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ABSTRACT Collaborative Filtering has achieved great success in capturing users’ preferences over items.
However, existing techniques only consider limited collaborative signals, leading to unsatisfactory results
when the user-item interactions are sparse. In this paper, we propose a Cross-grained Neural Collaborative
Filtering model (CNCF), which enables recommendation more accurate and explainable. Specifically,
we first construct four kinds of interaction graphs tomodel both fine-grained collaborative signals and coarse-
grained collaborative signals, which can better compensate for the high sparsity of user-item interactions.
Then we propose a fine-grained collaborative representation learning and design Light Attribute Prediction
Networks (LAPN ) to capture the high-order attribute interactions and enhance the prediction accuracy.
Finally, we propose a coarse-grained collaborative representation learning to represent user preferences based
on diverse latent intent factors. The experiments demonstrate the high effectiveness of our proposed model.

INDEX TERMS Collaborative filtering, collaborative representation learning, graph neural networks,
recommender system.

I. INTRODUCTION
Owing to the rapid development of online services in recent
years, more and more commercial websites extensively use
recommender systems to enhance their user experiences.
Collaborative Filtering (CF) based recommendation provides
personalized item suggestions to users according to their
historical preferences such as user-item interactions. It gen-
erates recommendations based on the assumption that similar
users will have common preferences on similar items. Recent
studies show that Graph Neural Networks (GNNs) have
achieved state-of-the-art performance in modeling high-order
relationships for CF [1], [2], [3], [4], [5], [6], [7]. However,
most GNNs-based CFmodels only leverage the original user-
item interaction graph to construct the learning task, lacking
the explicit exploitation of the auxiliary information in the
form of user/item attributes (e.g., age, gender, color, size,
or supplier). They usually suffer from the cold-start problem

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

due to severely sparse user-item interactions. Therefore,
attribute-aware CF models [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17] are proposed to leverage the auxiliary
information to enhance recommendations. They aim to
provide useful information for more accurate predictions,
which is important for many applications such as e-business,
entertainment, and social events.

We study the problem of attribute-aware CF for rec-
ommendation. Given a user-item pair with their content
attributes, we aim to automatically learn the user profile and
predict the score of the item for the user. For attribute-aware
CF, three issues need to be addressed. First, we need to
design a novel model for generating the recommendation that
reflects both user preferences and user/item characteristics.
Naturally, similar users may generate similar behavioral data.
Also, users may be interested in items that are similar to
the ones they have historically interacted with. A good
model should be able to simultaneously capture as many
collaborative signals as possible to compensate for the
sparsity of the user-item interactions. Second, we need to
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design a user/item representation learning that well captures
attribute interactions. For example, old people usually like
mobile phones with big screens. Hence, in an e-business
recommender system, considering the attribute interaction
<age: the elderly, size: big screen> is more effective
than considering the two attributes separately. In addition,
different attribute interactions should have different impacts
on the final prediction. In the above scenario, the attribute
interaction <age:the elderly, size:big screen> is more
important than <age:the elderly, color:silver> for rating
prediction. In addition, the higher-order attribute interaction
<age:the elderly, size:big screen, price:expensive> is more
important than the above two pairwise attribute interactions.
Thus considering fine-grained attribute interactions and
distinguishing their different impacts to model users/items
is a valuable research issue. Finally, we need to represent
users based on diverse latent intent factors (e.g., preferences
of people of the same age or occupation). For example,
influenced by her peers, a young woman may prefer a mobile
phone that is light and fashionable. Failing to capture the
latent intent factors may lead to a low recommendation
quality.

Recently, CF-based recommendation models can be cate-
gorized into GNNs-based CF models [1], [2], [3], [4], [5] and
attribute-aware CFmodels [8], [9], [10], [11], [12], [13], [14].
GNNs-based CF models leverage GNNs to model user-item
interactions or knowledge graphs, and make a prediction.
Attribute-aware CF models take the attribute interactions
into account to jointly decide the final predictions. However,
they focus on capturing collaborative signals that come
either from user-item interactions or attribute interactions.
Limited collaborative signals inevitably limit the capability
of existing work to leverage the interaction information
for producing satisfactory results. Therefore, we propose a
Cross-grained Neural Collaborative Filtering model (CNCF),
which utilizes the interactions among users, items, and
attributes to collaboratively learn embedding vectors for each
user and item. Specifically, to alleviate data sparsity and cold-
start problems, we consider both attribute interactions and
user-item interactions to capture more collaborative signals.
Then we collaboratively learn user/item representations by
modeling attribute interactions and distinguishing them in a
more fine-grained way. Finally, we learn embedding vectors
for users based on diverse latent intent factors in a coarse-
grained way. We summarise our contributions as follows.

