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ABSTRACT This work presents the design and implementation of active antennas as a part of a healthcare
monitoring system that is based on the Internet of Things (IoT). The monitoring system comprises a
SEN11547 pulse sensor and an LM35 temperature sensor for measuring heart rate in Beats Per Minute
(BPM) and body temperature in Degree Celsius (°C). This data is then sent to the ThingSpeak IoT platform,
which necessitates the integration with the NodeMCU ESP-32S Wi-Fi module to ensure the availability
of data. Two dual-band (2.4 GHz and 5.8 GHz) microstrip patch antennas, one with a PIN diode and one
without, are fabricated using Rogers Duroid RO3003™ substrate. Both antennas have dimensions of 41 x
44 mm?. In order to achieve a dual-band operation at 2.4 GHz, a slot in the shape of an inverted letter
U is introduced, to the existing patch which generates a 5.8 GHz frequency band. By controlling the PIN
diode’s ON and OFF state, the active antenna can switch between a single band of 5.8 GHz and a dual-band
of 2.4 GHz and 5.8 GHz. At both frequencies, the measured radiation patterns exhibit bidirectional and
directional characteristics in the E-plane, whereas an omnidirectional pattern can be observed in the H -plane.
In terms of nonlinear characteristics of the antenna, the third-order intermodulation distortion products
(IMD3) frequencies are generated within an input power range of 0 to 20 dBm from the two-tone nonlinear
measurements. Specifically, the IMD3 at 2.4 GHz is measured at —36.18 dBm and —47.19 dBm at 5.8 GHz.
Additionally, the measurement showed that the 1-dB gain compression point (P1_gg) was not detected at
2.4 GHz, indicating linear behavior within the RF input power range. However, at 5.8 GHz, the P;_4g was
observed at an RF input power level of 13.8 dBm, suggesting linear functionality up to this power level.
The experimental data are obtained from ten participants with ages ranging between 18 and 40 years old
for 10-minutes duration with a 1-minute step size which implies 10 samples. For comparison and validation,
the measurements are compared with the commercially available Laird Connectivity 2.4GHz/5.8GHz dipole
antenna. It can be observed that the heart rate ranges from 85 BPM to 92 BPM for the active antenna whereas
for the reference antenna, the values range from 84 to 90 BPM, which implies a good agreement. On the
other hand, the body temperature ranges from 29 to 37°C for the active antenna and from 30 to 36°C for the
reference antenna, which infers a good agreement as well. Therefore, it is shown that the proposed dual-band
active antennas in this work can be effectively integrated into the IoT-based healthcare monitoring system.
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I. INTRODUCTION

Internet of Things (IoT) has integrated into contemporary
society, serving as a platform for acquiring data and facil-
itating long-distance wireless communication [1], [2], [3].
In order to implement the IoT concept, multiple sensors are
employed on the microcontroller to perform the required
tasks and display the data on the IoT platform. The appli-
cation of IoT technologies spans a wide range of fields,
including healthcare systems for monitoring heartbeat, and
body temperature, military operations, smart cities, smart
homes, as well as agricultural applications [4], [5], [6], [7].

These applications aim to enhance resource allocation and
overall efficiency. The Internet of Things (IoT) applications’
general performance and device access to the Internet are
being further improved by wireless network technologies [8].
An integral component within wireless sensor technology
is the antenna, which plays a crucial role as IoT tech-
niques continue to rapidly evolve, discovering more and
more uses in a variety of industries, including monitoring,
agriculture, intelligent cities, intelligent homes, and surveil-
lance. The expanding need in communication technology
for multi-frequency and multi-function antennas has led to
significant attention being focused on the design of compact
and easily integrated antennas in recent years [9].

In the realm of advanced wireless communication devices,
there is a growing need for versatile antennas that can adapt
to rapidly changing user requirements [10]. Traditional fixed
antennas are insufficient to meet this demand. Depending on
specific circumstances and limitations, it becomes necessary
to modify antenna characteristics to ensure the delivery of
high-quality services. Reconfigurable antennas are designed
to address this need, as they can alter their frequency, radia-
tion pattern, polarization, or any combination thereof [11],
[12], [13], [14]. Numerous efforts have been dedicated to
the development of reconfigurable antenna designs [15],
[16], [17], [18], [19]. In order to achieve antenna reconfig-
uration, active devices are commonly employed, including
PIN diodes, varactor diodes, and RF MEMS switches [20],
[21], [22]. Varactor and PIN diodes offer advantages such
as low insertion loss and seamless frequency band adjust-
ments, but they exhibit nonlinear behavior. On the other hand,
RF MEMS switches provide excellent isolation properties but
are characterized by a slower switching speed [23], [24], [25].

Due to the nonlinear characteristics of active devices at
high frequencies, when these devices are integrated into the
antenna system, they exhibit nonlinear behavior that requires
careful consideration to avoid impacting the performance
of the front-end communication system [26]. Nonlinear
components such as diodes and transistors offer significant
advantages in applications involving amplification, detec-
tion, and frequency reconfiguration. However, they also
possess undesirable traits, including gain compression and
the generation of unwanted frequency components. These
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consequences can result in increased signal losses, distortion,
and interference with other radio channels or services [27].
Consequently, it is essential to assess active antennas in terms
of parameters such as intermodulation distortion (IMD) to
understand their dynamic behavior. Higher frequencies are
used to transmit mixed communication data; these frequen-
cies fall between 2.4 and 5.8 GHz, which are unlicensed ISM
bands.

