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ABSTRACT Exploring the applications of Laplacian and signless Laplacian spectra extends beyond
theoretical chemistry, computer science, electrical networks, and complex networks. These spectra, with their
relevance, provide valuable insights into the structures of real-world networks and facilitate the prediction
of their structural properties. The focal point of the study lies in the spectrum-based analysis of torus grid
graphs. From these analyses, crucial network measures such as mean-first passage time, average path length,
spanning trees, and spectral radius are derived. This research enriches our comprehension of the interplay
between graph spectra and network characteristics, offering a holistic understanding of complex networks.
Consequently, it contributes to the ability to make predictions and conduct analyses across diverse scientific
disciplines.

INDEX TERMS Spectrum, graph energy, spectral radius, torus graph, spanning trees.

I. INTRODUCTION
THE Eigenvalues, crucial in capturing key structural features
of graphs, hold significant importance across various scien-
tific fields such as physics, engineering, and data analysis
[1], [2], [3]. Particularly in physics, eigenvalues play a
crucial role in solving the Schrödinger equation within
quantummechanics, providing insights into particle behavior
[4]. They also aid in stability analysis within dynamical
systems, offering valuable insights into system equilibrium
and stability [4]. In data analysis and machine learning,
eigenvalues are extensively used in techniques like Principal
Component Analysis (PCA) for dimensionality reduction
and feature extraction [5]. Additionally, they are essential in
spectral clustering algorithms, enhancing clustering efficacy
[6]. Recent research by Chu et al. [7] and Liu et al. [8]
expands theoretical understanding and practical applications
of spectral properties in diverse network structures. Eigenval-
ues are pivotal in structural engineering, determining natural
frequencies and mode shapes of structures, ensuring stability
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and optimal performance [9]. They offer valuable insights
into dynamic behavior, aiding decision-making in design
and assessment. Eigenvalues are also essential in image pro-
cessing algorithms like Karhunen-Loève Transform (KLT)
and Singular Value Decomposition (SVD), enabling efficient
compression and denoising of images [10]. Moreover,
eigenvalues are significant in graph theory, network analysis,
and chemical graph theory, providing insights into graph
structures and dynamic properties [11], [12], [13]. They
play a crucial role in metrics such as graph energy, Randić
energy, and the Estrada index, facilitating tasks like graph
isomorphism and classification [14]. In network analysis,
graph energies measure stability and resilience, guiding
network design and security efforts [15], [16]. Consider a
graph G, where the vertices are labeled 1, 2, 3, . . . , n, and
its adjacency matrix Ad (G) is defined as follows, where ⊵
indicates the connectivity of the vertices υi and υj

A(G) =

{
1 if υi ⊵ υj,

0 if υi ⋭ υj.
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The adjacency matrix succinctly represents a graph’s
structure, with its spectrum, denoting eigenvalues, being
crucial. Spectral clustering algorithm utilizes these eigen-
values to uncover communities within the graph, revealing
intricate patterns [17]. This strategic use partitions the graph
efficiently, deepening understanding of its organizational
structure. Eigenvalues help in revealing hidden patterns and
structures within graph data, enhancing our comprehension
of network dynamics [18]. They aid in evaluating node
centrality, network resilience, and synchronized behavior,
showcasing their broad utility in diverse networked systems.
The eigenvalues associated with the matrix Ad (G) are direct
reflections of the eigenvalues characterizing the given graph
G, collectively forming what is known as the adjacency
spectrum of G. This set of eigenvalues is symbolically
represented as (µ1 ≤ µ2 ≤ µ3 ≤ . . . ≤ µn). The ordering of
these eigenvalues provides crucial insights into the structural
and connectivity aspects of the graph, offering a quantitative
understanding of its intricate properties. Additionally, the
diagonal matrix denoted as Dg(G) = diag

[
dυij

]
for i =

j captures the degrees of individual vertices within the
graph. This diagonal matrix effectively encapsulates the
degree information associated with each vertex, providing
a concise representation of the vertex degrees in the graph.
Furthermore, the Laplacian matrix Lp(G) = Dg(G)−Ad (G)
is defined by the subtraction of the adjacency matrix from
the diagonal matrix of vertex degrees. Elaborating in matrix
form, Lp(G) is defined as:

Lp(G) =


−1 for all υi ⊵ υj,

dυij for all i = j,
0 for all υi ⋭ υj.

The Laplacian spectrum is versatile, relevant in graph
theory, network analysis, and machine learning [19], [20],
[21]. It aids in scrutinizing graph properties like connectivity
and community structure [22], [23]. In network dynamics,
it reveals insights into centrality, robustness, and synchroniza-
tion behavior [24], [25]. The Laplacian spectrum also plays
a pivotal role in machine learning algorithms, particularly in
spectral clustering and dimensionality reduction techniques
[24], [25], [26]. The Laplacian matrix is pivotal in graph
theoretic analyses, encoding essential structural information
about a graph. Its applications include determining the
network diameter, which corresponds to the second small-
est eigenvalue of the Laplacian matrix. Additionally, the
Kirchhoff index quantifies resistance between node pairs
by summing reciprocals of nonzero eigenvalues, providing
insights into network connectivity and robustness [27],
[28], [29], [30]. The hierarchical structure and information
flow of a graph are revealed through the calculation of
the number of spanning trees, derived by multiplying the
nonzero eigenvalues of the Laplacian matrices. Additionally,
synchronizability gauges a network’s ability to synchronize
across its nodes, determined by the ratio of the maxi-
mum eigenvalue to the smallest nonzero eigenvalue of the

Laplacian matrix. These properties have implications for
complex systems and network engineering, and while their
analytical computation remains of great interest, researchers
are actively addressing theoretical challenges associated with
their determination [31], [32], [33]. The characterization of
the structure and connectivity of graphs in algebraic graph
theory is significantly influenced by the signless Laplacian
matrix, represented as Ls(G). This matrix is defined as:

QL(G) =


1 for all υi ⊵ υj,

dυij for all i = j,
0 for all υi ⋭ υj.

