
mechanism is less studied in previous studies, inspired
by [40], we use a mechanism for the adaptive fusion of
multi-scale feature maps for feature fusion of three parallel
branches, and the network structure is shown in Figure 6.
Firstly, feature maps of various scales obtained from the
inverse operation of PD in Figure 3 are fused. Feature
maps of varying scales carry a wealth of spatial hierarchical
information, which is crucial for the understanding and
interpretation of visual scenes. Feature maps at smaller scales
tend to encompass high-frequency information, such as edges
and textures, whereas those at larger scales provide a more
expansive contextual overview, aiding in the comprehension
of the overall structure of images. By combining these
multi-scale feature maps through element-wise summation,
we obtain:

mt = (m1 ⊕ m2 ⊕ m3) (11)

where m1, m2 and m3 are the input images of the three
branches in Figure 3, ⊕ denotes element-wise addtion, mt
is the input feature map used to train the attention map.
Subsequently, the feature map undergoes Global Average
Pooling (GAP) across its spatial dimensions, a process
which serves to diminish dimensionality while concurrently

distilling global contextual cues:

v = GAP(mt ) (12)

where GAP denotes the global average pooling opera-
tion. v represents the feature vector after dimensionality
reduction. The global information furnishes the network
with a panoramic perspective, enabling the subsequent
selection operations to adjust and enhance the feature maps
with greater precision, thereby augmenting the network’s
sensitivity and responsiveness to pivotal information. The
dimensionality-reduced feature vector v ∈ R1×1×C is
obtained, where C is the number of channels. The vector v
is then futher compressed using the 1 × 1 convolution layer
and the GELU activation function:

u = GELU(Conv1(v)) (13)

where Conv1 denotes 1 × 1 convolution, GELU represents
the activation function GELU, which effectively balances the
propagation of salient features and the suppression of less
informative ones. This selective transmission of information
ensures that the subsequent channel-downscaling convolution
operates within a feature space that is rich in representational
quality yet compact in dimensionality. Thenwe can obtain the
compressed feature vector u ∈ R1×1×n from Equation (13),
where n =

C
10 . This operation is designed to reduce the

channel dimensionality of feature maps, thereby generating
a more compact representation of features. Concurrently,
it diminishes computational complexity and augments the
network’s generalization capabilities. u is made to pass
through three parallel channels-upsampling convolutional
layers to obtain the extended vectors g1, g2, and g3:

gi = Conv3(u) (14)

where Conv3 denotes 3 × 3 convolution, i ∈ 1, 2 and 3,
denoted the three different branches. Channel-upscaling
convolution effectively augments the network’s capacity for
feature representation by increasing the number of channels
in feature maps. This operation enables the model to
capture more granular information, thereby enhancing the
precision of recognition for complex patterns. Concurrently,
it furnishes the requisite high-dimensional feature space
for multi-scale feature fusion, bolstering the network’s
proficiency in processing information across varying scales.

In AFF frameworks, channel reduction convolution ini-
tially decreases the feature dimensions to distill key informa-
tion and reduce computational load. Subsequently, channel
expansion convolution restores the feature dimensions,
enhancing the expressive power of the features and providing
a wealth of information for subsequent feature fusion. This
process not only improves the computational efficiency of
the model but also augments the model’s capacity to capture
and integrate essential features. Then a softmax operation is
performed on each of the three extended vectors to adaptively
obtain the relative weights w1, w2, and w3 containing the
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FIGURE 6. Visualization of adaptive feature fusion module architecture (AFF). We use a mechanism for the adaptive fusion of multi-scale
feature maps for feature fusion of three parallel branches. Compared to concat, AFF places more emphasis on the learned image features.

attentional features:

wi = Softmax(gi) (15)

where i ∈ 1, 2 and 3. The Softmax function facilitates
adaptive recalibration of features by assigning normalized
attention weights to feature maps of varying scales. Fur-
thermore, the softmax operation’s application to the feature
descriptors ensures that the resulting weights are non-
negative and sum to one, thus enabling a probabilistic
interpretation of the importance of each feature map. This is
particularly significant in the context of multi-scale feature
fusion, where it is essential to balance the contribution of
feature maps that encapsulate different levels of semantic
information. The relative weights w1, w2 and w3 effectively
act as gating mechanisms that modulate the influence of each
feature map in the aggregated representation. Finally, it per-
forms elemen-twise multiplication with the corresponding
input image respectively, so as to realize the adaptive feature
fusion of different feature maps:

md = Conv1(
3∑
i=1

wi ⊗ mi) (16)

where
∑

represents the element-wise addition of the three
branches, mi represents the three images of the input. md
denotes the output image of AFF.