Medical practitioners can benefit greatly from IoT-based
healthcare applications including wellness examinations,
which lower expenses, improve the standard of living,
improve medical diagnosis, and make medical procedures
easier [28]. Among the various health services, the monitor-
ing of vital signs is of particular importance [29]. Prioritizing
the monitoring of vital signs [30] stands as a critical imper-
ative for healthcare institutions aiming to facilitate early
prevention [31] and diminish mortality rates. Although med-
ical practitioners employ conventional methods for assessing
patients’ vital signs within hospital settings, this equipment’s
reliance on traditional approaches [32] results in inher-
ent inefficiencies concerning time. This situation distinctly
impacts real-time patient healthcare services [33], partic-
ularly during the diagnostic phase of illnesses, leading to
escalated operational expenses and augmented medical per-
sonnel workloads. IoT-based healthcare monitoring appears
as an opportunity to improve the sector in real-time and get
beyond the drawbacks of traditional healthcare devices [34].
Due to the presence of IoT-enabled health monitoring sys-
tems, individuals can now access essential physiological data
from the comfort of their homes. This advancement notably
benefits elderly patients, for whom the arduous journey to
a medical facility can be both physically demanding and
taxing.

Numerous researchers are actively exploring investigations
on vital signs to diagnose various medical conditions. The
implementation of the proposed designs encompasses the
utilization of Arduino-based IoT technology to monitor heart-
beats [35] and body temperature [36], [37]. Research findings
indicate that data related to heartbeat diagnoses can be man-
aged via smartphones [38] and computer servers [39], [40],
[41]. Authors in [42] examine [oT-driven patient monitoring
systems employing sensors for the identification, assessment,
and continuous tracking of two fundamental vital signs.
The system’s architecture incorporates the Arduino Mega
2560, ESP8266 Wi-Fi Module, and two sensor modules to
formulate an IoT-centered patient monitoring setup. This con-
figuration proficiently detects core vital signs, namely body
temperature and respiratory rate. Furthermore, it assesses
these vital sign levels for the patient’s age, delivers noti-
fications for irregular conditions, and transmits the results
wirelessly through Android applications. An alternative
design, involving wearable IoT-enabled real-time healthcare
monitoring systems [43], [44], [45], entails the development
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of a wearable IoT-cloud-based healthcare monitoring
framework tailored for continuous individual health
surveillance.

This undertaking involves an assortment of wearable
sensors, encompassing heartbeat and body temperature mon-
itoring. Similarly, a review of IoT-based health monitoring
systems, characterized by the integration of Raspberry Pi,
LPC2129, and wearable biomedical devices [46], delves into
ToT-driven health monitoring approaches employing the men-
tioned components. In [47], the authors propose a system for
the measurement of body temperature and heart rate. Notably,
across these various studies, heart rate and body temperature
emerge as consistent focal points. In a separate study [48],
the author presents a comprehensive system capable of mea-
suring body temperature and heart rate, with the capacity to
transmit this data to both a mobile application and a wearable
device.

This proposed work introduces the design and implementa-
tion of active antennas for an IoT-based healthcare monitoring
system. Two types of antennas: one with a PIN diode and one
without, are fabricated using Rogers Duroid RO3003™ sub-
strate. The antennas can be integrated into the wireless
healthcare monitoring system that operates within the 2.4 and
5.8 GHz unlicensed ISM bands. The performance of a wire-
less healthcare monitoring system using active antennas is
evaluated using both laboratory equipment and real-world
operating scenarios, and they are compared against a dipole
antenna as a benchmark.

The implemented system streamlines processes for
patients, caregivers, physicians, and other healthcare profes-
sionals involved. It also automates the periodic measurement
of vital signals for multiple patients, ensuring dependable
healthcare services. Additionally, vital signals play a pivotal
role in monitoring and deducing an individual’s physiological
condition. They offer valuable insights into overall health
status and are indispensable for determining treatment plans
and prioritizing care.

Il. DESIGN AND CONFIGURATION OF THE ANTENNAS

In order to meet the requirements of this work, a dual-
band antenna is designed and simulated in the initial stage.
Two versions of the antenna: one with a PIN diode and one
without are considered. The simulations are conducted using
CST MWS@software, a finite integration-based 3D electro-
magnetic (EM) simulator. The dimensions of the antennas
are calculated using the transmission line model theory out-
lined in [49]. Based on a recent study in [50], incorporating
inset feeding and integrating slots into the radiating struc-
ture leads to enhanced compactness and bandwidth, along
with the generation of additional resonant frequencies. The
dual-band characteristics are achieved by the introduction
of an inverted U-slot to the patch. Additionally, a partial
ground plane and two smaller slots are included at the bot-
tom edge of the patch to improve the antenna’s bandwidth.
For the proposed antenna with a PIN diode, a frequency
reconfiguration technique is employed that allows it to switch
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FIGURE 1. Active antennas geometry: (a) Without a PIN diode (b) With a
PIN diode. Dimensions are Ls = 41 mm, Ws = 44 mm, Wp =29 mm, Lp =
21 mm, Lpg = 25 mm, Wslot = 28 mm, Lslot = 3.7 mm, h = 1.52 mm,
Wf = 2.98 mm, Lf = 15 mm, Lg = 5 mm Wg = 2 mm, Wo = 1.5 mm, Lo =
1.4mm, W1 =22mm, L1 =1 mm.