The literature extensively discusses numerous results and
applications associated with QL(G), as documented in
references [34], [35], [36], [37]. We define a cycle of length
αm ∈ N as the undirected graph G = (V ,E, 8) = Cαm ,
which is actually a undirected circuit is a non-empty sequence
of edges (e1, e2, . . . , en), accompanied by a corresponding
vertex sequence (v1, v2, . . . , vn, v1). Then, a torus grid graph
T Snm, often known as two-dimensional toroidal graphs,
is defined as the Cartesian product T Snm = Cαm � Cαn ,
exhibits a total of 2mn edges, reflecting the combined count
of horizontal and vertical edges. Simultaneously, T Snm boasts
mn vertices, aligning with the Cartesian product of the
vertex sets of Cm and Cn as mentioned in Figures 2 & 3.
The mentioned graph operation have garnered significant
attention in the field of graph theory and computer science.
These graphs are widely used to model spatial relationships
and connectivity in various applications, such as computer
networks, image processing, and computational geometry.
The study of torus grid graph has evolved over the years,
with researchers exploring their properties, algorithms, and
applications. In the field of graph theory, Daoud presents
a study on edge odd graceful labeling of cylinder and
torus grid graphs, providing insights into their characteristics
and properties [38]. Adamsson and Richter, in their work
on arrangements and circular arrangements, delve into the
crossing number ofC7×Cn, offering significant contributions
to the understanding of graph structures [39]. Clancy,
Haythorpe, and Newcombe contribute to the literature with
a survey on graphs with known bounded chromatic and
crossing numbers, specifically focusing on T Snm [40]. Pach
and Tóth explore the combinatorial behavior of toroidal
graphs in a comprehensive study presented at the Inter-
national Symposium on Graph Drawing in 2005 [41].
Riskin, in an earlier work from 2001, investigates the
nonembeddability and crossing numbers of toroidal graphs
on the Klein bottle [42]. Salazar and Ugalde contribute to the
understanding of the crossing number of Cm ×Cn, providing
an improved bound through predominantly combinatorial
arguments [43]. Collectively, these studies contribute to a
comprehensive understanding of T Snm, encompassing their
structure, algorithms, and diverse applications.

In this article, we have examined exact formulas for
determining all eigenvalues of torus grid graphs T Snm based
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on adjacency, Laplacian, and signless Laplacian matrices.
These formulas aid in understanding the structural properties
of such graphs. Subsequently, we employed these spectra
to compute the mean-first passage time and path length of
any network with a torus grid structure. This theoretical
approach is valuable for researchers as it reduces the cost and
time required to analyze such topologies in the laboratory.
Additionally, utilizing the spectra obtained in the results
section, we computed the number of spanning trees, spectral
radius, and graph energies of mentioned graphs. These
parameters are crucial graphical features that contribute
to discussions about the stability of complex networks
or topologies with similar structures. Further applications
of these derived network measures are discussed in the
application section.
Definition 1 [44]: Consider two matrices, X and Y . The

Kronecker product X ⊗ Y is derived by substituting the
ij-entry xij of matrix X with the matrix xijY , and various
properties of the resulting Kronecker product are highlighted
as follows:
Lemma 1 [44]: Let F be a field, B and C be the matrices

taken from the vector spaces M (F) defined over the field F
i.e B ∈ Mp×q(F), C ∈ Mn×k (F) and α ∈ F then

• (B ⊗ C)T = BT ⊗ CT
• (B ⊗ C)−1

= B−1
⊗ C−1

• (B ⊗ C)(B′
⊗ C′) = BB′

⊗ CC′

• α(B ⊗ C) = αB ⊗ C = B ⊗ αC
Lemma 2 [46]: The Adjacency, Laplacian and Signless

Laplacian eigenvalues of cycle graph Pn are given by
2cos 2πν

n , 2 − 2cos 2πν
n and 2 + 2cos 2πν

n , respectively, where
ν = 0, 1, 2, 3 . . . , n− 1.

Consider a given matrix, and denote the product of all
its non-zero eigenvalues by Xm

n . Simultaneously, let Ymn
represent the sum of the reciprocals of these obtained
eigenvalues.

Xm
n =

N∏
λ=1

£ λ and Ymn =

N∑
λ=1

1
£ λ

,

where £ λ( λ = 1, 2, . . . ,N ) denotes eigenvalues of given
adjacency, laplacian or signless laplacian matrix matrix.