• We construct four kinds of interaction graphs to model
both fine-grained collaborative signals and coarse-
grained collaborative signals, which can better compen-
sate for the high sparsity of user-item interactions.

• We propose a fine-grained collaborative representation
learning, which effectively leverages fine-grained col-
laborative signals for user/item characteristic learning.
We also design Light Attribute Prediction Networks
(LAPN ) to capture the high-order attribute interactions
and enhance the prediction accuracy. With this model,
the different impacts of attribute interactions can be

captured in a fine-grained way to support the model’s
interpretability better.

• We propose a coarse-grained collaborative representa-
tion learning, which utilizes coarse-grained collabora-
tive signals to learn user preferences based on diverse
latent intent factors.With this model, the high-order user
relationships in the original user-item interaction graph
can be captured to improve the recommendation quality.

• We conduct experiments on two real-world datasets to
verify the effectiveness of our model. The experimental
results demonstrate the high effectiveness of our pro-
posed model for recommendation.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III gives an overview of our
CNCF model. Section IV describes the major components
of CNCF. Section V shows the experimental results and
Section VI makes conclusion.

II. RELATED WORK
We review existing literature on two topics closely related to
our work, including GNNs-based CF models and attribute-
aware CF models.

A. GNNS-BASED CF MODELS
Deep learning has undeniably achieved remarkable success in
numerous conventional machine learning domains, including
image classification and natural language processing (NLP).
Its effectiveness stems from its capacity to discern patterns
and features in data. However, much of the data encountered
in real-life scenarios deviates from Euclidean space and
adheres to non-Euclidean graph structures, such as the
inherent structural representations of molecules. To tackle
this challenge, researchers have introduced Graph Neural
Networks (GNNs) [18], [19], [20], [21], [22], [23] to address
data with graph structures. Some graph-based studies [24]
use user-item interactions as bipartite graphs to model user
interests. However, these approaches typically overlook the
user/item attributes, leading to degraded model performance,
especially when data is sparse. Some research work treats
user attributes differently from item attributes to effectively
capture interactions between features [13]. Meanwhile, other
studies have proposed automatic selection strategies for
feature interactions to improve model performance [10],
[25], [26], [27]. Utilizing GNNs-based CF models, several
recommender systems have been designed and implemented
in the field of social recommendation. These systems employ
GNNs to model social relationships and recommend friends
or collaborators to users. For instance, [28] introduces the
graph conversion capsule link and transforms the social
recommendation problem into a graph classification problem
for solving. On the other hand, [29] proposes a model-
independent social graph denoising module to better learn
user social representations. However, these methods either
ignore the efficient utilization of fine-grained collaboration
signals or ignore the explicit capture of coarse-grained col-
laboration signals. Our proposed model attempts to capture

48854 VOLUME 12, 2024



C. Li et al.: Cross-Grained Neural Collaborative Filtering for Recommendation

both coarse-grained and fine-grained collaboration signals to
provide a more comprehensive and efficient solution.

B. ATTRIBUTE-AWARE CF MODELS
Factorization Machine (FM) [8], [30] models each attribute
interaction as a dot product of two embedded vectors
and aggregates all the modeling results linearly. However,
it does not inherently distinguish the varying importance
of different interactions. To mitigate this, certain extensions
of FM attempt to incorporate the attention mechanism. For
example, the attention scores are calculated to differentiate
the importance of various feature interactions [9]. In addition
to attention mechanisms, other extensions extract nonlinear
features by introducing a multilayer perceptron (MLP)
into the model [11]. Utilizing attribute-aware CF models,
several recommender systems have been designed. For
instance, music recommender systems typically take into
account attributes such as songwriters, genres, tempos, and
other relevant information. Reference [31] employs neural
networks to categorize music genres and recommends songs
based on three basic attributes: genre, Mel Frequency Cep-
strum Coefficients (MFCC) and song tempo [32]. However,
these work only focuses on low-order feature interactions.
To address this problem, we introduce depth-based and
breadth-based messages respectively, to capture the fine-
grained high-order collaborative signals.

III. FRAMEWORK OF OUR SOLUTION
In this paper, we propose a novel attribute-aware CF
framework, as shown in Figure 1. Given a user/item set with
attribute data, user-item interactions, and a target user u, our
recommendation predicts the score of u to each item v (v
is new to u) and outputs the top-k recommendations with
top scores. We construct four kinds of interaction graphs,
i.e. attribute-level internal interaction graph (inter-A-A),
attribute-level external interaction graph (exter-A-A), social
graph among users (U-U) and user-attribute-user hypergraph
(U-A-U), to model collaborative signals. It contains three
major components, Fine-Grained Collaborative Representa-
tion Learning, Coarse-Grained Collaborative Representation
Learning, and Light Attribute Prediction Network. 1) Fine-
Grained Collaborative Representation Learning captures two
kinds of fine-grained collaborative signals, i.e. Attribute-level
Internal Collaborative Signals (AICS) and Attribute-level
External Collaborative Signals (AECS), to learn user/item
representations. 2) Coarse-Grained Collaborative Repre-
sentation Learning captures two kinds of coarse-grained
collaborative signals, i.e. User-level Social Collaborative
Signals (USCS) and User-level High-order Collaborative
Signals (UHCS), to learn user representations. 3) Light
Attribute Prediction Network is used to predict attributes,
which is an auxiliary task to make the model improve
its understanding of attributes and predict scores better.
We will detail these components in Section IV. The important
notations used in this paper are listed in Table 1.