between the 2.4 GHz and 5.8 GHz of the ISM bands. Fig. 1
illustrates the design and geometry of the active antennas,
both having dimensions of 41 x 44 mm?. These antennas
are fabricated on a Rogers Duroid RO3003™ substrate with
specific properties (dielectric constant, &, = 3, thickness, h =
1.52 mm, and loss tangent, tan § = 0.0013). The antennas are
fed through microstrip lines connected to a central coaxial-
fed sub-miniature version A (SMA) connector. Skyworks
Technologies’ SMP1321-079LF PIN diode is used [51] as
an active device. This diode has a very low capacitance of
0.18 pF and operates within a frequency range of 10 MHz
to 10 GHz. Fig. 2 shows the equivalent circuits of PIN diode
and its detailed biasing circuit. In ON state, the diode exhibits
series resistance and inductance values of R = 1.05 € and
L = 0.7 nH, respectively as depicted in Fig. 2(a). In its
OFF state, the diode is shunt configured with resistance and
capacitance values of R =2 k2 and C = 0.18 pF, respectively
as depicted in Fig. 2(b). The bias network, based on the
design presented in [27], is used to control the PIN diode’s
operation. Fig. 2(c) depicts the PIN diode biasing network
and its equivalent circuit. The values of the biasing circuit’s
inductor Lp = 27 nH and capacitor Cb = 1800 pF are chosen
so that the biassing circuit and the RF line’s impedance
match. Whereas the inductor offers a conduit for the DC bias
current needed for the PIN diode, the capacitor functions as
insulation to avoid the DC bias current from damaging the
RF signal.
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FIGURE 2. PIN diode lumped elements in (a) ON state (b) OFF state
(c) detailed biasing circuit.

lll. PERFORMANCE EVALUATION OF THE ANTENNAS
This section presents an investigation of the designed active
antennas’ functionality for IoT applications. Fig. 3 shows
the fabricated antenna with Fig. 3(a) and (b) showcase the
antenna without and with a PIN diode, respectively. N5234B
Keysight Vector Network Analyzer (VNA) is employed for
measuring the reflection coefficient (S11) in dB, as illustrated
in Fig. 4. The performances of the proposed antennas are
assessed by comparing the simulated and measured S1;. The
radiation patterns are measured in the anechoic chamber and
are also compared with the simulations.

Fig. 5 compares the Si; between the antenna with and
without a PIN diode. For the antenna without a PIN diode,
as can be viewed in Fig. 5(a), The measured bandwidth at
2.4 GHz, which spans from 2.358 GHz to 2.447 GHz, is 3.8%
(—10 dB). Similarly, the measured bandwidth at 5.8 GHz
spans 5.2% (—10 dB) from 5.675 GHz to 5.975 GHz. The
simulated and measured S;; findings have an acceptable
agreement. Fig. 5(b) compares the measured and simulated
S11 for the antenna with a PIN diode in ON and OFF states.
The antenna functions at both 2.4 and 5.8 GHz while it is
in ON state. At 2.4 GHz measures 3.8% (—10 dB) between
2.358 GHz to 2.447 GHz, while at 5.8 GHz measures 5.2%
(=10 dB) from 5.675 GHz to 5.975 GHz. When the antenna
is turned off, it functions at a single 5.8 GHz frequency
band, with a measured bandwidth of 5.4% (—10 dB) spanning
between 5.684 GHz to 5.989 GHz.

The assessment of antenna radiation involves analyzing 2D
radiation patterns at each resonant frequency. The antenna’s
radiation patterns without a PIN diode are illustrated in
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FIGURE 3. Fabricated active antennas: (a) Without a PIN diode (b) With a
PIN diode.

Fig. 6. At 2.4 GHz, the E-plane exhibits bidirectional pat-
terns, while the H-plane shows omnidirectional patterns as
seen in Fig. 6(a). At 5.8 GHz, the E-plane patterns become
directional, and the H -plane patterns remain omnidirectional
as seen in Fig. 6(b). Additionally, Fig. 7 presents the 2D
radiation patterns of the antenna with a PIN diode. In ON
state, specific characteristics emerge at 2.4 GHz as seen in
Fig. 7(a), the E-plane shows bidirectional patterns, and the
H-plane exhibits omnidirectional patterns; at 5.8 GHz as
seen in Fig. 7(b), the E-plane patterns are directional, and
the H-plane patterns are omnidirectional. In OFF state, the
antenna’s behavior changes, with directional E-plane patterns
at 5.8 GHz as seen in Fig. 7(c) and persistent omnidirectional
H -plane patterns at the same frequency.