II. METHODOLOGIES AND RESULTS
Within this section, we undertake a comprehensive examina-
tion of the influences exerted by a torus grid graph through
a diverse array of techniques. Among these methodologies is
the edge parcel technique, where edges undergo segmentation
to scrutinize their impact on the overall graph structure.
Additionally, we employ vertex distance schemes that assess
the distances between duplicated vertices, providing insights
into their effects on graph connectivity and clustering. The
application of vertex adjacency schemes is integral, focusing
on the neighboring vertices of Cartesian-producted graphs
to uncover patterns and relationships within the graph.
Furthermore, the vertex segment strategy comes into play,
dividing the graph into segments based on mesh vertices

to facilitate localized analysis and comparison. To explore
potential scenarios, we employ graph hypothetical tools,
testing the repercussions of duplication techniques on various
graph properties. Adding another layer of verification,
the degree checking strategy is implemented to ensure
the consistency of vertex degrees within the generalized
graphs [47], [48]. The organization and visual framework of
our article is represented in Figure 1, providing insight into
the paper’s layout.
Theorem 1: Consider the sum of reciprocals and product

of all the adjacency eigenvalues of torus grid graph T Snm are
represented by Xm

n A and Ymn A. Then

Xm
n A =

1
2

n−1∑
ν=0

m−1∑
λ=0

(
cos

2πλ

m
+ cos

2πν

n

)−1

Ymn A == 2
n−1∏
ν=0

m−1∏
λ=0

(
cos

2πλ

m
+ cos

2πν

n

)
Proof. The adjacency matrix of torus grid graph T Snm is:

Ad (Cm) Im Om · · · Im
Im Ad (Cm) Im · · · Om
Om Im Ad (Cm) · · · Om
...

...
...

...
...

Im Om Om · · · Ad (Cm)


whereAd (Cm) is the adjacency matrix of Cycle Graph, which
can also be written as

Ad (T Snm) =


Im i = j− 1, if i ≥ 1,

Ad (Cm) if j = i

Im i = j+ 1, if i ≥ 2

Om elsewhere


n

,

By matrix addition, which can be represented as

Ad (T Snm) =

[
Ad (Cm) for i = j

Om elsewhere

]
n

+

 Im if i ≥ 1, j = i+ 1

Im if i ≥ 2, j = i− 1

Om elsewhere


n

Thus by Lemma 1.1,

Ad (T Snm) =

[
1 for i = j

Om elsewhere

]
n

⊗Ad (Cm)

+

Om elsewhere

1 for i ≥ 1, j = i+ 1
and i ≥ 2, j = i− 1


n

⊗ Im

Above mentioned matrixOm elsewhere

1 for i ≥ 1, j = i+ 1
and i ≥ 2, j = i− 1


n

,
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FIGURE 1. Mapping research layers: understanding the paper’s structure.

FIGURE 2. Visualization of the torus grid graph Cα4 � Cα3 in a
two-dimensional representation.

is actually the adjacency matrix of Cn, cycle graph with n
vertices. Then

Ad (T Snm) = Ad (Cm) ⊗ In +Ad (Cn) ⊗ Im.

Assume the presence of two invertible matrices, represented
by S and T , connecting with the matrices Cn and Cm.’’

(Ad (Cm))′ = S−1Ad (Cm)S,

FIGURE 3. Visualization of the torus grid graph Cα6 � Cα4 in a
three-dimensional representation.

and

(A(Cm))′ = T−1Ad (Cn)T ,

are the diagonal elements of these both upper triangular
matrix is:

2cos
2πλ

m
and 2cos

2πν

n
with λ = 0, 1, 2, 3 . . . ,m− 1

and ν = 0, 1, 2, 3 . . . , n− 1.
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And clearly,

(S ⊗ T )−1(Ad (Cm) ⊗ In +Ad (Cn) ⊗ Im)(S ⊗ T )

= Ad (Cm)′ ⊗ In +Ad (Cn)′ ⊗ Im,

diagonal elements of this upper triangular matrix are defined
as

2
(
cos

2πλ

m
+ cos

2πν

n

)
with λ = 0, 1, 2, 3 . . . ,m− 1

and ν = 0, 1, 2, 3 . . . , n− 1.

Consequently, the adjacency eigenvalues for torus grid graph
are

2cos
2πλ

m
+ 2 cos

2πν

n
with λ = 0, 1, 2, 3 . . . ,m− 1

and ν = 0, 1, 2, 3 . . . , n− 1.

By utilizing the results in above Equation, one can get

Xm
n A =

n−1∑
ν=0

m−1∑
λ=0

∈ν,λ

=
1
2

n−1∑
ν=0

m−1∑
λ=0

(
cos

2πλ

m
+ cos

2πν

n

)−1

,

and

Ymn A =

n−1∏
ν=0

m−1∏
λ=0

∈ν,λ

= 2
n−1∏
ν=0

m−1∏
λ=0

(
cos

2πλ

m
+ cos

2πν

n

)
,

where (ν, λ) ̸= (0, 0).
Corollary 1: For regular dimension torus grid graph

(m = n), the products and reciprocal of sum of adjacency
eigenvalues are defined as

Xm
n A =

1
4

n−1∑
ν=0

sec
2πν

n

and

Ymn A = 4
n−1∏
ν=0

cos
2πν

n

The proof is obvious by Theorem 1.
Theorem 2: Consider the sum of reciprocals and product

of all the Laplacian eigenvalues of torus grid graph T Snm are
represented by Xm

n L and Ymn L. Then

Xm
n L =

n−1∑
ν=0

m−1∑
λ=0

(
4 − 2cos

2πλ

m
− 2cos

2πν

n

)−1

Ymn L = 2
n−1∏
ν=0

m−1∏
λ=0

(
2 − cos

2πλ

m
−cos

2πν

n

)

Proof. The Laplacian matrix of torus grid graph T Snm is:
Lp(Cm) −Im Om · · · −Im

−Im Lp(Cm) −Im · · · Om
Om −Im Lp(Cm) · · · Om
...

...
...

...
...