TABLE 1. Notations.

IV. OUR PROPOSED MODEL: CNCF
In this section, we will present our proposed model (CNCF)
that predicts the score of how much u likes v.

A. FINE-GRAINED COLLABORATIVE REPRESENTATION
LEARNING
First, we introduce how to model two kinds of fine-
grained collaborative signals, i.e. AICS and AECS. Then,
we discuss how to capture them for representation learning,
including AICS-based representation learning and AECS-
based representation learning.

1) FINE-GRAINED COLLABORATIVE SIGNALS MODELING
We construct the inter-A-A graphs and the exter-A-A graphs
to capture two kinds of fine-grained collaborative signals:
AICS andAECS. In our approach, we represent each attribute
value (denoted as att) within each attribute domain using a
dedicated vector (e), during the embedding stage. The user
features are denoted as U =

[
eu1, e

u
2, · · · , eu

|U |

]
, the item

features are denoted as I =

[
ei1, e

i
2, · · · , ei

|I |

]
.

To capture the AICS signals, we construct an inter-A-A
for each user/item. First, we categorize attributes into two
distinct groups based on their sources: user attributes and item
attributes. Then each user/item attribute is treated as a node,
and the interaction between two attributes is represented as
an edge. In this way, each user/item corresponds to a fully
connected subgraph, where the nodes are all the attributes of
the user/item and the edges are the interactions between these
attributes. Figure 2(a) shows two kinds of inter-A-A, which
are used to model the internal attribute interactions for a user
and an item respectively.

To capture the AECS signals, we construct an exter-A-A
for each user/item. For each user-item pair (u, v), we select
one attribute from one part to interact with all attributes of the
other part. For example, for each attribute of u, we construct
a user-centric exter-A-A to describe its interactions with each
attribute of v. The process is repeated for all the attributes of u.
We also construct an item-centric exter-A-A for each attribute
of v in the same way. Figure 2(b) shows an item-centric exter-
A-A and a user-centric exter-A-A respectively.

VOLUME 12, 2024 48855



C. Li et al.: Cross-Grained Neural Collaborative Filtering for Recommendation

FIGURE 1. Overall framework of CNCF.

FIGURE 2. Attribute-level internal/external interaction graphs.

2) AICS-BASED REPRESENTATION LEARNING
The attribute-level internal interactions are used to capture
the AICS signals. Here we employ a Graph Neural Network
(GNN) to learn the representation of each user/item attribute

node. For inter-A-A, we define amessage exchanged between
two nodes as the element-wise product of their embeddings:

message(vi, vj) = ei ⊙ ej (1)

where ei and ej denote the embeddings of the attribute node vi
and vj respectively. Here both vi and vj are derived from either
a user or an item. However, the message defined as (1) and
the attribute embeddings do not belong to the same feature
space. As a result, the message cannot be directly conveyed
to these attribute nodes. Inspired by TransH [33], we employ
a transformation matrix to convert the message into the same
feature space as the attribute embeddings:

message(vi, vj) = W1(ei ⊙ ej) (2)

where W1 denotes the transformation matrix. The transfor-
mation matrix is used to convert the message to a specific
space. Also, the size of the message can be maintained
because a scalar multiplied by a matrix is still a matrix. Then,
we aggregate the neighborhood messages to learn attribute
representations:

eini = Aggregate(
{
message(vi, vj)

}
j∈N (i)) (3)

where ein denotes the attribute embedding after internal
interaction. In this way, we can capture the AICS.

3) AECS-BASED REPRESENTATION LEARNING
For each user-item pair, an external attribute interaction
means the interaction between two attributes from the user
and the item, respectively. These two attributes are neighbors
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FIGURE 3. Illustration of depth-based/breadth-based message passing.

of each other. To model external attribute interactions,
we consider both the depth and the breadth of messages
passed between two neighboring attributes.

