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ABSTRACT We consider the problem of sparse variable selection on high dimension heterogeneous
data sets, which has been taking on renewed interest recently due to the growth of biological and
medical data sets with complex, non-i.i.d. structures and huge quantities of response variables. The
heterogeneity is likely to confound the association between explanatory variables and responses, resulting
in enormous false discoveries when Lasso or its variants are naïvely applied. Therefore, developing effective
confounder correction methods is a growing heat point among researchers. However, ordinarily employing
recent confounder correction methods will result in undesirable performance due to the ignorance of
the convoluted interdependency among response variables. To fully improve current variable selection
methods, we introduce a model, the tree-guided sparse linear mixed model, that can utilize the dependency
information from multiple responses to explore how specifically clusters are and select the active variables
from heterogeneous data. Through extensive experiments on synthetic and real data sets, we show that our
proposed model outperforms the existing methods and achieves the highest ROC area.

INDEX TERMS Confounding factors, genome-wide association study, mixed model, variable selection.

I. INTRODUCTION
Variable selection is one of the central tasks in statis-
tics and has been studied for decades [1], [2]. Modern
machine learning problems, especially biological or medical
applications often seek solutions in the existing statistical
approaches. Lasso [3] is an example of those widely adopted
methods in a variety of areas for sparse variable selection
tasks. However, the increasing volume of data sets often
requires the data to be collected from multiple batches
and then integrated together. This procedure is particularly
harmful to the biological [4] and medical [5], [6] data sets,
which are sensitive to the data sources, like populations,
hospitals or even experimental devices. This sensitivity
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results in the heterogeneity, therefore, breaks one of the
most fundamental assumptions (i.i.d. assumption) that most
statistical machine learning methods make. More impor-
tantly, due to the expensiveness of biological and medical
data, different batches of data are gathered for different
purposes from distinctly different sources, such as samples
of the control group are mostly collected from volunteers
from several different undeveloped regions. Consequently,
the heterogeneity often induces confounding factors between
explanatory variables and response variables, resulting in
numerous false positive selected variables when classical
variable selection techniques are applied [7].

To deepen understanding of the challenge that heterogene-
ity is introduced to biological or medical data sets and define
the problem, consider that we have data samples in the format
of (X ,Z ,Y ), where X stands for the explanatory variables, Y
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stands for the responses, Z stands for the indicator of the data
source. The dependency between X and Y is the premise of
any variable selection tasks [8], and the dependency between
X and Z is induced through heterogeneity [9], [10]. The data
collection procedure we mentioned brings the dependency
between Z and Y . In the real world, this problem may be
even intractable, for the origin of different samples is lost
either through data compression or experimental necessity in
most cases. Nowadays genetic association studies are rarely
aware of the origin of the samples listed. Z becomes the
confounding factor between X and Y [11], [12], [13], [14].
One challenge of the heterogeneous data variable selection
problem is to mitigate the confounding effects brought by Z .

Aside from challenges above, many of the real world
biological and medical data sets are collected along with
multiple response variables. These responses are often
more closely related and could share common relevant
covariates than others and then form the tree or other
kinds of structures [15], [16], [17], [18]. For instances,
in genetic association analysis, which aims to select the
single-nucleotide polymorphism (explanatory variables) that
could affect the phenotype (response variables), the genes in
the same pathway pretend to share the common set of relevant
explanatory variables than other genes.

Thus, to improve the performance of the variable selec-
tion, incorporating the complex correlation structure in the
responses is under our consideration. In this paper, we extend
the recent solutions of sparse linear mixed model [8], [9]
that can correct confounding factors and perform variable
selection simultaneously further to account the relatedness
between different responses. We propose the tree-guided
sparse linear mixed model, namely TgSLMM, to correct
the confounder and incorporate the relatedness among
response variables simultaneously. With TgSLMM, we are
capable to improve the performance of the variable selection
when considering the statistical criterion, incorporating the
complex tree-based correlation structure in the traits under
our consideration. Eventually, we examine our model through
plenty of repeated experiments and show that our method is
superior to other existing approaches and able to discover the
real genome association in the real data set.

II. RELATED WORK
Recent years have witnessed the great advances in the
variable selection area. The most classical approach is ℓ1-
norm regularization (i.e. Lasso regression [3]). Further,
studies have extended the model capability by introducing
various regularizers [15]. Examples including the Smoothly
Clipped Absolute Deviation (SCAD) [19], the Local Linear
Approximation (LLA) [20], the Minimax Concave Penalty
(MCP) [21], and the Precision Lasso [22] have been intro-
duced since then, which all overcome a variety of limitations
of Lasso [19]. Some other variable selectionmethods like [23]
ignore underlying multidimensional structure, leading to
severe small dataset problems. Reference [24] imposes a
rank constraint into ℓ1 regularization to factor matrices and

promotes sparsity in variable selection, which hurts the
interpretability. The liability-threshold mixed linear model
overcomes the limitation of Linear Mixed Model (LMM) in
case-control ascertainment [25]. Reference [26] proposed a
unsupervised variable selection method. But both of them
cannot apply to high dimensional data with heterogeneity.