In summary, during the fusion phase, feature maps from
different branches are first merged through element-wise
addition to form a comprehensive feature map. This feature
map is then utilized to extract global contextual information
via Global Average Pooling (GAP). Subsequently, this infor-
mation is condensed into a compact feature vector through a
channel-reduction convolutional layer and transformed into
feature descriptors by a channel-expansion convolutional
layer. In the feature adaptive selection phase, these feature
descriptors are processed with a Softmax activation function
to generate attention weights, which adaptively adjust the
significance of the original feature maps. Finally, these recali-
brated feature maps are aggregated into the final fused feature

map through a weighted summation approach. Adaptive
Feature Fusion (AFF) achieves an effective combination of
different branch features in this manner, adaptively adjusting
their contributions to generate a more favorable feature
representation for downstream tasks.

IV. EXPERIMENTS
This section first describes the training method of the
proposed network. Then the trained network is compared
with other methods on different noisy datasets to verify the
effectiveness of the network in this chapter on the image
denoising task.

A. DATASET
Since the denoising performance of real-noise images
determines the success or failure of the algorithm in practical
applications, we select two real-world noisy image datasets
that are more commonly used to verify the effectiveness of
the network in this paper. The two real-noise image datasets
are SIDD [49] andDND [50], and the SIDD test set is 40 high-
resolution sRGB images taken in 40 scenes different from the
training set. Real-world noisy sRGB image blocks and the
DND dataset consist of 50 high-resolution real-noisy sRGB
image blocks captured by four consumer-grade cameras and
do not provide any additional noisy image-clean image pairs
for training. Therefore, the network trained on the SIDD
training set is directly used for denoising the DND dataset
to avoid the possibility of overfitting, and the denoising
performance is more convincing.

B. IMPLEMENTATION DETAILS
During training, our hyperparameters are set as follows. The
batch size used in the experiments is 8. Patches measuring
64 × 64 are stochastically sampled from images afflicted
with noise, and each image used in training is subjected to
augmentation through random flips and 90-degree rotations.
We use the L1 loss between the noisy image and the output
for training. The learning rate starts from 0.0001 with the
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FIGURE 7. Visual comparison of various methods on the DND benchmark
dataset.

FIGURE 8. Visual comparison of various methods on the SIDD dataset.

Adam optimizer. The network was trained with 20 epochs
until complete convergence. We implemented the method
in PyTorch 1.9.0 and trained the model on an Nvidia RTX
3090. We use the widely used metrics of peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) to evaluate the
method’s performance.

C. RESULTS ON REAL-WORLD DENOISING
Validating the effectiveness of our proposed MA-BSN
method for real-world image denoising is one approach to
conducting tests on the widely used and highly persuasive
SIDD [49] and DND [50] benchmark datasets. Table 1
presents the quantitative results of recent supervised and
unsupervised image denoising methods on SIDD and DND,
using the commonly used PSNR and SSIM evaluation
metrics. Our method, MA-BSN, is shown in the last column,
and it achieves the best performance among various denoising
methods, as observed through comparisons.

Through comparisons, it is evident that traditional methods
such as BMD and WNNM, which have not been trained
on the dataset, perform poorly in handling real-world noise,
highlighting the necessity of training. For supervised meth-
ods, using authentic noisy images for training outperforms
using synthetic noise. For instance, the PSNR of DnCNN is
approximately 15 dB lower than that of AINDNet, indicating
that although the acquisition cost of synthetic noisy images is
lower, their distribution does not match the real-world noise.
These findings further emphasize that real-world noise is not

spatially independent but exhibits specific correlations with
image distribution.

In unsupervised methods, overall performance is superior
to traditional methods without training and deep learning
methods trained on synthetic noise images but slightly
inferior to supervised deep learning methods trained on
authentic noisy images. Specifically, methods that learn
the image noise distribution and construct noisy-clean
pairs achieve similar denoising performance as methods
that construct noisy-noisy pairs. Overall, these methods
outperform those that do not utilize real noise for training.
There is a clear trend of rapid development in methods that
train the network using only simple noisy images. Pioneering
work such as Noise2Void achieved a PSNR of only 27.68 dB
and SSIM of 0.668 on the SIDD dataset. However, there
has been significant improvement in recent years, with
approximately a 10 dB increase in PSNR, representing a one-
third improvement, and a 0.3 increase in SSIM, representing
a 40% improvement. These advancements indicate that the
field of self-supervised image denoising, although relatively
late to start, is progressing rapidly.