Suppose vi and vj are two attributes that are neighbors of
each other. For the depth-based message passed from vj to
vi, we consider the messages passed between vj and other
attribute nodes that have internal interactions with it. For
example, if we recommend a mobile phone to a user, we will
consider the impact of the brand of the mobile phone on the
user. However, it’s also important to consider the interaction
between brand and price in this process, as users may have
their own opinions about the value of certain brands of phones
relative to their price. Therefore, we capture the depth-based
message passed from vj to vi, which can be represented as:

DepthMessage(vi, vj) = WD(ei ⊙ einj ) (4)

whereWD denotes the transformation matrix and einj denotes
the embedding of vj via internal interactions. The process
of depth-based message passing is illustrated in Figure 3(a).
Different colors of the nodes indicate that they come from
different sources.

Then we aggregate all such depth-based messages passed
from vi’s neighbors N (i):

eDi = Aggregate(
{
DepthMessage(vi, vj)

}
j∈N (i)) (5)

where eDi denotes the depth-based embedding of vi via
external interactions and N (i) denotes the neighborhood of
node vi.

For the breadth-based message passed from vj to vi,
we consider the messages passed between vi and other
attribute nodes that have internal interactions with it. For

instance, suppose recommend mobile phones to users,
we need to consider the internal interaction between users’
occupations and their ages. This is crucial because individuals
of the same age but with different occupations may exhibit
distinct preferences for mobile phones. Therefore, we capture
the breadth-based message passed from vj to vi, which can be
represented as:

BreadthMessage(vi, vj) = WB(eini ⊙ ej) (6)

where WB denotes the transformation matrix. The process of
breadth-based message passing is illustrated in Figure 3(b).
Then we aggregate all such breadth-based messages passed
from vi’s neighbors N (i):

eBi = Aggregate(
{
BreadthMessage(vi, vj)

}
j∈N (i)) (7)

where eBi denotes the breadth-based embedding via external
interactions.

We incorporate both the depth-based embedding and the
breadth-based embedding to obtain the externally interacted
embedding of vi:

eexti = eDi + eBi (8)

where eexti denotes the embedding of vi via the external
interactions. In this way, we can capture the AECS signals.

The final embedding of vi is defined by aggregating its
inherent representation, internal representation, and external
representation:

efi = ei + eini + eexti (9)

where ei denotes the initial embedding of vi and e
f
i denotes

the final embedding of vi.

B. COARSE-GRAINED COLLABORATIVE REPRESENTATION
LEARNING
In the above section, we consider attribute interactions to
model fine-grained collaborative signals. In the embedded
layer of fine-grained collaborative representation learning,
each user/item has an ‘‘id’’ attribute that acts as a unique
identifier. We use the embedding of the ‘‘id’’ attribute as
the initial coarse-grained embedding of the corresponding
user/item. In this section, we consider the interactions
between users to model coarse-grained collaborative signals
and capture them for user representation learning.

1) COARSE-GRAINED COLLABORATIVE SIGNALS MODELING
First, we construct a social graph among users (U-U) by
utilizing the user-item bipartite graph to capture the USCS.
Then based on the attributes owned by the user, we build a
user-attribute-user hypergraph (U-A-U) to capture theUHCS.

The USCS are used to model the interactions between
users. Users should be influenced by people with similar
behaviors. To achieve this, we built a U-U graph using
the user-item bipartite graph as a basis. We use Um ={
i1, i2, · · · , i|Um|

}
to denote the items that userm interacts

with, and use AI to denote the adjacency matrix of the U-U
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graph. If two users interact with the same item, there is an
edge between them in the U-U graph. Here AI is calculated
as:

aij =

{
1, Ui ∩ Uj ̸= ∅

0, else
(10)

The UHCS are used to model the influence of one user
on another user due to a common attribute, denoted as
atta. However, many users may share the same attribute.
Therefore, we introduce hypergraphs to model the high-order
interactions between users. In a typical graph, an edge can
connect only two nodes. But in a hypergraph, a hyperedge
can connect any number of nodes. We utilize UA

i ={
att1, att2, · · · , att

|UA
i |

}
to represent the attributes owned

by useri. And we denote the set of attributes for all users
as Att =

{
UA
1 ∪ UA

2 ∪ · · · ∪ UA
m
}

and m represents the
number of users. Each attribute within Att is considered as
a hyperedge. The number of hyperedges is equivalent to the
number of attributes in Att .

2) USCS-BASED REPRESENTATION LEARNING
To incorporate users’ social information, we utilize graph
convolutional neural networks. The embeddings of users are
calculated as follows:

E l+1
= D−

1
2AD−

1
2E l2l (11)

where D is the diagonal node degree matrix of A, E l denotes
the embedding of the l-th layer of the user, and 2l denotes
the trainable parameter matrix of the l-th layer. We use EUS
to denote the output of the last layer and eiUS to denote the
embedding of useri.