Besides these, in the non-i.i,d setting, confounders could
raise a challenge in variable selection when the data set is
originated from different sources. Corresponding solutions
have been studied for decades. Principal components analysis
(PCA) [27], [28] and linear mixed model [29], [30] are two
popular and efficient approaches to alleviate the confounding
effect. The latter provides a more fine-grained way to model
the population structure and won its prominence in the
animal breeding literature, where it was used to reveal the
underlying kinship and family structure [11], [31]. Many
extensions have been developed, however, these measures
such as LMM-Select [32] LMM-BOLT [33] and Liability-
threshold mixed linear model (LTMLM) [33] along with
other algorithms [34], [35], [36] only rely on univariate
testing to select the variable once uncovering the confounding
factor. Attempts have been made to propose multi-variable
testing model [8], [9], [37], [38] these days, but their
performances fall short while tackling with the challenge
that takes the relatedness between responses into account.
References [39], [40], [41], [42], [43], [44], and [45] are
proposed to identify significant associations, which is to be
contrasted with the related problem of estimating heritability.
However, they also lack accounting for the relatedness
between different traits [46]. Reference [47] helps improve
association methods for kinship estimation, but it could
not construct the convoluted phenotypic architecture in a
dataset originated from different populations in the real
world like [16]. The challenges show the desire to have a
method, which requires no prior knowledge of the individual
relationship and is capable of uncover the structured pattern
in a way that is properly calibrated to the degrees of traits’
relatedness.

III. TREE-GUIDED SPARSE LINEAR MIXED MODEL
Throughout this paper, X denotes the n × p matrix for
explanatory variables for individuals, Y denotes the n × k
matrix for response variables, and β denotes the p × k
matrix for effect sizes. We use subscripts to denote rows and
superscripts to denote columns, for example, βk and βk are
the k-th column and k-th row of β respectively.

In this section, we begin by examining the sparse linear
mixed model. Next, we demonstrate how we leverage the
technique to uncover relationships between traits. Finally,
we transform this approach into a regression problem and
employ efficient methods to address associated challenges.

A. SPARSE LINEAR MIXED MODEL
The linear mixed model (LMM) is an extension of the
standard linear regression model that explicitly describes
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the relationship between response variables and explanatory
variables incorporating an extra random term to account for
confounding factors. To introduce the sparse linear mixed
model, we briefly revisit the classical linear mixed model as
Equation 1:

Y = Xβ + Zu+ ϵ (1)

where Z is an n × t matrix for the random effect.
u is the confounding influences with implicitly identity
correlation information, ϵ denotes observed noise and they
both follow the independent Gaussian distribution with the
zero means. Intuitively, Zu models the covariance between
the observations yi. Assuming that ϵ ∼ N ( 0, σ 2

ϵ I ), u ∼

N (0, σ 2
g I ), K = ZZT and represents the covariance between

the responses and σg represents the magnitude of confounder
factors, we can rewrite the formula as Equation 2 to simplify
mathematical derivation:

yk ∼ N (Xβk , σ
2
gK + σ 2

ϵ I ) (2)

Assuming the priori distribution of β could be expressed as
e−8(β), we can define log likelihood function as Equation 3:

ℓ(σ 2
g , σ 2

ϵ , β) = e−8(β)
·

K∏
k=1

N (yk |Xβk , σ 2
gK + σ 2

ϵ I ) (3)

Based on the sparsity of β, it’s reasonable to assume that β

follows Laplace shrinkage prior. Such assumptions lead to
the sparse linear mixed model. However, sparse LMM fails
to consider the relatedness among response variables. The
defect drives us to the tree-guided sparse linear mixed model.

B. TREE-GUIDED SPARSE LINEAR MIXED MODEL
To incorporate the relatedness among responses simultane-
ously, we use Tree-Lasso as Equation 4.

