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ABSTRACT The stock market is playing an increasingly important role in the global economy. Accurate
stock price forecasting not only aids the government in predicting economic trends but also helps investors
anticipate higher expected returns. Nevertheless, hurdles such as nonlinearity, complexity and high volatility
make it a daunting task to predict stock prices. To address this issue, this study proposes a new hybrid
model, termed Hierarchical Decomposition-based Forecasting Model (HDFM), to decompose and forecast
stock prices in a hierarchical fashion. The model utilizes complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) for the initial decomposition of stock price time series. To enhance
the predictive efficiency, sub-series with similar sample entropy from the decomposition were combined
using the K-means clustering method. Through a thorough analysis, it was found that the first combined
sub-series contained more high-frequency signals. Therefore, the first combined sub-series is subjected to
a second decomposition with variational mode decomposition (VMD). Subsequently, the gated recurrent
unit (GRU) model was used to individually predict each sub-series. The final results were obtained by
merging the prediction outcomes. The proposed model was evaluated on three different stock markets. The
experimental results show that the proposed model outperforms other forecasting methods across all stock
indices. Moreover, ablation studies demonstrated the effectiveness of each component within the proposed
model.

INDEX TERMS
Stock price prediction, deep learning, hierarchical decomposition, clustering.

I. INTRODUCTION

With the vigorous development of the global economy, the
stock market has assumed greater prominence in the global
economy and is regarded as a barometer of the economic
situation. The stock market not only reflects a country’s
economic growth, but also provides the basis for a country
to formulate the next economic policy. Changes in stock
price are closely related to shifts in the national market
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economy. Accurately forecasting stock prices can not only
aid the government in predicting the economic situation and
formulating macroeconomic management policies, but also
guide enterprises in making financing plans. In addition,
it can assist in reducing investment risks and maximizing
investment returns, thus ensuring healthy growth in the
national economic market. Consequently, stock price fore-
casting has become a common concern among academia,
investors, and governments.

With the growth of economic and financial markets,
stock prices are influenced by a growing number of factors,
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such as changes in the global situation, national macro
policies, corporate activities, and investor psychology. As a
result, stock prices exhibit characteristics of nonlinear-
ity, nonstationarity, high volatility, and multi-noise, which
can make it very difficult to accurately forecast their
values.

In recent decades, there have been two main types
of stock price forecasting methods: econometric statistical
models and machine learning methods. In the early stages,
traditional econometric models were widely used for stock
price forecasting. These include autoregression (AR), moving
average (MA), autoregressive moving average (ARMA)
[1], autoregressive integrated moving average (ARIMA)
[2], generalized autoregressive conditional heteroskedasticity
(GARCH) [3], and linear regression [4]. Although these
methods have achieved reasonable predictive performance,
the assumption of linearity limits their predictive ability,
especially for stock prices with high volatility. Machine
learning methods can overcome these deficiencies. Common
techniques include support vector regression (SVR) [5],
artificial neural networks (ANN) [6], hidden Markov model
(HMM) [7], random forests (RF) [8] and so on. With the
success of AlexNet [9] in the ImageNet competition, deep
learning methods have shown great potential in feature
extraction and pattern recognition and are dominant in many
areas of prediction. For time series prediction, recurrent neu-
ral networks (RNN) [10], long short-term machine (LSTM)
[11], and GRU [12] solve the long-term dependency problem
and show outstanding performance. However, because of the
complicated characteristics of stock prices discussed above,
it is still a challenge for the models to predict stock prices
accurately and robustly.

To mitigate these challenges, this study proposes a
novel hybrid stock price forecasting model. The proposed
framework borrows the idea of divide-and-conquer strategy
and performs decomposition and forecasting hierarchically.
Specifically, the proposed model decomposes the original
stock price into multiple sub-series by using CEEMDAN.
Furthermore, to improve the forecasting accuracy of high-
frequency sub-series, the VMD method is adopted to
re-decompose sub-series with high volatility. In addition,
to improve forecasting efficiency, a clustering method is
adopted to integrate the sub-series with similar sample
entropy.

The main contributions of this paper can be summarized as
follows:

1) A novel hierarchical decomposition-based deep learn-
ing method HDFM is proposed to predict the stock
price.

2) We introduce a clustering method to integrate the
decomposed sub-series to improve the prediction
efficiency.

3) Extensive experiments are conducted on different
stock markets. We show that the proposed method
achieves better performance compared to other deep
learning-based stock price prediction methods.
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The remainder of this paper is organized as follows:
Section II provides a literature review on traditional statistical
models, machine learning models and deep learning models
for stock price forecasting. Section III presents the method-
ology proposed in this study. In Section IV, the empirical
studies are reported. Finally, Section V draws conclusions and
provides directions for future work.

Il. RELATED WORK

Currently, methods for predicting stock prices can be
categorized into three types: traditional statistical models,
machine learning methods, and deep learning methods. The
following section provides a brief review of each method
category.