3) UHCS-BASED REPRESENTATION LEARNING
Just as a typical graph uses an adjacency matrix to represent
the relationship between connected nodes, a hypergraph
introduces an incidence matrix H to describe the relationship
between nodes and hyperedges. Referring to the spectral
hypergraph convolution proposed in HGNN [34], the hyper-
graph convolution of U-A-U is defined as follows:

X l+1
= σ (D−1HWB−1HTX l2l) (12)

where D denotes the diagonal vertex degree matrix of the
hypergraph U-A-U, W denotes the weight matrix, B denotes
the diagonal hyperedge degree matrix, σ denotes the sigmod
activation function,X l denotes the embedding of the l-th layer
of the user, and2l is the parameter matrix. Some studies [35]
have shown that the activation function is not necessary, sowe
use the following simplified calculation:

E l+1
= D−1HB−1HTE l2l (13)

We use EUH to denote the output of the last layer and eiUH to
denote the embedding of useri.
Finally, we aggregate both the USCS-based embedding

and the UHCS-based embedding to obtain the ultimate user

embedding, i.e. the coarse-grained user embedding ecuser .

ecuser = eUS + eUH (14)

C. ENHANCING CNCF WITH LAPN
In practice, it is not feasible to capture the higher-order
attribute interactions by stacking network layers, especially
when dealing with complex models that are difficult to
train. When dealing with limited data, simply increasing
the number of layers can cause performance degradation.
Therefore, it is essential to enable the model to understand
the semantics of attributes and to deeply understand the
relationships that exist between these attributes.

There may be a correlation between two attributes that
can be a strong basis for a recommendation. For example,
if we notice that a person owns an old cell phone with a
large font, we can reasonably infer that the person is probably
elderly. Therefore, when recommendingmobile phones to the
elderly, it makes sense to include phones with larger screens
as a recommendation result, as there is a correlation between
user age and preference for specific mobile phone features.
Thus, if the model can understand the correlations between
attributes, its performance can be significantly improved.
These correlations can provide valuable information and help
make accurate decisions.

We hope the model can capture not only the user’s
preferences for a particular type of item but also the
interactions between attributes. These interactions can have
both positive and negative impacts. As a positive example,
the model can learn about a user’s preference for specific item
attributes, such as how older individuals tend to favor mobile
phones with larger screens. Instead, negative examples cause
the model to learn specific attributes of an item that users
don’t like. To enable the model to better learn these attribute
interactions, we design Light Attribute Prediction Networks
(LAPN ). More specifically, for a given user-item pair,
wemask out one of their attributes and then use the remaining
attributes to predict the value of the masked one:

ˆatti = LAPN (
{
attj

}
j∈U∪I\{i}) (15)

LAPN can better capture the high-order attribute interac-
tions. When an attribute is masked, the model’s ability to
predict that attribute depends on the information contained
in the remaining attributes. These remaining attributes
encapsulate the effect of the masked attribute on them.
Therefore, by training LAPN to make predictions about
each masked attribute, its effect can be learned. During the
prediction process, the model distinguishes between different
mask attributes based on their effects, which are represented
by embeddings. The training process of LAPN is as follows:
First, an attribute is selected randomly and masked. Second,
the embeddings of the remaining attributes are used to predict
the embedding of the masked one. Then, for the masked
attribute, the scores of its true value and the predicted value
are calculated respectively. Finally, the attribute prediction
ability of the model is optimized by minimizing the squared

48858 VOLUME 12, 2024



C. Li et al.: Cross-Grained Neural Collaborative Filtering for Recommendation

error between them.

atti = ffuse(ei, eini , eexti ) (16)
eG\i = Mean− Pooling(

{
attj

}
j∈U∪I\{i}) (17)

âtt i = APN (eG\i) = W (σ (WeG\i + b1)) + b2 (18)
ŷi = Rating(âtt i) yi = Rating(atti) (19)

Latt =
1
N

N∑
i=1

(yi − ŷi)2 (20)

where ffuse denotes the fusion operation, eG\i ∈ R1×d denotes
the embedding of the graph with vi removed, σ denotes the
sigmoid function, b1 denotes the bias, b2 denotes the bias, âtt
denotes the embedding of the predicted attribute, the rating
function is implemented via MLP, and N denotes the number
of attributes sampled.

D. MODEL TRAINING
The fine-grained preference scores are calculated as follows.
For all attributes in each user-item pair, we use a readout
function to derive the global attribute graph embedding,
which can be expressed as:

eg = Readout(
{
efi

}
i∈U∪I

) (21)

where eg denotes the global attribute graph embedding. Then,
we employ a rating function to predict the user’s preference
score for the item:

ŷf = Rating(eg) = σ (Weg + b) (22)

where σ denotes the sigmoid function,W denotes the weight
matrix, and b denotes the bias.
The coarse-grained preference scores are calculated as

follows:

ŷc = Rating(ecuser ⊙ ei) = σ (W (ecuser ⊙ ei) + b) (23)

where ⊙ denotes element-wise product and ei represents the
initial embedding of the attribute i. Specifically, ei is the
embedding of the ‘‘id’’ attribute for the item. It is worth
noting that we do not aggregate other attributes of the item at
this stage. This is because we have already aggregated these
attributes during the fine-grained collaborative representation
learning process, thus avoiding redundant operations.