Fig. 8 shows the comparison between the simulated and
measured gain and efficiency of the dual-band antenna with-
out a PIN diode, the gain, G (dBi) was measured to be
3.73 dBi and 5.08 dBi at 2.4 GHz and 5.8 GHz which leads
to efficiency, 1 (%) of 90% and 91.4% as shown in Fig. 8(a)
and (b).

On the other hand, Fig. 9 shows the comparison between
the simulated and measured gain and efficiency of the
dual-band antenna with a PIN diode. In ON state, the gain,
G (dBi) was measured to be 4.82 dBi and 5.75 dBi at
2.4 GHz and 5.8 GHz which leads to efficiency, n (%) of
90.1% and 87.4% as shown in Fig. 9(a) and (b). Whereas in
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(b)

FIGURE 4. S11 measurement setup (a) Without a PIN diode (b) With a PIN
diode.

OFF state, the gain, G (dBi) was measured to be 5.9 dBi at
5.8 GHz which leads to efficiency, n (%) of 90% as shown in
Fig. 9(c).

In order to gain a deeper understanding of the operational
principles behind the dual-band antenna without and with a
PIN diode design, the current distribution diagrams at vari-
ous resonant modes are examined and illustrated in Fig. 10.
In Fig. 10(a), the current distribution of the antenna with
the main radiating patch reveals concentration around the
transmission line and the edges of the patch, emphasizing
the crucial role of the main radiating patch in generating
the resonant frequency of 5.8 GHz. Conversely, Fig. 10(b)
demonstrates that at 2.4 GHz, the maximum current con-
centration occurs along the edges of the inverted U-slot.
Fig. 11 depicts the current distribution of the antenna with
a PIN diode. In ON state, the highest current concentration
is evident along the edges of the slot at 2.4 GHz as seen
in Fig. 11(a). In contrast, at 5.8 GHz, a significant current
concentration is observed around the center of the main radi-
ating patch as seen in Fig. 11(b). Fig. 12 further illustrates the
current distribution of the antenna with a PIN diode in OFF
state, focusing on 2.4 GHz and 5.8 GHz. In Fig. 12(a), during
the OFF state, the current flow is minimal (barely noticeable)
along the edges of the slot responsible for the 2.4 GHz.
However, at 5.8 GHz, depicted in Fig. 12(b), a substantial
current concentration is still noticeable around the center of
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FIGURE 5. S11 comparison (a) Without a PIN diode (b) With a PIN diode.

the main radiating patch. The findings are consistent with
the theoretical framework described in previous research [9],
which asserts that the operating frequency is influenced by
the current path length along the antenna’s patch. Specif-
ically, as the current path on the radiating structure of
antennas extends, the resonant frequency decreases, and con-
versely, a shorter current path leads to a higher resonant
frequency.

A. NONLINEARITY ANALYSIS OF THE ANTENNAS

PIN diodes demonstrate nonlinear characteristics when
exposed to varying input power levels. This nonlinearity
arises from the diode’s operational state and the interac-
tion between the RF signal and the diode’s internal junction
capacitance. Intermodulation distortion (IMD) products are
multi-tone distortions resulting from the presence of two
or more signals at the input of a non-linear device [52].
As the input power level increases, PIN diodes used for
antenna reconfiguration exhibit nonlinear behavior, leading
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FIGURE 6. Radiation patterns without a PIN diode at (a) 2.4 GHz
(b) 5.8 GHz.

to the generation of harmonics and intermodulation distor-
tions. These nonlinear effects diminish the antenna’s ability
to handle high RF power and can potentially interfere with
other systems. IMD products can either transmit or reflect
through the feed network [53]. Antennas designed for indoor
and short-range communication applications need to operate
within frequency bands that can deliver output power levels
of up to 30 dBm [36]. In such systems, active antennas
must perform effectively at each power level with minimal
distortion. Consequently, a comprehensive characterization
process is essential for reconfigurable antennas, more so
than for passive conventional antennas. Moreover, the 1-dB
gain compression point, often referred to as Pj_gp, is a
fundamental and widely used figure of merit in the nonlin-
ear characterization of electronic devices and systems. It is
another key indicator of a device’s linearity and its ability
to control the gain in the presence of varying input signal
power levels. P1_gp plays a crucial role in the design and
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FIGURE 7. Radiation pattern with a PIN diode at (a) 2.4 GHz (ON state)
(b) 5.8 GHz (ON state) (c) 5.8 GHz (OFF state).

performance assessment of active switches linearity perfor-
mance [54]. This indicates that the input power is raised
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beyond the 1-dB point. The P;_gp point also measures the
dynamic range of the device, a crucial aspect for signal pro-
cessing, communication systems, and various applications.
A higher P;_gp value suggests that the device can manage
a broader input power range without experiencing significant
gain compression or distortion. This is especially important
in applications where signals with varying amplitudes need
to be processed, as it ensures that the device can maintain
linearity and signal fidelity. P;_qp is typically determined
experimentally by gradually increasing the input power and
measuring the corresponding gain reduction. This measure-
ment is often performed using network analyzers, spectrum
analyzers, or specialized test setups [55].