A. TRADITIONAL STATISTICAL MODELS

In the early days, the forecasting of financial time series, such
as stock prices, was mainly based on economic statistical
models. With increasing contributions from scholars to
the models, they are now well developed. Some widely used
models include the AR, MA, ARMA [13], and ARIMA [14]
models.

Challa et al. [15] employed the ARIMA model to predict
daily stock returns for the S&P BSE Sensex and S&P BSE IT
time series. The results showed that ARIMA had reasonable
forecasting performance, indicating the efficiency of the
model in predicting stock data. Saleh et al. [14] used ARIMA,
SutteARIMA and Holt-Winters to forecast closing stock price
trends in BRIC countries. The results demonstrated that
the Sutte ARIMA and Holt-Winters models were the most
suitable for forecasting the stock prices of BRIC countries
compared to the ARIMA model. Instead of ARMA, Hossain
and Nasser [16] combined ARMA and GARCH to predict
the Nikkei 225 and S&P 500. According to the results, the
ARMA-GARCH model outperformed the SVR and back
propagation (BP) models in terms of directional criteria,
but performed worse in the deviation performance criteria
compared to the SVR and BP models.

Although statistical models have exhibited a particular
ability to forecast financial time series, they have some
weaknesses when faced with complex data, particularly
in modern times. First, the models are constructed based
on stationary assumptions. Second, these models exhibit
unsatisfactory performance in long-term time series. This
impedes their use in complex time series analyses.

B. MACHINE LEARNING METHODS

With the advancements in machine learning, an increasing
number of researchers are utilizing diverse models for time
series prediction. Guo et al. [17] presented an SVR model to
forecast stock prices. To alleviate the challenge of selecting
hyper-parameters, the proposed adaptive SVR adopted a
dynamic mechanism and a particle swarm optimization
algorithm to adjust the parameters. The experimental results
showed the efficacy of the adaptive SVR. Ren et al. [18]
employed a support vector machine (SVM) in combination
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with investor sentiment analysis to forecast the price
movement of the SSE 50 index. The findings revealed that
incorporating sentiment analysis can enhance the prediction
accuracy of SVM. To optimize the hyper-parameter settings
of SVR, Liu et al. [19] proposed a hybrid algorithm called
EGWO-SVR for stock selection, which integrated grey wolf
optimizer into SVR. The experimental results indicated
the superior performance of the proposed hybrid model
compared with the basic SVR model in stock selection.
Zhang and Lou [20] applied BP neural networks to forecast
stock price patterns. Simulation experiments illustrated that
the BP neural network had a certain prediction ability.
To address the challenge of predicting non-linear components
in stock indices, Yang and Lin [21] utilized the empirical
mode decomposition (EMD) algorithm to decompose the
stock indices into sub-series and subsequently employed the
sub-series as input for SVR in forecasting. The study revealed
that the proposed method achieved better prediction results
than other models.

Compared to traditional statistical models, the prediction
performance of machine learning models has improved,
especially when combined with other optimization or decom-
position methods. However, these models show weaknesses
in terms of long-term prediction.

C. DEEP LEARNING METHODS

With the breakthrough of convolutional neural networks
(CNN) in the ImageNet competition [9], computer vision
has entered an era of deep learning. Simultaneously, deep
learning has been applied to an increasing number of other
fields such as natural language [22], agriculture [23], and
finance [24].

Giilmez [25] used an LSTM network to predict stock
prices. The hyperparameters of the LSTM model were
optimized using an artificial rabbits optimization algorithm.
The experimental results showed that the proposed model
outperformed other models such as artificial neural networks,
naive LSTM models, and an LSTM model optimized by the
genetic algorithm. Qi et al. [26] proposed combining the
GRU model with CEEMDAN to improve the stock prediction
accuracy. To reduce the effect of high-frequency noise, the
authors applied a wavelet transform to the decomposed
sub-signals obtained from CEEMDAN. The results demon-
strated the superiority of the model. Yao et al. [27] proposed
a hybrid MEDM-TCN model for stock index prediction.
Instead of using univariate time series, the model adopted a
multivariate time series for decomposition and then applied
temporal convolutional networks (TCN) to the decomposed
subsequences for stock index prediction. The empirical
results showed the effectiveness of the novel method.
Cui et al. [28] proposed a novel hybrid model that combines
multi-channel input, VMD, CBAM, and BiLSTM for stock
index prediction. Empirical results showed that the proposed
model outperformed other methods with high reliability.
Wang et al. [29] proposed a multivariate deep learning
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method based on XGBoost for stock price forecasting. The
experimental results showed the significant superiority of the
hybrid model over the other models. Jiang et al. [30] proposed
a novel dual-CNN model for stock prices prediction. First,
the stock information was transformed into 2-D images.
Subsequently, the proposed dual-CNN model was applied
to the images for prediction. The results showed that the
proposed model had superior predictive ability. To focus
on the long-term and short-term dependencies of stock
series simultaneously, Liu et al. [31] proposed combining
VMD, a self-attention LSTM and a self-attention TCN for
stock price prediction. The experimental results showed
that the proposed hybrid model had better robustness and
generalization than other methods. Lu and Xu [32] proposed
an efficient time-series RNN for stock price prediction. The
model adopted an additional time-series feature extraction
module to enhance the correlation between data points, which
helped improve the accuracy of stock price forecasting.
Sivadasan et al. [33] studied various GRU and LSTM
models with different architectures and inputs for stock
market forecasting. Through a careful analysis, the GRU
model with OHLC (open, high, low, and close prices) and
technical indicators as inputs achieved the best forecasting
performance.