−Im Om Om · · · Lp(Cm)


where Lp(Cm) is the Laplacian matrix of Cycle Graph, which
can also be written as

Lp(T Snm) =


−Im i = j− 1, if i ≥ 1,

Lp(Cm) if j = i

−Im i = j+ 1, if i ≥ 2

Om elsewhere


n

By matrix addition, which can be represented as

Lp(T Snm) =

[
Lp(Cm) for i = j

Om elsewhere

]
n

+


−Im if i ≥ 1, j = i+ 1

−Im if i ≥ 2, j = i− 1

di if i = j

Om elsewhere


n

.

Thus by Lemma 1.1,

Lp(T Snm) =

[
1 for i = j

Om elsewhere

]
n

⊗ Lp(Cm)

+


di if i = j

Om elsewhere

−1 if i ≥ 1, j = i+ 1
and i ≥ 2, j = i− 1


n

⊗ Im

Above mentioned matrix
−1 if i ≥ 1, j = i+ 1

−1 if i ≥ 2, j = i− 1

di if i = j

Om elsewhere


n

,

is actually the Laplacian matrix of Cn, Cycle graph with n
vertices. Then

Lp(T Snm) = Lp(Cm) ⊗ In + Lp(Cn) ⊗ Im.

Assume the presence of two invertible matrices, represented
by U and V , connecting with the matrices Cn and Cm.’’(

Lp(Cm)
)′

= U−1Lp(Cm)U ,

and (
Lp(Cn)

)′
= V−1Lp(Cn)V ,
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are the diagonal elements of these both upper triangular
matrix is:

2 − 2cos
2πλ

m
and 2 − 2cos

2πν

n
with λ = 0, 1, 2, 3 . . . ,m− 1

and ν = 0, 1, 2, 3 . . . , n− 1.

And clearly,

(U ⊗ V )−1(Lp(Cm) ⊗ In + Lp(Cn) ⊗ Im)(U ⊗ V )

= Lp(Cm)′ ⊗ In + Lp(Cn)′ ⊗ Im

diagonal elements of this upper triangular matrix are defined
as

4 − 2cos
2πλ

m
− 2cos

2πν

n
with λ = 0, 1, 2, 3 . . . ,m− 1

and ν = 0, 1, 2, 3 . . . , n− 1.

Consequently, the Laplacian eigenvalues for torus grid graph
are

4 − 2
(
cos

2πλ

m
+ cos

2πν

n

)
with λ = 0, 1, 2, 3 . . . ,m− 1

and ν = 0, 1, 2, 3 . . . , n− 1.

By utilizing the results in above Equation, one can get

Xm
n L =

n−1∑
ν=0

m−1∑
λ=0

∈ν,λ

=

n−1∑
ν=0

m−1∑
λ=0

(
4 − 2cos

2πλ

m
− 2cos

2πν

n

)−1

and

Ymn L =

n−1∏
ν=0

m−1∏
λ=0

∈ν,λ

= 2
n−1∏
ν=0

m−1∏
λ=0

(
2 − cos

2πλ

m
−cos

2πν

n

)
where (ν, λ) ̸= (0, 0).
Corollary 2: For regular dimension torus grid graph

(m = n), the products and reciprocal of sum of Laplacian
eigenvalues are defined as

Xm
n L =

n−1∑
ν=0

(
4 − 4 cos

2πν

n

)−1

and

Ymn L =

n−1∏
ν=0

4 − 4 cos
2πν

n

The proof is obvious by Theorem 2.

Theorem 3: Consider the sum of reciprocals and product
of all the Signless Laplacian eigenvalues of torus grid graph
T Snm are represented by Xm

n Q and Ymn Q. Then

Xm
n Q =

1
2

n−1∑
ν=0

m−1∑
λ=0

(
2 + cos

2πλ

m
+ cos

2πν

n

)−1

Ymn Q = 2
n−1∏
ν=0

m−1∏
λ=0

(
2 + cos

2πλ

m
+ cos

2πν

n

)
Proof. The Signless Laplacian matrix of torus grid graph
T Snm is: 

QL(Cm) Im Om · · · Im
Im Lp(Cm) Im · · · Om
Om Im Lp(Cm) · · · Om
...

...
...

...
...

Im Om Om · · · Lp(Cm)


where QL(Cm) is the Signless Laplacian matrix of Cycle
Graph, which can also be written as

QL(T Snm) =


Im i = j− 1, if i ≥ 1,

QL(Cm) if j = i

Im i = j+ 1, if i ≥ 2

Om elsewhere


By matrix addition, which can be represented as

QL(T Snm) =

[
QL(Cm) for i = j

Om elsewhere

]
n

+


Im if i ≥ 1, j = i+ 1

Im if i ≥ 2, j = i− 1

di if i = j

Om elsewhere


n

Thus by Lemma 1.1,

QL(T Snm) =

[
1 for i = j

Om elsewhere

]
n

⊗QL(Cm)

+


di if i = j

Om elsewhere
1 if i ≥ 1, j = i+ 1

and i ≥ 2, j = i− 1


n

⊗ Im

Above mentioned matrix
di if i = j

Om elsewhere
1 if i ≥ 1, j = i+ 1

and i ≥ 2, j = i− 1


n

is actually the Signless Laplacian matrix of Cn, path graph
with n vertices. Then

QL(T Snm) = QL(Cm) ⊗ In +QL(Cn) ⊗ Im.
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Assume the presence of two invertible matrices, represented
by J and K , connecting with the matrices Cn and Cm.’’