Finally, the fine-grained preference score and the coarse-
grained preference score are fused to obtain the final
preference score ŷ:

ŷ = αŷf + (1 − α)ŷc (24)

where α is used to balance the fine-grained preference score
and the coarse-grained preference score.

We adopt the binary cross entropy loss to train the model:

L = −y log ŷ− (1 − y) log(1 − ŷ) + λ1Latt + λ2(||θ ||2)

(25)

where λ1 is a hyperparameter that balances the recommen-
dation task and the auxiliary task (i.e. the attribute prediction
task) and λ2 is regularization hyperparameter used to prevent
model overfitting.

E. DISCUSSION
In this subsection, we discuss the differences between our
model and traditional CF-based recommendation models.
First, traditional CF-based recommendation models rely
solely on capturing collaborative signals from user-item inter-
actions or attribute interactions to improve recommendation
accuracy. However, a single type of collaborative signals
are relatively limited, and become unavailable especially in
the case of sparse data, thus limiting the model’s ability
to generate satisfactory results for users. In contrast, our
model takes into account a wider range of collaborative
signals, namely AICS, AECS, USCS, and UHCS, which
can effectively mitigate the impact caused by data sparsity.
For instance, when a certain type of collaborative signal is
unavailable, our model can still rely on the other three types
of signals to ensure the quality of recommendation results.
Second, traditional CF-based recommendation models pri-
marily concentrate on coarse-grained feature interactions.
Nevertheless, fine-grained interactions offer a more profound
understanding of user preferences. Consequently, our model
employs a fine-grained collaborative learning approach
that takes into account intricate attribute interactions and
distinguishes their varying impacts on modeling users/items.
Finally, traditional CF-based recommendation models solely
focus on pairwise attribute interactions, neglecting the
significance of high-order interactions, which are crucial
for understanding complex user behaviors and preferences.
In contrast, our model innovatively utilizes LAPN and
hypergraphs to capture both high-order attribute interactions
and high-order user interactions, respectively. This enhances
the model’s ability to comprehensively comprehend and
model intricate user behaviors and preferences, leading to
more accurate and personalized recommendations.

Currently, we evaluate the impact of each attribute on the
final rating based on its rating. A higher rating indicates a
stronger contribution of the attribute to the final prediction
(i.e., it strongly promotes positive interactions between users
and items such as liking or purchasing). Conversely, a lower
rating suggests a weaker influence. However, this does not
imply that attributes with lower ratings are unimportant.
Such attributes may facilitate negative interactions between
users and items (e.g., disliking or opposing). These attributes
are equally valuable in understanding user preferences.
Therefore, when predicting the final rating, we do not exclude
attributes with lower ratings. To improve computational
efficiency by prioritizing the most pertinent and valuable
attributes, we will introduce a new methodology in the future
to assess the contribution of each attribute and eliminate
those ‘‘noisy’’ ones that could potentially hinder the learning
process of our model.

V. EXPERIMENT
A. EXPERIMENTAL SETUP
1) DATASETS
We evaluate the performance of CNCF on two real-world
datasets: Taobao [5] and MovieLens 1M [36]. Table 2
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TABLE 2. Statistics of the datasets.

provides a summary of these datasets. Taobao consists of
click logs from users on the Taobao website. Similar to the
MovieLens dataset, we conduct random negative sampling
and select users with more than 20 positive ratings for this
dataset. MovieLens 1M contains more than 1 million explicit
ratings and includes attribute information for both users
and items. Ratings exceeding 3 are considered as positive
ratings, and an equivalent number of negative samples are
randomly selected for each user based on their positive
ratings. To ensure data quality, we focus on users with more
than 10 positive ratings.