Although deep learning has proven to outperform tra-
ditional machine learning methods in financial time series
forecasting, the complexities of stock markets still pose a
challenge for models to predict stock prices accurately and
robustly.

lll. METHODOLOGY

In this section, the specifications of the proposed HDFM
hybrid model are detailed. First, we describe the key
modules, such as CEEMDAN, K-means, VMD, and GRU,
which are used to implement the decomposition process,
clustering of sub-sequences, further re-decomposition, and
obtaining prediction results. The structure of the HDFM
is then outlined. Finally, this section details the use of
evaluation metrics to validate the performance of the model,
focusing on standard statistical metrics such as the coefficient
of determination (R2), root mean square error (RMSE),
mean absolute error (MAE), and mean absolute percentage
error (MAPE), as well as a comparative analysis using the
Diebold-Mariano (DM) test.

A. CEEMDAN
The CEEMDAN algorithm was proposed by Torres et al. [34]
in 2011, which was derived from ensemble empirical mode
decomposition (EEMD) [35] to deal with non-linear and
non-stationary signals. This overcomes the problem of
EEMD, in which the reconstructed signal is incomplete and
erroneous. The CEEMDAN can be described as follows:

(1) Add white noise £98%(¢) to the original signal x() to
produce K different new series @) = x@) + g08% (1), k =
1,2,---,K. (Sk(t) is the white noise and g( is the weight.
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Then, the first IMF and the first residual can be obtained:

1 K
IMF (1) = % k;]MFf(r) 1)
ri(t) = x(t)—IMF (1) 2

where IMF {‘(t) represents the decomposed sub-series by
EMD applied to the k-th new series x* ().

(2) Forn = 2,---, N, add white noise &,_1E,—1(8%(¢))
to the residual r,,_1(¢) to produce K different new residuals,
@ = i@ + e B Gf0) k= 1,20 K.
E,_1(-) is defined as the (n — 1)-th IMF of a signal produced
by EMD. Then, the n-th IMF and the n-th residual are
obtained as follows:

K
IMF,(t) = %ZEI (h®).n=2- N @
i=1

rn(t) = rp—1(t) — IMF,(t),n=2,--- ,N “)

(3) Step 2 is repeated until the obtained residual can no
longer be decomposed. The final residual of CEEMDAN is
obtained as follows:

N
R(t) = x(t) = D IMF,(1) 5)

n=1

B. K-MEANS
In this study, the IMFs produced by CEEMDAN are grouped
based on their complexity or frequency, to ease the prediction
process of GRU. For this purpose, the K-means clustering
algorithm [36] is adopted. In addition, to quantify the
complexity of different IMFs, the sample entropy [37] is
selected as the similarity measurement of two IMFs for
K-means.

Given a set of samples S = s1,82,---,5n, and the
predefined cluster centers c1, c2, -+, ck, the objective of
K-means is to minimize the following function:

K Ny
ol

J = s; . —c¢ 6
2.2 |5 e, ©)

k=1 i=1
where sl(.k) refers to the sample s; that belongs to cluster cy,
Ny is the number of samples in cluster ¢k, and || - |2 denotes

L, norm.

A key component of K-means is the selection of the num-
ber of centroids, that is, K, which is a hyper-parameter. In this
study, the Elbow method [38] is adopted to automatically
determine the number of cluters K.

The clustering steps of the K-means algorithm is
summarized in Algorithm 1.

C. VMD

VMD [39] is a non-recursive signal decomposition model
that adaptively determines the number of mode decompo-
sition. It suppresses the effect of mode component aliasing
in EMD and is theoretically well founded. Specifically,
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Algorithm 1 K-Means Clustering Algorithm

SZ{S],SZ,"' 7SN}$K
S is the set of samples

K is the number of clusters

Input:

Output: Cluster division: C = {c1,¢2, -+, ¢k}
1: Initialization: C <~ S ELECTR ANDOMS EEDS(S, K)
2: repeat
32 forn=1,2,---,Ndo
4: fork=1,2,--- ,Kdo
5: if k == arg mkin ls, — ckll, then
6: o = 1
7 else
7: rak =0
8: end if
9: end for

10:  end for

11:  for each cluster ¢; do

12: update cluster centroids as the mean of each cluster:
Z Tnk * Sn
Gk = e
Z T'nk
13:  end for

14: until all current cluster centroids do not change

VMD decomposes a signal by transforming the solution
problem into a variational problem. Then, it adopts the
alternating direction method of multipliers (ADMM) to
solve the variational problem and get a set of modes
with limited bandwidth and their corresponding center
frequencies.