Supervised deep learning methods trained on real-world
noisy images, often utilizing the training set provided by
the SIDD benchmark dataset, typically exhibit superior
denoising performance, which can be attributed to the
similarity between the image distribution in the training set
and the test set and the abundance of images that provide
rich prior information. Conversely, self-supervised methods
demonstrate competitive denoising performance by lever-
aging a single noisy image and hold tremendous potential
for generalization tasks. Furthermore, their characteristic
of not relying on a training set aligns better with the
requirements of denoising tasks in practical applications. Our
proposed method, which leverages advanced feature learning
structures, achieves the highest performance among self-
supervised methods.

We also compared the denoising results of different
methods from a visual perspective. We conducted a thorough
evaluation of MA-BSN’s effectiveness by comparing it
against a range of supervised and unsupervised methods.
Specifically, the compared methods include CBDNet [7],
DANet [11], CVF-SID [60], and AP-BSN [31]. Among them,
CBDNet andDANet are supervisedmethods, while CVF-SID
and AP-BSN are unsupervised.

A comparison of denoised images from different methods
reveals noticeable improvements in the low-frequency region
for our proposed method, as shown in Figure 1. In contrast,
AP-BSN still exhibits visible noise in the low-frequency
region. Additionally, the high-frequency textures appear
more straightforward, indicating that the extension of pixel-
shuffle downsampling with different scales yields better
preservation of high-frequency features than the PD method
with a stride of 2 alone. In Figure 7, CBDNet performs
poorly in handling high-frequency regions, resulting in
distorted edges and noise in the low-frequency region.
CVF-SID exhibits artifacts in the edge regions. AP-BSN
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TABLE 1. Quantitative comparison of denoising performance on sRGB images of real-world noise benchmark datasets SIDD and DND. Results with *
mean these are reported from R2R [56].We obtained the results of other methods in benchmark from the official websites of SIDD and DND.

FIGURE 9. Visual comparison on synthetic noisy image tasks with noise
level σ = 30.

shows curved edges in the upper-left bright area, suggesting
limitations in the receptive field of AP-BSN. The denoising
performance is significantly compromised when there is
an insufficient correlation among neighboring pixels. Our
method incorporates Transformers, enabling the learning of
image features from a larger context, effectively addressing
this challenge. Figure 8 demonstrates the excellent denoising
performance of our method across different datasets, which
shows the strong generalization ability of MA-BSN.

D. RESULTS FOR SYNTHETIC DENOISING
The generalization level of the proposed method was
validated through further evaluation on the synthetic noise
image datasets CBSD68 [58] and Urban100 [59] at different
noise levels. Commonly utilized noise levels of 10, 30,
and 50 were selected for this analysis. A comparison was
conducted among image denoising methods based on image
priors, supervised learning, and self-supervision, with the
quantitative performances delineated in Table 2. In the realm
of self-supervised methods, the proposed approach demon-
strated competitive efficacy. Nonetheless, there remains
room for enhancement in self-supervised methods when
juxtaposed with supervised denoising methods like SUNet.

FIGURE 10. The analysis of convolutional blocks on BSN. The abscissa of
the four line charts represents the number of convolutional modules.
(a) The first 1 × 1 convolutional module after entering the branch. (b) The
dilated convolution in each branch. (c) The second 1 × 1 convolutional
module after entering the branch. (d) The 1 × 1 convolutional module
after merging the branches.

Figure 9 exhibits a visual comparison of different methods
at a noise level of 30, highlighting the enhanced texture
preservation capability attributed to the integration of the
Transformer. The rapid advancement of self-supervised
methods is narrowing the gap with supervised approaches.
Considering the flexibility and superior generalization ability
of self-supervised methods, they hold significant research
value.

E. THE IMPACT OF CONVOLUTIONAL BLOCKS ON BSN
The BSN shown in Figure 4 is the core of the self-
supervised method. The approach taken here involves
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TABLE 2. Comparative quantitative analysis of various denoising methods on synthetic noise image datasets CBSD68 and Urban100 at selected noise
levels of 10, 30, and 50.

improving denoising performance. We explored the impact
of different numbers of convolutional modules on the results.
Specifically, we controlled variables using the number of
BSNmodules used in AP-BSN as a baseline. We investigated
the effects of two 1 × 1 convolutional modules after
entering the branch, one dilated convolution, and the 1 ×

1 convolutional module after merging the branches. The
1 × 1 convolutional module before the branch primarily
adjusts the channels and thus was not studied. Figure 10
shows that the optimal number is required to achieve the
best denoising performance. It is worth noting that all 1 ×

1 convolutional layers have 128 channels except the last
convolutional layer, which is used to generate denoised
images with three channels.