The experimental setup used in this study to assess the
nonlinear characteristics of the active antennas in transmitting
mode is shown in Fig. 13. Initially, the generator’s output
power and power combiner’s output power are measured
to assess the losses that might be incurred in the cables.
Subsequently, the power of radiated signals is measured
using the commercial ETS 3106B horn antenna (reference
antenna) positioned at 1 meter away from the active antenna
as shown in Fig. 13(a). Horn antenna’s orientation is changed
to correspond with the antenna’s polarization. The incoming
signals are then displayed using a Keysight N9951A spectrum
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FIGURE 9. Simulated and measured gain and efficiency with a PIN diode
at (a) 2.4 GHz (ON state) (b) 5.8 GHz (ON state) (c) 5.8 GHz (OFF state).

analyzer to identify the received signal power. Fig. 13(b)
illustrates the experimental setup for measuring the P;_gp.
The received power of the transmitted signals is produced
across a range of input power levels, spanning from O to
20 dBm at the specified IMD3 frequency. The determination
of P1_gp involves identifying the point on the graph plotting
received power against input power where the output power
experiences a 1 dB decrease. Nonlinearity assessments are
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conducted in the laboratory for the proposed active antenna,
as depicted in Fig. 13(c).

Prior to the nonlinearity measurement, the S;; of the
antenna is measured based on the input power from 0 dBm to
20 dBm. The behavior of the active antenna starts to change
as the RF power increases. Consequently, the antenna’s
impedance undergoes variations with changing input power
levels, leading to a degradation in impedance matching and
resulting in higher Sy values. Fig. 14 shows the S for each
input power level. When the RF input power reaches 20 dBm,
the antenna operates within the linear region. However, the
changes in Sj; are relatively minor, with only negligible
fluctuations observed beyond the 15 dBm power level, which
implies that the presence of a PIN diode will not affect the
S11 of active antennas in this work.

Another crucial aspect associated with the device’s non-
linearity is the potential for IMD3 products, which can lead
to signal distortion and interference with various systems or
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channels featuring closely spaced carriers. Hence, it becomes
imperative to investigate harmonic distortions for nonlinear
circuits, given that the proposed antenna operates in two
modes: a single-band mode of 5.8 GHz and a dual-band
mode of 2.4 GHz and 5.8 GHz. In this scenario, a two-tone
input signal is employed, consisting of two closely spaced
tone signals: fj = 2.399 GHz and f, = 2.401 GHz for the
2.4 GHz band, and f; = 5.799 GHz and f, = 5.801 GHz
for the 5.8 GHz band. These two-tone signals are combined
using a power combiner, and the proposed antenna receives
the resulting mixed two-tone signals. A horn antenna ranging
from 1 to 6 GHz is utilized, followed by a spectrum ana-
lyzer to detect the fundamental signals and intermodulation
products. The power of the two-tone RF signal is incremen-
tally increased from 0 dBm to 20 dBm, with the analysis
focusing on two cases at different power levels (10 dBm and
20 dBm). For an input power level of 10 dBm at 2.4 GHz, the
received signal strength for the primary signals is recorded
at —11.86 dBm and —10.56 dBm, respectively. In Fig. 15(a),
it’s evident that the received signal strengths for IMD3 are
notably lower than the standard noise level of —70 dBm at this
power level. When the RF input power to the antenna reaches
20 dBm at 2.4 GHz, asymmetric IMD3 products become
evident at 2.397 GHz and 2.403 GHz, registering values of
—36.18 dBm and —34.32 dBm, respectively. Both of these
values are observable and exceed the noise level. In contrast,
the strengths of the fundamental signals are 11.22 dBm and
11.3 dBm, as seen in Fig. 15(b).

At an input power level of 10 dBm at 5.8 GHz, the received
signal strength for the primary signal measures —15.67 dBm
and —15.37 dBm, respectively. Fig. 16(a) illustrates that the
received signal strengths for IMD3 remain below the standard
noise level of —70 dBm at this power level. When the RF
input power to the antenna is elevated to 20 dBm at 5.8 GHz,
you can also detect asymmetric IMD3 products at 5.797 GHz
and 5.803 GHz, measuring —31.5 dBm and —47.19 dBm,
respectively. These values are both discernible and surpass
the noise level. In contrast, the strengths of the fundamental
signals are 7.91 dBm and 8.1 dBm, as illustrated in Fig. 16(b).
Based on the nonlinearity measurement, it is hence demon-
strated that the active antennas in this study function in the
linear region up to an input power level of 15 dBm, when the
received signal intensity of the IMD3 is negligible.

In order to find the P;_gp, a single-tone input signal of
2.4 GHz and 5.8 GHz were used. Fig. 17 shows the P;_gp
at 2.4 GHz and 5.8 GHz. The P;_gg could not be found
at 2.4 GHz as shown in Fig. 17(a), which implies that the
antenna behaves linearly within the range of RF input power
levels. Conversely, the P1_gg can be observed at 5.8 GHz
with a value of 13.8 dBm of RF input power level as can be
viewed in Fig. 17(b). Hence, the antenna functions linearly
up to 13.8 dBm input power.