The VMD framework consists of two stages: construction
and solving. In the construction stage, for a given signal f, the
variational problem is solved by minimizing the sum of the
estimated bandwidth for each mode u; (k = 1,2, .-, K).
In reverse, the modes collectively reproduce the signal f.
The solving problem can be formulated as the following
constrained optimization problem:

2
|

K .
min {Z 0y [(S(t) + %) &® uk(t)i| e okt

{ur} i} =1
K
st > w=f @)
k=1
where {ur} := {uy,un,---,ug} represents the set of all

modes, and {wy} := {w1, w2, - - - , wk} represents the center
frequencies of each mode. §(¢) is the Dirac distribution, o,
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FIGURE 1. The internal structure of a GRU unit.

denotes the partial derivative of ¢, and ® represents the
convolutional operation. | - ||» denotes L, norm.

In the solving stage, the above constrained optimization
problem is transformed into an unconstrained one by
introducing the secondary penalty factor « and the Lagrange
multiplier A as follows:

L {ur}, {or}, 2)

K . 2
=« Z 0; [(3(1‘) + L) ® uk(t)] eIkt
K 2 K
+ |f() — Zuk(l) + <)»(l), s(t) — Zuk(f)> (®)
k=1 2 k=1

Equation (8) is solved by using the ADMM strategy, and
the optimal solution of uy, w; and A are obtained as follows:

F@) = Xy ai(w) + 22

~n+1 _

(@)= 1420 (0w — a)k)2 ®
le's] ~ 2

a}r{l+l( ) = f() a)|uk(a))| dw (10)

J3? @) do

K
W (@) = (@) + T (f(w) - Zaz“(w)) (11)

k=1

where itZH(a)), ui(w), f (w), and A(w) denote the Fourier
transform of uZ“(t), ui(t), f(t), and A(t), respectively. t is

the tolerance of noise.

D. GRU
The GRU is a kind of RNN model proposed by Cho et al.
in 2014 [40], which aims to address the gradient vanishing
problem that comes with a standard RNN in the case of
long-term time series dependencies. It is a simpler version
of LSTM and easier to train than LSTM with the same
performance.

The GRU memory cell consists of only two parts as shown
in Figure 1: the update and reset gates. In Figure 1, z; denotes
the update gate, r; represents the reset gate, and h;_1 and h;
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denote the previous and current hidden states, respectively. e
is the candidate hidden state.

The forecasting steps of GRU are as follows:

(1) The update gate z; determines how much of the previous
hidden state /,_ need to be retained, and how much will be
replaced by the new information in ;. The computation of z;
is as below:

2 =0 Wz [h—1, %]+ br) 12)

where w, and b, represent weight and bias, respectively. o
denotes the sigmoid function.

(2) The reset gate r; determines how much of the previous
hidden state ht,1~will be discarded, and how much will be
used to calculate A;.

rr =0 Wy [hy—1, %1+ b;) (13)

__ (3) This step primarily computes the candidate hidden state
h; that is to be mixed with the previous hidden state /,_
through the update gate z;.

hy = tanh (wp, [ry - hy—1, x:] + bp) (14)

(4) The final step is to calculate the current hidden state 4,
with a linear combination of the~previ0us hidden state h;_
and the candidate hidden state /;, weighted by the update
gate z;.

he=(—2) h—1+z Iy (15)

E. THE PROPOSED HDFM MODEL

In this section, we introduce the principles and forecasting
process of the proposed HDFM model. The fundamental
idea behind this model is to break down the non-linear
and non-stationary stock market index price into numerous
relatively simple sub-series, which are subsequently used
as inputs to the forecasting model. Finally, the predictions
of each sub-series are weighted summed up to derive the
forecast of the stock market index. Since the decomposition
process usually produces several sub-series, which makes
the subsequent prediction process time-consuming, this study
adopts the K-means algorithm to merge the sub-series with
similar complexity before the forecasting process. Sample
entropy is a measure of the probability of generating a
new pattern of change in a time series and is commonly
used to characterize the complexity of sequences [29], [41].
Thus, in this study, the sample entropy serves as a measure
of the complexity of the decomposed IMFs and as an
input to the K-means algorithm. The IMFs with the same
clusters of sample entropy are aggregated by summation.
Furthermore, the high-frequency component produced by the
initial decomposition and reconstruction is re-decomposed
to generate sub-series in a better mode, which further
improves the predictive performance of the model. In this
study, the sub-sequences whose sample entropy exceeds
a predetermined threshold is defined as a high-frequency
component. An overview of the proposed HDFM is shown
in Figure 2.
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FIGURE 2. Overview of the proposed HDFM model.

F. EXPERIMENTAL SETUP
In this study, the models were implemented using Keras in
Python 3.8, with a backend of TensorFlow 2.5.0. All the
experiments are carried out on a PC client with Intel i7-9700K
CPU@3.60 GHz, a 16GB RAM, and a NVIDIA GeForce
GTX 1080Ti GPU.