(QL(Cm))′ = J−1QL(Cm)J ,

and

(QL(Cn))′ = K−1QL(Cn)K ,

are the diagonal elements of these both upper triangular
matrix is:

2 + 2cos
2πλ

m
and 2 + 2cos

2πν

n
with λ = 0, 1, 2, 3 . . . ,m− 1

and ν = 0, 1, 2, 3 . . . , n− 1.

And clearly,

(J ⊗ K )−1(QL(Cm) ⊗ In +QL(Cn) ⊗ Im)(J ⊗ K )

= QL(Cm)′ ⊗ In +QL(Cn)′ ⊗ Im,

diagonal elements of this upper triangular matrix are defined
as

4 + 2cos
2πλ

m
+ 2cos

2πν

n
with λ = 0, 1, 2, 3 . . . ,m− 1

and ν = 0, 1, 2, 3 . . . , n− 1.

Consequently, the Signless Laplacian eigenvalues for torus
grid graph are

2
(
2 + cos

2πλ

m
+ cos

2πν

n

)
with λ = 0, 1, 2, 3 . . . ,m− 1

and ν = 0, 1, 2, 3 . . . , n− 1.

By utilizing the results in Equation 3, one can get

Xm
n Q =

n−1∑
ν=0

m−1∑
λ=0

∈ν,λ

=
1
2

n−1∑
ν=0

m−1∑
λ=0

(
2 + cos

2πλ

m
+ cos

2πν

n

)−1

and

Ymn Q =

n−1∏
ν=0

m−1∏
λ=0

∈ν,λ

= 2
n−1∏
ν=0

m−1∏
λ=0

(
2 + cos

2πλ

m
+ cos

2πν

n

)
,

where (ν, λ) ̸= (0, 0).
Corollary 3: For regular dimension torus grid graph (m =

n), the products and reciprocal of sum of Signless Laplacian
eigenvalues are defined as

Xm
n Q =

n−1∑
ν=0

(
4 + 2cos

2πν

n

)−1

and

Ymn Q =

n−1∏
ν=0

4 + 2cos
2πν

n

The proof is obvious by Theorem 3.

III. EXTENDED NETWORK METRICS DERIVED FROM
LAPLACIAN SPECTRA
By incorporating the insights derived from Theorems 1 and 2,
a comprehensive framework emerges for the computation
of various network-related quantities, providing valuable
insights into the inherent properties of the graph. These
computations encompass critical metrics such as graph
energy, Kirchhoff indexKNI , Spectral radius SPR, Average
path length APL , Global mean first passage time GMPT F ,
Graph energies AER, and the number of Spanning trees
NT S . Not only do these calculations contribute to the
existing body of knowledge, but they also extend and enhance
our understanding of the graph’s characteristics.

In order to streamline these calculations, we introduce two
fundamental quantities, namely X and Y . The product X is
obtained by multiplying all non-zero eigenvalues, denoted as
£x , associated with a given matrix. Simultaneously, the sum
Y is computed as the reciprocal sum of these eigenvalues,
defined as follows:

Xm
n =

N∏
λ=1

£ λ and Ymn =

N∑
λ=1

1
£ λ

,

Within this context, the eigenvalues of the Laplacianmatrix
corresponding to the graph are represented by £k , where
k ranges from 1 to N . These specified quantities serve as
the cornerstone for subsequent analyses and computations,
providing the foundational framework for exploring and
comprehending various network properties.

A. AVERAGE PATH LENGTH
Within the realm of computer sciences, networks character-
ized by an exceptionally short average path length (APL)
often fall under the category of ‘‘Small world’’ networks. This
distinctive attribute is a common observation in real-world
networks, and various metrics such as clustering coefficient,
average path length, and degree distribution stand out as
robust indicators of network topology. Specifically, in the
context of a given graph or networkG, the average path length
(APL), denoted as APL , is defined as the average number
of steps along the shortest path dλµ. This metric plays a
crucial role in quantifying the efficiency of mass transport
or information flow between all conceivable pairs of nodes
within the network [51]. The APL for T Snm is specifically
defined as [51]:

APL(T Snm) =
2

SM (SM − 1)

M∑
ν<λ

fλν(G) (1)

Within the framework of an electrical network depicted as
a complete graph, there is a significant connection between
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the shortest paths fλν(G) and the effective resistance dλν(G),
a linkage elucidated in detail in reference [52].

dλν =
2 fλν

SM

which results into

fλν =
SM
2

.dλν (2)

where [52]

dλν = SM
n∑

ν<λ

1
£λν

(3)

In this context, the symbol SM denotes the order of the
complete graph G, representing the total number of vertices.
Using Equation 2 & 3 into Equation 1, yields a concise result,
providing a straightforward insight into the relationships
within the graph, as

APL(T Snm) =
2

SM (SM − 1)
×
SM
2

n∑
ν<λ

dλν(G)

=
2

SM (SM − 1)
.
SM
2

.SM
n∑

ν<λ

1
$λν

=
mn

2(mn− 1)

n−1∑
λ,ν=0

1

2 − cos 2πλ
m −cos 2πν

n

By examining this last formula of APL(T Snm), we gain
a concise understanding of how the average path length
is influenced and characterized within the given graph
configurations.