To evaluate the performance, we adopt the metrics
commonly used in Top-K recommendation: Precision@K ,
Normalized Discounted Cumulative Gain (NDCG@K ) and
Recall@K. They are calculated as follows:

Precision@k =
Numberk

k
(26)

NDCG@k =

∑k
i=1

2reli−1
log2(i+1)∑|REL|

i=1
2reli−1
log2(i+1)

(27)

Recall@k =
Numberk
Numberall

(28)

where Numberk denotes the number of correctly predicted
samples among the samples with the top-k highest scores,
Numberall denotes the number of positive samples in all
samples, reli ∈ {0, 1} is 1 when the l-th sample is positive,
and REL denotes the optimal ranking of the predicted results,
i.e., the positive examples are all ranked at the top. We set K
to 10 and 20.1

2) IMPLEMENTATION DETAILS
CNCF is implemented with the Pytorch, where the hyper-
parameters are configured according to previous research.
Adam algorithm is adopted to optimize the model. The
dimension of the embedding is 64. The batch size of
MovieLens and Taobao is set to 64 and 512, respectively. The
value of α is set to 0.9. The learning rate of MovieLens and
Taobao is set to 1 × 10−3 and 2 × 10−3, respectively. The
value of λ1 which controls the weight of the auxiliary task is
set to 1. The value of λ2 for the regularization is set to 1 ×

10−5. We will detail these hyperparameters in Section V-C.

3) BASELINES
To evaluate the performance of our model, we conducted a
comparative analysis against six baselines:

• FM [8] employs factorization to capture arbitrary
second-order interactions among attributes through dot
product.

1Our code is available at https://github.com/codeprovided/CNCF.

• AFM [9] calculates attention scores for each interaction
result during the aggregation of second-order feature
interactions and uses these scores to distinguish the
importance of different interactions.

• NFM [11] models pairwise attribute interactions and
aggregates interaction results and uses MLP to extract
nonlinear features.

• L0-SIGN [25] models user/item attributes as nodes and
attribute interactions as edges. It identifies beneficial
interactions, learns node representations through GNN
on the generated graph, and aggregates all nodes to
obtain the final predicted result.

• GMCF [13] separates user attributes from item attributes
and constructs user attribute graphs and item attribute
graphs for each data sample. It models interactions
within/across attributes, combines interaction results
through a gated network, and ultimately predicts results
via graph matching.

• HIRS [26] directly generates valuable feature inter-
actions using hypergraphs. The number of generated
feature interactions can be customized to be significantly
less than all possible interactions.

B. PERFORMANCE COMPARISON
We compare the experimental results of CNCF with the
baselines (shown in Table 3). The best performance for
each dataset is highlighted in bold, and the best baseline
is highlighted by underlined. We note the following key
observations:

First, AFM and NFM outperform FM due to their
utilization of the attention mechanism and neural networks,
respectively. However, they overlook the high-order interac-
tions among attributes, whereas ourmodel, CNCF, takes these
interactions into account, resulting in superior performance
compared to AFM and NFM.

Second, our model outperforms L0-SIGN, GMCF, and
HIRS primarily for two reasons. On one hand, these baselines
solely consider fine-grained collaborative signals while
neglecting coarse-grained ones, and L0-SIGN and HIRS fail
to account for attribute sources. On the other hand, L0-SIGN
and GMCF do not consider high-order interactions among
attributes, which our model effectively captures.

Third, compared with the baselines, our CNCF achieves
better performance on both datasets. On Taobao, CNCF
outperforms other baselines by approximately 2.15%, 1.67%,
and 3.73% in precision@20, recall@20, and NDCG@20,
respectively. Similarly, on MovieLens 1M, CNCF outper-
forms benchmark models by about 0.8%, 0.5%, and 0.8%
in precision@20, recall@20, and NDCG@20, respectively.
This suggests that CNCF can effectively model attribute
interactions by capturing both fine-grained and coarse-
grained collaborative signals.

Fourth, compared with MovieLens 1M, the performance
improvement on Taobao is more obvious. That’s because
Taobao shows stronger data sparsity than MovieLens 1M.
Our model explicitly encodes two different granularity of
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TABLE 3. Performance comparison of our model with baselines.

collaborative signals, allowing it to capture more comprehen-
sive information and better address data sparsity.

C. PARAMETER SENSITIVITY
We evaluate the impact of the hyper-parameters on Movie-
Lens 1M (shown in Figure 4).

1) EFFECT OF THE BATCH SIZE
The setting of batch size has an intricate relationship with
weight updating and significantly affects the generalization
performance of the model. When the batch size is too small
or too large, it may not accurately determine the descent
direction, potentially resulting in training oscillations. There-
fore, both too small and too large batches can affect the
performance of the model, which emphasizes the importance
of choosing the appropriate batch size. Figure 4 (a) depicts
the performance of our model w.r.t. different batch sizes.
We observe that when the batch size is 64, the performance
becomes the best. Hence, we set the batch size to 64 for
MovieLens 1M.

2) EFFECT OF THE EMBEDDING SIZE
The size of the embedding dimension has a significant effect
on the expressiveness of the model. As shown in Figure 4
(b), when the embedding dimension is too small, the model
lacks the necessary expressiveness. On the contrary, when
the embedding dimension is too large, the model is prone to
overfitting. Therefore, choosing the appropriate embedding
dimension is the key to affecting the performance of the
model. We set the embedding size to 64.