To evaluate the forecasting capability of the proposed
model, the standard statistical metrics of RZ, RMSE, MAE,
and MAPE were adopted and defined as follows:

> (vi— ?i)z

R*=1- . (16)
> i —y)?
1 J )
RMSE = ﬁg@i—yl) (17)
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x 100% (19)

Ji— Vi
Vi

1 n
MAPE = ~
"

where y; and J; represent the actual and predicted value,
respectively. y is the average of the close price of the n
samples.

IV. EMPIRICAL STUDY

To evaluate the performance of the new HDFM model,
this section tests the model on multiple datasets using a
variety of benchmark models and evaluation criteria. First,
the datasets and parameter settings of the models used
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TABLE 1. The statistical analysis of three stock market indices conditions.

Stock Index Count Min

Max

Mean

Standard Deviation

SSEC 7922 99.98
SZI 7879 402.5
SPX 8184 311.49

6092.057
19531.155
4796.6

2090.398997
7014.205923
1567.254398

1095.930913
4455.95512
1023.730998
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FIGURE 3. The original value of stock daily closing price for SSEC, SZI, and
SPX.

in the experiment are described. Then, comparison of the
proposed model and other models is conducted to verify
the prediction performance. Finally, the effectiveness of
each component of the model is verified through ablation
studies.
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A. DATASET

In this study, the daily closing prices of three stock indices
were selected to evaluate the proposed method. These are
the Shanghai Securities Composite Index (SSEC), Shenzhen
Securities Component Index (SZI), and the Standard &
Poor 500 Index (SPX). The data are obtained from Yahoo
Finance (https://finance.yahoo.com). The SSEC data are
from December 19,1990 to May 25, 2023. The SZI data
are from April 3, 1991 to May 25, 2023, and the data of
SPX are from December 3, 1990 to May 25, 2023. The total
number of observations for SSEC, SZI, and SPX are 7922,
7879 and 8184, respectively. The last 800 data points are
selected as the test set for each stock index, and the remaining
data are used as the training set. For a better and more intuitive
realization of these indices, the data are described in Table 1
and the graphs are plotted in Figure 3.

To reduce the effect of noise, such as outliers and extrema,
and speed up the training process of the model, the data were
normalized as follows:

Xnorm = ﬂ (20
Xmax — Xmin
where x represents the sample data and xpj;, and Xxmax
represent the minimum and maximum values of the sample,
respectively. After prediction, the predicted values are
restored according to the following equation:

x= (Xmax — Xmin) * % ~+ Xmin (21)

where ¥’ is the output of the forecasting model.

B. MODEL IMPLEMENTATION

Table 2 presents the hyper-parameters of all models used in
the experiments. The DNN, RNN, LSTM and GRU models
share the same parameters for a fair comparison. SVR and
random forest regression (RFR) models are implemented
using scikit-learn [42]. Furthermore, the lookback window
is set to a time step of 30, that is, the closing price of one

day is predicted using the closing prices of the preceding
30 days.

C. COMPARISON WITH OTHER METHODS

In this study, eight other models including Random Walk,
ARIMA, SVR, RFR, LSTM, GRU, CEEMDAN-GRU and
McVCsB [28] were used for comparison to validate the
performance of the proposed HDFM model. It should be
noted that CEEMDAN-GRU means that CEEMDAN is first
used to decompose the original stock price into sub-series,
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TABLE 2. The parameter setting of the models.

Algorithm Parameter Value(s)
ARIMA (. d, @) (3,1,4)
(.d.q) G, L4
(. d. g’ 1.4
SVR C 1.0
Epsilon 0.1
Kernel RBF
Loss function L1
RFR # of estimators 100
Max depth 50
Loss function MSE
DNN, RNN, LSTM, GRU Hidden layer 3
Cells (128, 64, 32)
Batch size 64
Activation function tanh
Loss function MSE
Optimizer Adam
Learning rate 0.001
GradientDecayFactor 0.9
SquareGradientDecayFactor 0.999
Epochs 100

Note: The superscripts 23 indicate parameter settings for the SSEC, SZI, and SPX datasets, respectively. Parameters without superscripts indicate that they
are shared by all the datasets.
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FIGURE 4. Forecasting comparison of different models for SSEC.

and then the GRU model is applied to predict each of the The prediction results of the models are listed in Table 3.
sub-series. Finally, all the predictions are merged to obtain Compared to traditional methods such as Random Walk and
the final result. ARIMA, machine learning-based methods performed much
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TABLE 3. Comparison of different stock index price forecasting models.