B. THE NUMBER OF SPANNING TREES
The significance of the number of spanning trees (NT S )
extends to a broad spectrum of intricate networking phe-
nomena, encompassing realms such as random walks,
reliability, resistor networks, transport, loop-erased random
walks, and self-organized criticality, as evidenced by the
works of [53], [54], [55], and [56]. Kirchhoff’s Matrix-
tree theorem, as expounded in [57] and [58], establishes
a pivotal connection by revealing that the product of all
nonzero eigenvalues of a graph’s Laplacian matrix precisely
corresponds to the number of spanning trees. This theorem
serves as a potent instrument for the precise computation of
the NT S for the torus grid graph, denoted as NT S (T Snm).
In essence, the theorem provides a robust and efficient
method for unraveling the intricate web of connections
within the graph, contributing significantly to the accurate
determination of the number of spanning trees in diverse
network configurations.

NT S (T Snm) =

∏N
ν=2 $ν

SM
=
Eigmn
SM

By using results fromTheorem 2, we obtain the exact formula
for the number of spanning trees in T Snm networks as

=
2
mn

n−1∏
ν=0

m−1∏
λ=0

(
2 − cos

2πλ

m
−cos

2πν

n

)
C. GLOBAL MEAN-FIRST PASSAGE TIME
In network analysis, the mean-first passage time (MPT F )
holds significant importance as it serves as a key metric for
estimating the speed of random walks within complex net-
work systems. This metric helps researchers gain insights into
the dynamics of information or entities traversing through the
network, shedding light on the efficiency and effectiveness
of these processes. Taking a broader perspective, the global
mean-first passage time GMPT F emerges as a crucial
measure that goes beyond individual paths [49]. It provides
a comprehensive assessment of diffusion efficiency within
the entire network. The computation of GMPT F involves
averaging the individual mean-first passage times MPT F
over a set of ν origins and (ν − 1) possible destinations.
This statistical approach allows for a more comprehensive
understanding of the network’s overall performance in
facilitating the movement of entities from one location to
another. The expression for GMPT F can be mathematically
represented as follows [49]:

GMPT F =
1

SM (SM − 1)

SM∑
i=1

SM∑
j̸=i

T (i,j)
λSM (4)

Here, T (i,j)
λSM denotes themean-first passage time from origin

i to destination j, and the double summation accounts for all
possible pairs of origins and destinations. The normalization
factor 1

SM (SM−1) ensures that the average is computed over
all unique pairs, avoiding redundancy in the calculations.
This expression encapsulates the essence of GFT λSM in
capturing the global dynamics of random walks within the
network, providing researchers with a valuable tool to assess
and compare diffusion efficiencies in complex systems.
References to relevant literature, such as [49] and [50],
further strengthen the theoretical foundation and practical
implications of this network analysis metric. Utilizing the
outcomes previously derived from [51], we can compute
the commuting time (T m

νλ) between vertices ν and λ using
the expression 2Orλν . This formula establishes a direct
connection between commuting time and the graph metric,
as outlined in the referenced study.

T m
νλ = MPT νλ + GMPT λν = 2Odλν (5)

Representing the size of the graph G as O, we can now
determine the global mean-first passage time (GMPT F ) for
the torus grid graph T Snm using the equations and discussions
provided above. Utilizing Equation 3 & 5 in the Equation 4,
the calculation is outlined as follows:

GMPT F =
2O

SM (SM − 1)

N∑
ν=2

1
£ν
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With SM = mn, O = 2mn−m − n and results obtained
in Theorem 2, we can leverage the network size SM to
characterize the global mean-first passage time as follows:

GMPT F =
4mn

mn(mn− 1)

n−1∑
ν=0

m−1∑
λ=0(

2 − cos
2πλ

m
−cos

2πν

n

)−1

above formula describes the exact values of the global
mean-first passage time (GMPT F ) for the T Snm
networks.

D. SPECTRAL RADIUS
In various disciplines, the spectral radius serves as a valuable
tool for analyzing and characterizing networks. In vibration
theory, it provides essential information about the vibrational
behavior of interconnected systems. Theoretical chemistry
utilizes the spectral radius to study molecular structures
and interactions, contributing to advancements in chem-
ical research. In combinatorial optimization, the spectral
radius aids in optimizing decision-making processes and
resource allocation. Communication networks benefit from
the spectral radius in assessing the efficiency and reliability
of information transmission. Robustness analysis employs
the spectral radius to evaluate the resilience of systems
against perturbations. Additionally, in electrical networks,
the spectral radius plays a crucial role in understanding
the overall stability and performance of interconnected
components. The widespread applicability of the spectral
radius underscores its importance as a versatile metric
with far-reaching implications across various scientific and
engineering domains [59], [60]. In the context of adjacency
matrices, the spectral radius is denoted as SPR(G) and
specifically corresponds to the maximum eigenvalue. This
metric encapsulates essential information about the graph’s
structural characteristics, providing insights into the overall
connectivity and dynamics of the network. The computation
of SR(G) involves extracting the largest eigenvalue from
the adjacency matrix, offering a quantitative measure that
reflects the extent of influence and centrality within the
network. Beyond its mathematical significance, the spectral
radius plays a pivotal role in network analysis, aiding in
the assessment of stability, resilience, and efficiency. Its
applicability extends to various real-world scenarios, making
it a valuable tool for understanding and optimizing complex
systems [61] and defined as [59]:

SPR(G) =
N

max
ν=1

|£ν |

where £ν are the eigenvalues obtained by adjacency, laplacian
or signless laplacian matrices of given graph. By employing
the previously mentioned definition and taking into account
the spectra of the generalizedmesh graphDv(G) as detailed in
Theorem 1, Theorem 2, and Theorem 3, we can ascertain the
Adjacency, Laplacian, and Signless Laplacian spectral radii

as outlined below:

SPR(G)A =
N

max
ν=1

|ξν |

=
N

max
ν=1

∣∣∣∣2cos2πλ

m
+ 2 cos

2πν

n

∣∣∣∣
SPR(G)L =

N
max
ν=1

|ξν |

=
N

max
ν=1

∣∣∣∣4 − 2cos
2πλ

m
− 2cos

2πν

n

∣∣∣∣
SPR(G)Q =

N
max
ν=1

|ξν |

=
N

max
ν=1

∣∣∣∣4 + 2cos
2πλ

m
+ 2cos

2πν

n

∣∣∣∣
E. KIRCHOFF NETWORK INDEX
The introduction of the resistance distance concept, pioneered
by Randic and Klein, marks a groundbreaking advancement.
This innovative approach envisions each edge as a unit
resistor, encapsulating the entire resistive network within a
graph denoted as G [62], [63]. In the realm of electrical
network theory, the resistance distance, represented by rλµ,
emerges as a crucial measure of the effective resistance
between nodes µ and λ. The computation of this significant
quantity involves the application of Ohm’s law. Adding
another layer of complexity to network characterization,
the Kirchhoff index stands out as a mathematical metric.
Defined as the sum of resistance distances between all pairs of
vertices in the graphG, the Kirchhoff index provides a pivotal
representation of the network’s comprehensive resistance
characteristics [45]. This index offers valuable insights
into the collective resistance behavior within the network,
shedding light on the intricacies of electrical connectivity and
flow patterns between nodes. By definition [64],

KNI (G) =
1
2

n∑
ν=1

n∑
λ=1

rνλ(G) (6)

The Kirchhoff index, represented as KNI (G), holds signif-
icant relevance across diverse fields such as graph theory,
physics, and chemistry. Recent scholarly works delving into
the exploration of the Kirchhoff index and its applications
can be referenced in [65] and [66]. Moreover, in the context
of a connected graph G with an order of M and non-zero
eigenvalues £ν , where ν = 1, 2, . . . ,N , the Kirchhoff
index KNI (G) can be alternatively defined in terms of these
eigenvalues, as elucidated in [67].

KNI (G) = SM
N∑

ν=2

1
£ν

(7)

This alternate formulation provides a valuable perspective,
linking the Kirchhoff index to the spectral properties of
the graph, thereby enriching its interpretation and utility in
various scientific disciplines. We will proceed to derive the
specific formula for KNI (T Snm) by merging the previously
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mentioned result of Equation 6 & 7 in the following manner:

KNI (T Snm) =

n∑
ν>λ

rνλ(G) = SM
N∑

ν=1

1
£ν

where SM is the order of given graph. Put the value of SM and
Theorem 2 in above equation, we obtain

KNI (T Snm) =

mn
n−1∑
ν=0

m−1∑
λ=0

(
2 − cos

2πλ

m
−cos

2πν

n

)−1

which provides us the exact formula of kirchoff network
index for torus network structures.

F. GRAPH ENERGIES
Graph energies, encompassing a variety of spectral measures
derived from graph matrices, are fundamental in elucidating
the structural and dynamic properties of graphs. Notable
examples include the Laplacian energy, Randić energy,
and Kirchhoff index. Recent research has emphasized the
significant role of graph energies in network science.
For instance, Li et al. explore the applications of graph
energies in predicting the robustness of complex networks,
providing insights into the relationship between energy
measures and network resilience [68], [69]. This work
contributes to a deeper understanding of the dynamics of
complex systems.In the realm of molecular graph theory,
graph energies derived from the adjacency matrix play a
pivotal role in predicting molecular stability and reactivity.
Wang et al. investigate the application of graph energies
in understanding the electronic structure of chemical com-
pounds, revealing correlations between specific graph energy
measures and molecular properties [70], [71]. Their findings
have implications for computational chemistry and drug
discovery.

Graph energies are also integral to social network analysis,
offering tools to quantify influence and connectivity within
networks. Chen and Zhang delve into the application of
graph energies in social network analysis, utilizing measures
such as the Katz centrality to assess the importance of
nodes in social graphs [72], [73]. This research contributes
to a nuanced understanding of the dynamics of information
spread and influence in online communities [74], [75], [76].
Consider the adjacency matrix of a graph, denoted by A,
and ξν are the eigenvalues obtained from the characteristic
polynomial of matrix A, then Adjacency Energy is defined
as [17],

AER(G) =

N∑
ν=1

|ξν |

Similarly, Laplacian and Signless Laplacian energies are
defined as

LER(G) =

N∑
ν=1

∣∣∣∣£ν −
2O
SM

∣∣∣∣
QER(G) =

N∑
ν=1

∣∣∣∣φν −
2O
SM

∣∣∣∣
where £ν and φν are the eigenvalues of Laplacian and signless
Laplacianmatrices generated from T Snm graphs. Utilizing the
above definitions and results obtained in Theorem 1, 2 & 3,
we can avaluate the exact formulae of mentioned energies for
the torus grid graph as:

LER(G)