3) EFFECT OF THE VALUE OF λ1
The parameterλ1 plays a crucial role in controlling theweight
of self-supervised task learning. If λ1 is set too small, the
auxiliary task may not be effectively learned. Instead, the
model may over-prioritize learning for the auxiliary task
at the expense of the recommendation task. Hence, it is
essential to find an appropriate value for it to balance the
recommendation task and the auxiliary task. Figure 4 (c)
shows the performance of our model w.r.t. different λ1.
We observe that when λ1 is 1, the performance becomes the
best.

TABLE 4. Importance of each component in CNCF.

4) EFFECT OF THE NUMBER OF SAMPLES
The number of samples refers to the number of predictive
attributes we sample for each user-item pair. Too few samples
hinder the model’s ability to effectively learn attribute
interactions. Conversely, too many samples can cause the
model to overfit the data. Figure 4 (d) shows the performance
of our model w.r.t. different number of samples. When the
number of samples is 80, the performance becomes the best.

D. ABLATION ANALYSIS
To study the effectiveness of each component in the proposed
model, we design the following variants:

• w/o pre: Remove the auxiliary task of attribute predic-
tion.

• w/o coarse+pre: Remove coarse-grained representation
learning and the auxiliary task of attribute prediction.

• w/o fine+pre: Remove fine-grained representation
learning and the auxiliary task of attribute prediction.

• w/o coarse: Remove coarse-grained representation
learning.

The results are shown in Table 4.We note the following key
observations: First, removing the auxiliary task of attribute
prediction leads to the degradation of model performance,
indicating that the attribute prediction task plays a crucial
role in enhancing the model’s understanding of attribute
interactions, and helps to better model user interests. Second,
eliminating coarse-grained representation learning and the
auxiliary task while retaining fine-grained representation
learning results in model performance degradation. This
highlights the significance of coarse-grained representation
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FIGURE 4. Effects of the model parameters on MovieLens 1M.

learning, as it can capture information that fine-grained rep-
resentation learning alone may overlook. Third, the removal
of fine-grained representation learning and the auxiliary
task, while maintaining only coarse-grained representation
learning, leads to a substantial decrease in model perfor-
mance. This observation emphasizes the crucial role that fine-
grained representation learning plays in the recommendation
process. Finally, when coarse-grained representation learning
is removed and only fine-grained representation learning and
the auxiliary task are retained, the auxiliary task plays a
beneficial role in enhancing the effectiveness of fine-grained
representation learning.

E. CASE STUDY
In this section, we conduct case studies to evaluate whether
the attributes show semantic meaning that provides potential
explanations of the predictions. Specifically, we use the
learned attribute embeddings from the MovieLens 1M
dataset. We calculate the strength of attribute interactions
(between user attributes and item attributes) based on
attribute embeddings. We compare the strength of attribute
interactions based on the user-centric exter-A-A and the item-
centric exter-A-A respectively. The former is to use the users’
attribute nodes as the target nodes during the messaging
phase. While the latter is to use the items’ attribute nodes
as the target nodes. The darker the color, the higher the
strength of attribute interactions. There are 21 different types

FIGURE 5. The case studies on MovieLens 1M.

of occupations in MovieLens and occ_17 means the 17th
occupation, i.e. technician/engineer. Similarly, year_0 means
the year 1997.

As shown in Figure 5, the user-centric attribute inter-
action distribution is essentially similar to the item-centric
attribute interaction distribution. We observe that users with
different attributes have different preferences for items.
These observations show our model’s ability to provide
potential explanations about the prediction results at the
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attribute level. For example, we recommend themovie (name:
Conspiracy Theory) to the user (id : user_6007) because the
three pairs of attributes (i.e. < id : user_6007, genre :

Action >, < id : user_6007, director : Richard Donner >

and < id : user_6007,Actress : Julia Roberts >)
all have strong attribute interactions. The reason for the
recommendation is that the user is likely to prefer action
movies directed by Richard Donner and starring Julia
Roberts.

VI. CONCLUSION
In this paper, we propose a Cross-grained Neural
Collaborative Filtering model (CNCF), which enables
recommendationmore accurate and explainable. Specifically,
we construct four kinds of interaction graphs to model
both fine-grained collaborative signals and coarse-grained
collaborative signals, which can better compensate for the
high sparsity of user-item interactions. We propose a fine-
grained collaborative representation learning and capture
the high-order attribute interactions to enhance prediction
accuracy. We propose a coarse-grained collaborative repre-
sentation learning to learn user preferences based on diverse
latent intent factors. Extensive experiments demonstrate the
effectiveness of our model. For future work, we will consider
the dynamics of collaborative signals and incorporate
the review information into recommendation to enhance
interpretability.
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