Stock Index Models R2? RMSE MAE MAPE (%)
Random Walk 0.733836 117.221506 95.781951 2.9149
ARIMA 0.779042 106.803918 86.350939 2.6386
SVR 0.939124 56.060122 40.465087 1.2394
RFR 0.944711 53.425877 39.291353 1.1888
SSEC LSTM 0.945714 52.939073 39.532023 1.2088
GRU 0.952263 49.643274 37.100258 1.1304
CEEMDAN-GRU 0.974597 36.214179 27.656854 0.8403
McVCsB [28] 0.982210 30.305413 25.140639 0.7570
HDFM (Ours) 0.985613 27.253625 21.262825 0.6462
Random Walk 0.730165 794.174319 646.348302 4.7330
ARIMA 0.789279 701.811655 562.335368 42163
SVR 0.930665 402.571974 313.878719 2.4428
RFR 0.953944 328.103694 251.431450 1.9760
SZI LSTM 0.934517 391.229139 295.314832 2.3622
GRU 0.942982 365.066701 280.415401 2.2494
CEEMDAN-GRU 0.962238 297.095775 248.869239 1.9963
McVCsB [28] 0.972950 251.448699 198.307352 1.5756
HDFM (Ours) 0.975534 239.138236 187.725595 1.4805
Random Walk 0.706311 264.282009 248.246785 6.2603
ARIMA 0.757341 240.227153 228.591172 5.7352
SVR 0.929492 129.491891 107.550343 2.6104
RFR -1.529433 775.596148 662.914282 15.7891
SPX LSTM 0.943226 116.198201 99.801158 2.5357
GRU 0.953382 105.292904 90.948408 2.3058
CEEMDAN-GRU 0.971983 81.627592 70.669927 1.8060
McVCsB [28] 0.982205 65.054074 59.72503 1.5091
HDFM (Ours) 0.984663 60.394758 54.647467 1.3851

better, demonstrating the superiority of machine learning
in financial time series forecasting. It can be seen that the
proposed model has the best performance on all three stock
market indices. In the case of SSEC, the proposed HDFM
achieves a 0.35% increase in R2, and a 10.07% decrease
in RMSE compared to the second ranked McVCsB model.
In the case of SZI, the proposed model has 4.90% lower
RMSE than the second ranked McVCsB model. The R?
value of HDFM is 0.26% higher than that of McVCsB.
In the case of SPX, the proposed model achieves a 0.25%
increase in R? and a 7.16% reduction in RMSE compared to
the second-ranked McVCsB model. The results demonstrate
the superiority of the proposed model for predicting stock
prices. Qualitative visualizations of the prediction results
for SSEC, SZI, and SPX are shown in Figure 4, 5, and 6,
respectively.

To further demonstrate that the HDFM model proposed in
this study significantly outperforms the benchmark models,
we performed a DM test on the HDFM and benchmark
models. The main purpose of the DM test is to test whether

49886

there is a significant difference in the time series forecasting
results between the two models. If the p-value is greater
than the significance level, the null hypothesis is accepted,
indicating that both models have the same predictive power.
Conversely, if the p-value is less than the significance
level, the null hypothesis is rejected, indicating that the two
models have different predictive effects. In addition, under
the condition that the p-value is below the significance level,
if the DM test value is greater than O, then the benchmark
model is superior to the HDFM model proposed in this
study. If the DM test value is less than O, then the HDFM
model is superior to the benchmark model. The results of
the DM test are shown in Table 4. It can be observed that
across all datasets, the proposed HDFM model is generally
superior to the benchmark models at the 1% significance
level.

D. ABLATION STUDY ON DIFFERENT BASE MODELS
To determine the best base model fit for stock price
forecasting, this study evaluated different deep learning
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FIGURE 6. Forecasting comparison of different models for SPX.

models. A deep neural network (DNN), recursive neural
network (RNN), LSTM and GRU were chosen as the basic
forecasting networks for comparison. DNN is also known as
the multilayer perceptron.

The results of the comparison are shown in Figure 7 and
Table 5. From Table 5, we can see that GRU performs the best
among all the models for all three stock indices. In contrast,
the DNN has the worst performance on all three datasets.
Specifically, in the case of SSEC, GRU obtains an R? of

VOLUME 12, 2024

0.952263, which is 0.65% higher than that of the second
ranked LSTM model. The RMSE of GRU is 6.23% lower than
that of LSTM. For SZI, the R? and RMSE are 0.85% higher
and 6.69% lower, respectively, than those of the second-
ranked LSTM. For SPX, GRU has an RMSE 9.39% lower
than that of LSTM. The R? of the GRU is 0.953382, which
is 1.02% higher than that of the LSTM. For other measures,
such as MAE and MAPE, GRU’s results are also the best of
all three stock indices.
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TABLE 4. The DM test values of benchmark models of different datasets.

Models SSEC S71 SPX

Random Walk -24.4116* -18.3464* -47.2520%
ARIMA -19.3096* -16.7186* -51.7657*
SVR -10.7593* -5.8449% -16.6940*
RFR -9.6530% -3.1997* -30.8684*
LSTM -11.1346* -9.0286* -15.8925*
GRU -9.2759% -8.4112%* -14.4942%
CEEMDAN-GRU -6.8599* -10.5458* -10.7499*
McVCsB [28] -6.0911* -2.8999* -11.9913*

Note: * indicates 1% level of significance.
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FIGURE 7. A visualization example of ablation study on different base models for SSEC.