The nonlinearity measurement results of the dual-band
antenna with a PIN diode are also compared with the previous
work in terms of size, substrate material, type of recon-
figurations, gain, IMD3 products and P;_gp, which can be
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setup.

seen in Tab. 1. From the table, the proposed antenna in this
work has a compact size of 41 x 44 mm? and high gain
at both frequency bands. Moreover, the proposed antenna
only uses a single switch, which reduces the antenna’s
complexity.
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IV. loT-BASED HEALTHCARE MONITORING SYSTEM

The objective of the proposed medical monitoring system is
to gauge a patient’s body temperature and heart rate, which
are shown on the ThingSpeak application. The system hard-
ware specifications define the features and services that the
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TABLE 1. Comparison of this work and previous work in the literature in terms of nonlinearity measurements.

Ref. Size Material Type of Number Freq. Gain p:OMdIzgts Piap
. 2 . .

(mm*) reconfigurations switches (GHz) (dBi) (dBm) (dBm)
[56] 60 x 60 FR-4 Radiation pattern 2.4 4.76 -19.3 30
[57] 20 x 28.5 Arlon Frequency 2/2.4 2.15/2.8 NA/-18.5 NA/ 14
[58] 50 x20 Glass Frequency 2 NA -12.8 NA
[59] 65 x 65 Alumina Frequency 32/3.5 6.5 NA /-35 NA /20

Rogers
[60] 150 x 75 RO5880™ Frequency 0.8/1.05 NA -55/-60 NA
This Rogers
41 x 44 ™ Frequency 24/58 4.82/5.75 | -36.18/47.19 | NA/13.8

work RO3003

Note: A — Available; NA — Not available
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FIGURE 14. The measured S11 at different input power levels.

healthcare monitoring system shall provide, as well as the
limitations that it must work within. Defining the system
requirements assists in making better component choices and
optimizing resources.

A. PROPOSED SYSTEM CONFIGURATION

A functional prototype model is developed with a SEN11547
pulse sensor and LM35 temperature sensor from Spark Fun
Electronics for measuring heartbeat and body temperature.
Prominent vital indicators that indicate the state of processes
that support life and the extent of medical conditions are
body temperature and heart rate. Once the vital parameters
are measured, they are transmitted and stored in the database
of the ThingSpeak application through a NodeMCU ESP-32S
Wi-Fi module connected to the active antennas for further
analysis or long-term storage which might benefit the patients
and medical personnel. The proposed healthcare monitoring
system is illustrated in Fig. 18, called VITALS. The main
objective of VITALS is to automate the measurement of vital
signals, leading to improved healthcare services. Fig. 18(a)
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illustrates the complete block diagram of the healthcare mon-
itoring system. From the figure, it can be seen that the
healthcare monitoring system is controlled by a NodeMCU
ESP-32S Wi-Fi module connected to the active antennas as
the main controlling unit. The key components, which are
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the SEN11547 pulse sensor and LM35 temperature sensor
these inputs will send signals to the microcontroller to be
analyzed and processed. Open-source Arduino IDE software
is employed, which is compatible with multiple operating
systems. It facilitates uploading sketches to the prototype and
retrieving data from the pulse sensor and temperature sensor
through the serial monitor. The processed signals will then
be sent to the output which includes the 12C Serial Inter-
face 1602 LCD module, and they are transmitted and stored
in the database of the ThingSpeak application. Fig. 18(b)
illustrates the complete circuit diagram of the health care
monitoring system featuring active antennas. This circuit is
driven by the NodeMCU ESP-32S Wi-Fi module, which has
an external antenna connected to pin 35 (GPI01/TX0) of
the NodeMCU ESP-32S module. Power is supplied to the
NodeMCU ESP-32S module through a 12-V DC adapter.
However, in the event of a power supply failure, a battery can
act as a reliable backup power source. The system includes
an LCD display connected to the I2C module, which con-
tains SDA, and SCL connected to pin 33 (GPI021) and pin
36 (GPI022) respectively, for displaying the output results.
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For heart rate monitoring, the pulse sensor incorporates an
integrated optical amplification circuit and a noise-reducing
circuit sensor, making it suitable for clipping onto the earlobe
or fingertip and interfacing with the NodeMCU-32S module.
The pulse sensor has three pins: VCC, GND, and an analog
pin connected to pin 5 (GPI034). Additionally, the system
incorporates the LM35 temperature sensor, which provides an
analog response proportional to the current temperature. The
output voltage can be directly translated into Celsius temper-
ature values. In order to program and control the NodeMCU
ESP-32S Wi-Fi module. The LM35 temperature sensor has
three pins: VCC, GND, and an analog pin connected to pin 6
(GPI035).