F. ABLATION STUDY
Furthermore, we conducted ablation experiments on the
proposed method, focusing on the Multi-scale architecture,
AFF, DTN, and BSN modules. The ablation experiment on
BSN primarily aimed to test the impact of replacing the
commonly used ‘‘concat’’ operation with AFF. As shown in
Table 3, when multiple-scale branches are not constructed,
the ability to extract different types of features decreases
significantly. While the AFF is removed from the backbone
and replaced with the concat operation, there is an inevitable
decrease in denoising performance. Furthermore, removing
the Transformer module leads to a significant drop in
denoising effectiveness, confirming the necessity of the
Transformer for the denoising network. When using BSN
without the inclusion of AFF, there is a slight decrease in
denoising performance, indicating that AFF plays a role
in fusing different feature maps. Figure 11 is a visual
comparison of ablation experiments on the SIDD validation
dataset.

The impact of different branch fusion strategies on
image denoising efficacy was similarly validated. A dual-
branch strategy employed stride of 3 and 5. Conversely,
the quad-branch strategy incorporated stride of 2, 3, 4,
and 5 for branch fusion. Figure 12 illustrates that the

TABLE 3. Ablation experiments on different modules in the SIDD
validation set.

FIGURE 11. Visual comparison of ablation experiments. The serial
numbers under the figure correspond to the serial numbers in the Table 3.

FIGURE 12. Visual comparison of different branch fusion strategies.

adopted tri-branch strategy significantly outperformed the
dual-branch approach. However, the enhancement from the
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TABLE 4. Comparison of computational complexities.

tri-branch to the quad-branch strategy was limited, yet
accompanied by a non-negligible increase in computational
cost. Considering these factors, the tri-branch strategy was
ultimately selected.

G. COMPUTATIONAL COMPLEXITY
We calculated the number of parameters and computational
cost of the proposed method, as shown in the Table 4. The
computational efficiency demonstrates a significant advan-
tage over supervised Transformermethods. This enhances the
performance of self-supervised image denoising methods at
a lower computational expense.

V. DISCUSSION
In this study, we introduce the Multi-scale Blind-spot
Network (MA-BSN), employing adaptive feature fusion
techniques to tackle the challenges inherent in self-supervised
image denoising. Despite MA-BSN’s commendable perfor-
mance in self-supervised denoising tasks, we acknowledge
certain limitations that are crucial for a comprehensive
understanding of our approach and its applicability.

Firstly, the incorporation of the Transformer module in
MA-BSN introduces computational complexity, potentially
rendering it unsuitable for real-time application scenarios.
While the Transformer module enhances denoising capa-
bilities, its substantial computational demands may limit
the model’s deployment in environments requiring rapid
processing.

Secondly, although our method is capable of addressing
a broad spectrum of noise levels, its performance may
deteriorate under conditions of extreme noise, particularly
where the signal-to-noise ratio is exceptionally low. Potential
failure scenarios include images with highly structured noise
patterns, which may surpass our self-supervised method’s
capture range, and images containing complex textures
akin to noise patterns, potentially resulting in excessive
smoothing.

Future research will focus on exploring lightweight Trans-
former architectures to mitigate computational demands
while preserving denoising efficacy. Efforts will also be
directed towards enhancing MA-BSN’s robustness against
highly structured noise and extreme noise levels through
the introduction of more sophisticated noise modeling
techniques. Additionally, we plan to refine the self-attention
mechanisms within the adaptive feature fusion module to
more effectively discriminate between noise and complex

image textures. These research directions aim not only to
advance the development of self-supervised image denoising
methods but also to overcome the current limitations of
MA-BSN, paving new pathways for future image processing
technologies.

VI. CONCLUSION
In this paper, we propose a novel multi-scale blind-spot
network with adaptive feature fusion (MA-BSN) to address
the real-world image denoising problem self-supervised.
MA-BSN is designed with four distinct branches that
sample images at various scales, enabling the BSN to
effectively extract image features, with each branch capturing
unique image characteristics. Self-supervised learning of
neighborhood pixel features is performed on each branch,
striking a balance between disrupting noise spatial correlation
and preserving image high-frequency features. By employing
a Transformer module, our method enhances the CNNs’ lim-
ited receptive field. This module learns image features across
channels, which facilitates global receptive field feature
extraction and minimizes the loss of high-frequency content
that typically results from pixel-shuffle downsampling.
Additionally, an adaptive feature fusion module is proposed
to merge denoised images obtained at different scales using
self-attention, further enhancing the denoising performance
of the network. Compared to other state-of-the-art image
denoising methods on various benchmark datasets, MA-
BSN achieves superior performance among self-supervised
denoising methods, validating the advancement of the MA-
BSN approach. In future work, we will explore meta-learning
to improve hyperparameters and extend MA-BSN to other
domains for self-supervised solutions to various image-
processing tasks.
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