E. ABLATION STUDY ON DIFFERENT DECOMPOSITION
METHODS
Several decomposition methods have been evaluated using
stock market datasets to determine the most appropriate
method for predicting stock index prices. The methods con-
sidered in this study include EMD, EEMD, and CEEMDAN.
Additionally, to reduce computation time, the K-means
method was employed to cluster the decomposed intrinsic
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mode functions (IMFs) before forecasting. For K-means,
the sample entropy serves as the criterion for grouping.
This means that IMFs with comparable sample entropy are
merged to form fresh cooperative intrinsic mode functions
(Co-IMFs). Table 6 shows the sample entropy values of each
sub-series decomposed by CEEMDAN for the SSEC, SZI,
and SPX datasets. The clustering results are also shown in the
table, where the IMFs whose sample entropy is indicated by
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TABLE 5. Ablation study on different base networks for SSEC, SZI and SPX.

Stock Index Models R? RMSE MAE MAPE (%)
DNN 0.924679 62.357722 48.142256 1.4577

SSEC RNN 0.935156 57.858308 45.351393 1.3872
LSTM 0.945714 52.939073 39.532023 1.2088
GRU 0.952263 49.643274 37.100258 1.1304
DNN 0.916917 440.680103 341.104727 2.7604

S7I RNN 0.926455 414.614627 346.296195 2.8191
LSTM 0.934517 391.229139 295.314832 2.3622
GRU 0.942982 365.066701 280.415401 2.2494
DNN 0.925037 133.52051 112.727832 2.9361

SPX RNN 0.930592 128.47827 117.273611 3.0194
LSTM 0.943226 116.198201 99.801158 2.5357
GRU 0.953382 105.292904 90.948408 2.3058

TABLE 6. Sample entropy of each sub-series of the CEEMDAN decomposition for different datasets.

Modal SSEC SZ1 SPX

IMF1 1.844392%* 1.744000* 1.792528%*

IMF2 1.820377* 1.608018* 1.763276*

IMF3 1.391727* 1.198358* 1.394437*

IMF4 0.700810%* 0.590323** 0.617028%*

IMF5 0.348395%* 0.302360%* 0.335909%*

IMF6 0.179897+** 0.172095%** 0.145157+*%**

IMF7 0.037263**%* 0.029929%** 0.033227%%*%*

IMF8 0.020775%*%* 0.034133%** 0.020805%**%*

IMF9 0.013286% 0.009987:# 0.004585%

IMF10 0.000522% 0.000385%#* 0.000183 %

Note: *, ¥* and *** denote different clustering groups by K-means in each dataset, where the same symbols represent the same group.

TABLE 7. Ablation study on different decomposition methods for SSEC, SZI and SPX.

Stock Index Decomposition R? RMSE MAE MAPE (%)
Methods
EMD 0.963650 43.319590 34.329957 1.0412
SSEC EEMD 0.930576 59.867071 46.814153 1.4244
CEEMDAN 0.974597 36.214179 27.656854 0.8403
EMD 0.951253 337.550834 274.995443 2.0907
SZ1 EEMD 0.931051 401.448513 315.358002 2.3749
CEEMDAN 0.962238 297.095775 248.869239 1.9963
EMD 0.964047 92.467734 81.792127 2.0720
SPX EEMD 0.933183 126.057309 107.252123 2.7204
CEEMDAN 0.971983 81.627592 70.669927 1.8060

Note: All decomposition methods are combined with the GRU model.
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FIGURE 8. Visualization of CEEMDAN decomposition, sample entropy and integration results for SSEC.
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TABLE 8. Sample entropy of each Co-IMF for different datasets.
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Modal SSEC SZ1 SPX

Co-IMF1 1.756717 1.526462 1.657737
Co-IMF2 0.520439 0.414427 0.458080
Co-IMF3 0.024130 0.018658 0.008260

the same symbol (i.e. *, **, or ***) belong to the same cluster.
Figure 8 shows the decomposition and integration process of

SSEC.
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Table 7 and Figure 9 present the outcomes of predicting
stock index prices by applying GRU in combination with the

different decomposition methods across the three datasets.
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TABLE 9. Ablation study on different re-decomposition methods applied on Co-IMF1 for SSEC, SZI and SPX.

Stock Index Re-decomposition R? RMSE MAE MAPE (%)
Methods
EMD 0.971828 38.136466 30.312859 0.9152
SSEC CEEMDAN 0.975591 35.498466 26.464414 0.8076
VMD 0.985613 27.253625 21.262825 0.6462
EMD 0.964254 289.056129 238.205325 1.9010
SZ1 CEEMDAN 0.964836 286.691091 233.795311 1.7879
VMD 0.975534 239.138236 187.725595 1.4805
EMD 0.970668 83.520435 73.957386 1.8899
SPX CEEMDAN 0.973861 78.844252 70.131502 1.7722
VMD 0.984663 60.394758 54.647467 1.3851
Note: All re-decomposition methods are combined with the CEEMDAN and GRU models.
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FIGURE 11. A visualization example of re-decomposition results for Co-IMF1 using VMD in SSEC.