B. PERFORMANCE EVALUATION OF THE SYSTEM

The IoT-based wireless healthcare monitoring system in this
work, known as VITALS, is shown in Fig. 19. The circuit
connections of VITALS when viewed internally is shown
in Fig. 19(a), whereas Fig. 19(b) depicts the final product
of VITALS. The monitoring system which utilizes different
types of antennas is shown in Fig. 20. The experimental
setup of VITALS using a dual-band antenna (without and
with a PIN diode) and a commercial Laird Connectivity
dipole antenna as the reference antenna can be viewed in
Fig. 20(a) - (c), respectively. The microcontroller processes
medical data, and the resulting signals are sent to the output,
displayed on the I2C Serial Interface 1602 LCD module.
Concurrently, the data is transmitted to the ThingSpeak appli-
cation and stored in its database.

In order to conduct the experiment, ten participants, with
their ages ranging between 18 and 40 years old, are selected
to measure their heartbeats and body temperatures using the
proposed system. The data of the ten participants are mea-
sured for 10 minutes duration with a 1-minute step size which
implies 10 samples, under relaxed conditions or while they
are not engaging in any physical activities. For comparison
and validation, the measurements are compared with the
reference antenna.

Graphical representations of patient vital signs can be
viewed in Fig. 21. Fig. 21(a) - (j) illustrates the heart rate
and body temperatures of ten volunteers which consists
of data obtained from the healthcare monitoring system
using the reference antenna and the proposed active anten-
nas, without and with a PIN diode. From the figures,
it can be observed that the heart rate of the volunteers
ranges from 72 to 96 BPM which shows that despite vari-
ations in heart rate, all the recorded values remain within
the normal range for an adult, which is between 60 and
100 BPM [61].

Moreover, the collection of body temperature data is car-
ried out to assess the patient’s body temperature condition.
A rise in body temperature correlates with an increase in
heart rate, while a decrease in body temperature corre-
sponds to a decrease in heart rate. The temperature ranges
from 30.20 to 37.80 °C, indicating a healthy range for
an adult which is between 35 and 38 °C [61]. However,
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TABLE 2. Comparison of the heart rate and body temperature obtained from ten volunteers using the proposed healthcare monitoring system with

various antennas.

15

20

Antenna Antenna with a Dipole Antenna Antenna with a Dipole
. PIN diode antenna . PIN diode Antenna
without a PIN (Reference without a (Reference
diode ON State OFF State PIN diode | ON State | OFF State
Name | Age antenna) antenna)
Average heart | Average heart | Average heart | Average heart |Average body| Agggage Average body Agggage
rate rate rate rate temperature | ytu temperature | ytu
(BPM) (BPM) (BPM) (BPM) C) em?fg o) em}(’fg; e
Vol. A | 25 88.9 89.3 86.6 88 343 34.5 345 34.1
Vol.B | 19 914 89.2 86.5 88.5 35.6 353 33.8 36.2
Vol.C | 18 85.5 86.2 81.3 84.1 314 304 31.7 323
Vol.D | 32 87.3 89.6 85.5 87.7 36.4 355 33 371
Vol.E | 38 88.7 88.8 86.6 88.8 29.6 33 323 29.9
Vol.F | 30 87.8 87.5 85.8 88.1 339 342 34.1 33.7
Vol.G | 18 88.7 88.5 85.8 84.4 30.6 32.1 31.7 29.8
Vol.H | 25 914 89.1 86.5 85.3 34.6 35 323 353
Vol. 1 28 86.7 87.5 84.7 85.2 30.9 30.3 30.1 313
Vol.J | 20 89.3 89.2 88.2 89.7 343 34.8 339 33.8

it is worth noting that some values might fall below or
slightly above this range, which could be due to factors
like individual variability, recent activities, or environmental
conditions.

The acquired data is subjected to analysis by computing
the average values. In this context, the tabulated readings
are presented in Tab. 2. This comparison serves to assess
the accuracies of those antennas. From the table, the average
heart rate measurements were taken across different condi-
tions for three different antennas: the active antenna without a
PIN diode, the active antenna with a PIN diode, and the com-
mercially available Laird Connectivity antenna. The observed
heart rates ranged from 85.5 BPM to 89.7 BPM for the active
antenna without a PIN diode, 86.2 to 89.7 BPM for the
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active antenna with a PIN diode, and 88 to 89.7 BPM for
the reference antenna. These results suggest that all three
antennas provide consistent heart rate measurements, with
minimal variation in the observed values. The close align-
ment of values between the active antennas and the reference
antenna demonstrates the reliability and accuracy of the
active antenna system, both with and without the PIN diode.
Similarly, body temperature measurements were recorded
under different conditions for the three antennas. The tem-
perature range for the active antenna without a PIN diode
was from 29.6 to 35.6°C, while for the active antenna with
a PIN diode, it ranged from 30.4 to 35.5°C. In contrast, the
reference antenna showed a slightly wider range, from 29.8 to
37.1°C. The overlapping temperature ranges for the active
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FIGURE 18. The proposed healthcare monitoring system called VITALS (a) Block diagram (b) Circuit diagram.

antennas and the reference antenna indicate that all three
antennas provide consistent and comparable body tempera-
ture measurements. Overall, the results of this analysis show a
strong agreement between the measurements obtained using
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the active antennas (both with and without the PIN diode)
and the commercially available Laird Connectivity antenna.
Minor variations in temperature ranges can be ascribed to
factors such as antenna design or measurement conditions.
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However, these differences do not markedly impact the over-
all accuracy and utility of the active antennas. In addition,
the 10-minute time intervals can be considered sufficient
based on the data obtained. This approach enables healthcare
professionals to detect subtle changes, respond to emergen-
cies, and provide tailored care, ultimately improving patient
outcomes.