=

m−1∑
λ=0

n−1∑
ν=0

∣∣∣∣4 − 2cos
2πλ

m
− 2cos

2πν

n

−
2(2mn)
mn

∣∣∣∣ =

m−1∑
λ=0

n−1∑
ν=0

∣∣∣∣2cos2πλ

m
+ 2cos

2πν

n

∣∣∣∣
QER(G) =

m−1∑
λ=0

n−1∑
ν=0

∣∣∣∣4 + 2cos
2πλ

m+ 1

+2cos
2πν

n+ 1
−

2(2mn)
mn

∣∣∣∣
=

m−1∑
λ=0

n−1∑
ν=0

∣∣∣∣2cos2πλ

m
+ 2cos

2πν

n

∣∣∣∣
AER(G) =

m−1∑
λ=0

n−1∑
ν=0

∣∣∣∣2cos2πλ

m
+ 2 cos

2πν

n

∣∣∣∣
IV. MATLAB ALGORITM AND GRAPHICAL ANALYSIS
In this dedicated section, our focus has been on the
development of a robust Matlab algorithm with a Total Run
Time of 0.182 seconds, designed specifically to generate
Table 1 which serves as a comprehensive repository, housing
precise values for Kirchhoff index KNI , Spectral radius
SPR, Average path length APL , Global mean first passage
time GMPT F , Graph energies AER, and the number of
Spanning trees NT S . The given MATLAB code outlines
a structured approach to compute, organize, and display
results for various metrics associated with a mathematical or
computational model, varying a parameter n while keeping
another parameter m constant.

ALGORITHM:
COMPUTEANDDISPLAYRESULTSFORDIFFERENTN
STEP 1: INITIALIZATION

• Set a fixed value for m.
• Define a range of values for n from 2 to 15.
• Initialize arrays to store the results of various computa-
tions (SRAE , PAE , APL, NTS, GMPT , KRI , GE , SR).
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TABLE 1. Assessment of network-related parameters for the Torus Grid graph (T n
m) with m set to 3, where 2 ≤ n ≤ 15.

STEP 2: LOOP OVER N VALUES
For each value of n within the defined range:

1) Call the computeResults function with m and
n as arguments to compute various metrics. This
function calculates values based on eigenvalues derived
from certain mathematical operations and returns the
computed metrics (SRAE , PAE , APL, NTS, GMPT ,
KRI ).

2) Call evaluate_GE with m and n to compute the
GE metric, which involves a double summation and
specific mathematical operations.

3) Call calculate_SR with m and n to determine the
SR metric, which finds the maximum value of a given
mathematical expression across a range of values.

4) Store the results from each function in their respective
arrays.

STEP 3: ORGANIZE RESULTS INTO A TABLE
• Use the collected data to create a table. Each column
corresponds to one of the metrics calculated, and each
row corresponds to a different value of n.

• Assign appropriate variable names to the columns for
clear identification.

STEP 4: DISPLAY THE RESULTS
• Display the table containing all computed metrics for
the range of n values, allowing for easy analysis and
comparison.

DETAILED FUNCTION DESCRIPTIONS
COMPUTERESULTS(M, N)

• Validates inputs to ensure they are positive integers.
• Calculates various eigenvalues based on m and n, used
in further computations.

• Computes several metrics (SRAE , PAE , APL, NTS,
GMPT , KRI ) using these eigenvalues.

EVALUATE_GE(M, N)
• Performs a double summation over a range of values to
calculate theGEmetric based on a specificmathematical
expression.

CALCULATE_SR(M, N)
• Finds the maximum value of a specific expression over
a range of values to determine the SR metric.

This structured approach facilitates the automated cal-
culation and presentation of complex metrics for a range
of parameter values, useful in various mathematical and
engineering applications. This algorithm is specifically
tailored for the torus grid graph denoted as T Snm. The Matlab
code based on this algorithm is uploaded on the public direc-
tory with the link https://github.com/alleerazza786/MAFLS.
In table 1, the parameter m is set to 3, and the variable n
spans a range from 2 to 15. Through meticulous computation,
we have derived exact values for these crucial metrics,
providing a detailed and quantitative understanding of the
network’s performance under varying dimensions. Beyond
the numerical results presented in mentioned Tables, our
endeavor extends to enhancing the interpretability of the find-
ings through graphical representation, as depicted in Figure 4.
These visualizations illuminate the intricate relationships
between the network’s expansion and the corresponding
variations in KNI , SPR, APL , GMPT F , AER and NT S .
Noteworthy in these graphical representations is the

discernible trend showcasing that, as the network undergoes
expansion, the values of numerous mentioned quantities
exhibit a notable increase. This visual insight not only
complements the numerical data but also offers a more
intuitive understanding of the dynamics at play within the
generalized mesh network. This presented illustration of
computed results serves as just a glimpse into the broader
utility of our methodologies. Scientists and researchers
are encouraged to harness the power of our meticulously
crafted algorithm and analytical framework for delving into
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FIGURE 4. Visualization of computed results.

the complexities of more intricate real-world networks.
The versatility of our approach equips researchers with
a valuable toolkit, fostering a deeper comprehension of
network behavior and performance across diverse scenarios.
This work lays the foundation for future investigations,
providing a stepping stone for researchers to explore and
analyze complex networks with heightened accuracy and
efficiency.

V. CONCLUSION
In conclusion, this article delves into the analysis of
spectrum-based properties within the framework of a torus
grid graph. Employing algebraic methodologies, we sys-
tematically evaluated the adjacency, Laplacian, and signless
Laplacian spectra of the MN graph. The utilization of Lapla-
cian spectra enabled the computation of various network
parameters, including the Kirchhoff index (KNI ), Spectral
radius (SPR), Average path length (APL), Global mean
first passage time (GMPT F ), Graph energies (AER), and
the number of spanning trees (NT S ). To enhance com-
prehension, we presented the evaluated results graphically.
This work holds significant implications for researchers,
as the methodologies employed herein can be extrapolated
and applied to more intricate real-world networks. The
adaptability of these techniques allows for customization
based on specific requirements, ultimately contributing to the
optimization and efficiency of complex network systems.
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