Notably, the combination of GRU and CEEMDAN yields
significantly superior forecasting outcomes for all three
datasets. Specifically, in the SSEC case, the R2 of the
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7000 8000

forecasting model utilizing CEEMDAN reaches 0.974597,
which is nearly 1.1% higher than that of the second-
ranked EMD-GRU. The RMSE and MAE of the model
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utilizing CEEMDAN display a decrease of 16.40% and
19.44%, respectively, in comparison to the EMD-GRU
model. When SZI is considered, the CEEMDAN-GRU
demonstrates a lower RMSE of 11.98% when compared
against the EMD-GRU model in second place. The R?
of the CEEMDAN-GRU is 1.10% higher than that of
the EMD-GRU. Turning to SPX, the model incorporating
CEEMDAN outperforms the second-ranked EMD-GRU with
an increase of 0.79% in R%. The CEEMDAN-GRU model
achieves an 11.72% and 13.60% decrease in RMSE and
MAE, respectively, compared to the EMD-GRU model.
Consequently, the results indicate the efficacy of CEEMDAN
in enhancing the model performance. It is worth noting that
the EEMD-GRU model performs significantly worse than
the EMD-GRU model. After conducting a thorough analysis,
it was discovered that EEMD generates a large number
of high-frequency components, rendering the forecasting
process more difficult when compared to the EMD method
in this study.

F. ABLATION STUDY ON DIFFERENT RE-DECOMPOSITION
METHODS

Although the GRU model could make accurate predictions
for the stock index price when combined with CEEMDAN,
further study was conducted to explore the potential for
improved predictive ability.

By analyzing the prediction results for various Co-IMFs,
we found that the prediction result of Co-IMF1 is much worse
than those of the other two Co-IMFs across all three datasets.
Further analysis revealed that the sample entropy of the first
Co-IMF (Co-IMF1) was significantly higher compared to the
other two Co-IMFs across all datasets, as shown in Table 8.
This observation suggests that Co-IMF1 possesses greater
complexity and contains more high-frequency signals than its
counterparts do. Therefore, our study focuses on enhancing
the prediction performance of Co-IMF1. Our approach entails
the re-decomposition of Co-IMF1 to decouple sub-series with
varying frequencies and predicting Co-IMF]1 using these sub-
series. In this study, three re-decomposition methods, EMD,
CEEMDAN, and VMD, were evaluated and compared in
terms of their performances across the three datasets.

The forecasting results are presented in Tables 9
and 10, respectively. The use of VMD on Co-IMF1 for
re-decomposotion yielded the best forecasting performance
across all three datasets. For SSEC, utilizing VMD as
re-decomposition in the forecasting model results in a
decrease of 23.23% and 19.66% in RMSE and MAE,
correspondingly, as compared to the second-ranked model
that employs CEEMDAN. The R? increases by 1.00% in
this scenario. For SZI, the model that adopts VMD as a
re-decomposition exhibits a 1.07% increase in R? and a
decrease of 16.59% and 19.71% in RMSE and MAE, respec-
tively, as compared to the secondary model. Similarly, for
SPX, the model using VMD for re-decomposition achieves an
R? of 0.984663, surpassing the second-best model by 1.08%.
As a result, the RMSE and MAE of the forecasting model
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FIGURE 12. Scatter plots of original and predicted values for different
stock indices using the proposed HDFM model.

adopting VMD as re-decomposition decrease by 23.40%
and 22.08%, respectively, compared with the second-best
model. Figure 11 depicts the re-decomposition outcomes of
Co-IMF1 for SSEC using the VMD approach.

Based on these findings, it can be concluded that VMD
is the most effective re-decomposition method for Co-IMF1
compared to the other two methods. This is because
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both EMD and CEEMDAN are derived from EMD, and
utilizing them to decompose the IMF1’s high-frequency
components does not result in any further improvement in the
performance.

G. QUALITATIVE ANALYSIS OF THE PREDICTION
PERFORMANCE

Figure 12 displays the scatter plots of both the original
and predicted price values to provide a comprehensive
visual analysis of the proposed HDFM for stock prices. The
distribution of the scatter points aligns closely with the line
of slope 1 in all the cases. This finding provides evidence that
the proposed model can predict stock index prices with a high
level of accuracy and robustness.

V. CONCLUSION

In this study, we propose a hybrid model called HDFM for
predicting stock index prices using GRU and decomposition
methods. Our model is based on the divide-and-conquer
strategy, hierarchically addressing the stock price prediction
problem. Specifically, we decompose the stock price time
series into several sub-series using the CEEMDAN method.
To reduce the computation time, sub-series with similar
sample entropy are merged using K-means. The Co-IMF1
with the highest frequency among all Co-IMFs is further
decomposed into sub-series for easier prediction. Finally, the
prediction of all sub-series are fused to obtain the prediction
of the original dataset.

The performance of the proposed model was assessed
extensively using three distinct stock market indices. The
ablation study demonstrated the efficacy of each element
of the model, comprising GRU as the base network,
CEEMDAN as the decomposition method, and VMD as the
re-decomposition method. Our model outperforms the other
methods for all three stock market indices.

Nevertheless, there is scope for the refinement of the
proposed model. Primarily, the forecast accuracy of the high-
frequency sub-series is inferior to that of the medium- and
low-frequency sub-series. Second, the multi-step prediction
of stock index prices will be explored in the future.
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