The current IoT-based wireless healthcare monitoring sys-
tem and the IoT wireless healthcare monitoring system with
dual-band active antennas are compared in Tab. 3. In con-
trast to all of the designs, the comparison demonstrates that
the suggested antenna has a satisfactory gain and efficiency.
The comparison table makes it clear that the majority of the
current antenna dimensions are greater than those of the sug-
gested active antennas. In contrast, the suggested antenna’s
performance has been tested in an IoT application running
in real-time. According to the table, the suggested antenna
performs better than the others, making it a suitable option
for IoT applications. The primary benefit of the suggested
IoT wireless healthcare monitoring system is its effective
integration of dual-band active antennas appropriate for IoT
applications.
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(b)

FIGURE 20. The experimental setup of VITALS using different types of
antennas: (a) antenna without a PIN diode (b) antenna with a PIN diode
(c) commercial Laird Connectivity dipole antenna as a reference
antenna.
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FIGURE 21. (Continued.) Comparisons of volunteers’ heart rate and body temperature using various antennas (i) vol. |
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TABLE 3. Comparison of the loT-based wireless healthcare monitoring system currently in use and the loT-enabled wireless healthcare monitoring

system utilizing dual-band active antennas.

Ref Size Material | Electronic Freq. Gain (dBi)/ Application | Proposed antenna
(mm)? (Type) Circuit (GHz) Efficiency (%) IoT used in the system
x . 4/5. es es
[62] 45 % 45 2111;1;5121; A 24/58 62511/ /2&25 ¢ Y
(631 | 40x40 (Iile)ﬁsle) NA 24/58 42'; ; 2'398 No No
FR-4 1.722
[64] 150 x 95 (Rigid) A 2.4 8.7 Yes Yes
x - 47/5s. o es es
[65] 120 x 65 (II:(Il{gii) A 24/5.8 2 ?\I/A3 2 Y Y
FR-4 1.347
[66] 40 x 10 (Rigid) A 2.4 79 Yes Yes
Polyester 6.47
[67] 90 x 90 (Flexible) A 2.4 62 No No
Rogers 1.1/4.5
[68] 80 x 80 (Flexible) NA 241758 90 /84 No No
This Rogers 4.82/5.75
work | 41744 (Flexible) A 2.4/58 90/91.4 Yes Yes

Note: A — Available; NA — Not available

V. CONCLUSION

This work introduces the design and implementation of active
antennas within a healthcare monitoring system for [oT appli-
cations. This monitoring system incorporates a SEN11547
pulse sensor and an LM35 temperature sensor to capture
heart rate and body temperature data. These measurements
are then transmitted to the ThingSpeak IoT platform, necessi-
tating integration with the NodeMCU ESP-32S Wi-Fi module
to ensure data availability. Two dual-band microstrip patch
antennas, each measuring 41 x 44 mm?, were constructed
on Rogers Duroid RO3003™ substrate. One of these anten-
nas is equipped with a PIN diode, while the other is not.
To achieve dual-band operation at 2.4 GHz and generate a
5.8 GHz frequency band, a slot in the shape of an inverted
letter U is introduced to the existing patch. The active antenna
can switch between a single 5.8 GHz band and a dual-band
configuration of 2.4 GHz and 5.8 GHz by controlling the

48468

state of the PIN diode. Radiation patterns are measured at
both frequencies, showing bidirectional and directional char-
acteristics in the E-plane, while the H-plane exhibits an
omnidirectional pattern. Nonlinear characteristics are evalu-
ated, with IMD3 generated within an input power range of
0 to 20 dBm in two-tone nonlinear measurements. Specif-
ically, IMD3 at 2.4 GHz is measured at —36.18 dBm, and
at 5.8 GHz, it is measured at —47.19 dBm. Moreover, the
measurements indicate that the Pj_gg was not detected at
2.4 GHz, suggesting linear behavior within the RF input
power range. However, at 5.8 GHz, the P;_gp is noted
at an RF input power level of 13.8 dBm, indicating lin-
ear functionality up to this threshold. Experimental data
are collected from ten participants aged between 18 and
40 years for a duration of 10 minutes with 1-minute intervals,
resulting in 10 samples. To validate the results, measure-
ments are compared to a commercially available Laird
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Connectivity 2.4GHz/5.8GHz dipole antenna. The heart rate
ranged from 85 BPM to 92 BPM for the active antennas
and from 84 to 90 BPM for the reference antenna, demon-
strating good agreement. Similarly, body temperature ranged
from 29 to 37°C for the active antennas and from 30 to 36°C
for the reference antenna, confirming strong agreement. Con-
sequently, this study highlights the effective integration of

the

proposed dual-band active antenna into an IoT-based

healthcare monitoring system.
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