8(β) = λ
∑
j

∑
v∈V

wv||β
Gv
j ||2 = λ

∑
j

Wj(vroot ) (4)

where λ is a tuning parameter that controls the amount of
sparsity in the solution and β

Gv
j is a vector of regression

coefficients {βkj |k ∈ Gv}. The overlaps of groups of Tree-
Lasso and the number of the trees is determined by the
hierarchical clustering tree. Each node v ∈ V of the j-th
tree is associated with the group Gv whose members are the
response variables at the nodes of the same subtree. Each
group of subtree regression coefficients β

Gv
j is weighted with

wv, which is defined as the Equation 5. In general, hv in
the Equation 5 represents the weight for selecting relevant
covariates separately for the responses associated with each
child of node v, whereas the 1 − hv represents the weight for
selecting relevant covariates jointly for the responses for all of
the children of node v, and the value of hv ranges from 0 to 1.
Assuming K is the number of response variables and |V | is
equivalent to the number of nodes in one tree, since a tree
associated with K responses has 2K − 1 nodes, |V | appears

in the tree-lasso penalty is upper-bounded by 2K .

wv =


(1 − hv)

∏
m∈Ancestors(v)

hm if v is an internal node,∏
m∈Ancestors(v)

hm if v is a leaf node.

(5)

To simplify the computation process of Tree-Lasso, we can
calculate the separate penalty from the root of each tree
iteratively as Equation 6:

Wj(v) =



(1 − hv)
∑

c∈Children(v)

|Wj(c)| + hv||β
Gv
j ||2,

if v is an internal node.∑
m∈Gv

|βmj |,

if v is a leaf node.

(6)

C. PARAMETER LEARNING
Overall, optimizing Equation 3 with hyper-parameter {2 =

σ 2
g , σ 2

ϵ , λ, wv} is a non-convex optimization problem aside
with weights β. Hence, we could apply the null-model fitting
method first to correct the confounding factors and then solve
Tree-Lasso regression problem using smoothing proximal
gradient method [48].

1) NULL-MODEL
Due to sparsity of β, null-model fitting method by first
optimizing σ 2

g , σ
2
ϵ while ignoring individual explanatory vari-

ables, can yield near-identical result as an exact method [30].
By using the computational trick [34] that introduces the ratio
of the random effect and the noise variance, δ = σ 2

ϵ /σ 2
g ,

we could transform the equation as Equation 7:

ℓnull(σg, δ) = e−8(β)
·

K∏
k=1

N (yk |Xβk , σ 2
g (K + δI )) (7)

The genetic effects are treated as fixed effects, whereas
the confounding influences are modeled as random effects.
We carry out a log likelihood optimization with regard to δ

and then σg in closed form.

2) REDUCTION TO TREE-LASSO REGRESSION PROBLEM
In general, we first compute the spectral decomposition of
K = Udiag(d)UT , where U for eigenvector matrix and
diag(d) for eigenvalue matrix. Having the yielded δ, we use
the U to reweight the data such that the covariance matrix
becomes isotropic. Assume Ỹ and X̃ are the resulting rescaled
data, which can be calculated by the following equation:

X̃ = (diag(d) + δI )−
1
2UTX

Ỹ = (diag(d) + δI )−
1
2UTY

Using this transformation, the equation eventually ends
up with a standard Tree-Lasso regression problem since it
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FIGURE 1. The simulated ground-truth β vector. For the illustration
purpose, we choose the experimental setting of n = 250, p = 500 and
k = 50.

is free of population structure and has been alleviated the
confounding factor. In the following step, we can obtain the
β̂ tree as Equation 8:

β̂ tree = min
β

1
2
||Ỹ − X̃β||

2
F + 8(β) (8)

where || · ||F denotes the matrix Frobenius norm, and 8 is
determined by the Equation 4, then we can easily employ the
smoothing proximal gradient descent method.

IV. SYNTHETIC EXPERIMENTS
In this section, we evaluate the yielded results of the
TgSLMM versus Tree-Lasso, LMM-Lasso and some tech-
niques mentioned above, which is shown in the receiver
operating characteristic (ROC) curves.1

A. DATA GENERATION
First, we simulate a sparse tree-structured vector as β.
An illustrated example is shown in Figure 1. To construct β,
the generation rules are listed below:

• The righter columns have fewer non-zero elements.
• The elements from righter columns have bigger value.
• Some non-zero elements are shattered discretely in β to
increase the complexity and mimic the real situation.

Then we generate centroids of m different distributions.
With cj as the centroid of j-th distribution, we generate
explanatory variable data from a multivariate Gaussian
distribution as follows:

xi ∼ N (cj, σ 2
e I ) (9)

where xi denotes the i-th data or information bore by one
individual and originates from j-th distribution chosen from
m different distributions c. Then we generate an immediate
response vector r from X matrix with ϵ ∼ (0, σ 2

ϵ ):

r = Xβ + ϵ (10)

To get the final response matrix Y , we introduce a
covariancematrixK to simulate correlation between different
responses:

Y ∼ N (r, σ 2
y K ) (11)

1The problem can be regarded as classification problem–identifying the
active response variables from all genes. For each threshold, we select the
response variables whose absolute effect sizes are greater than the threshold.
If the selected explanatory variable has value above the threshold in ground
truth effect size, it will be the true positive.

TABLE 1. Default experimental setting in the simulated experiments.

where σ 2
y is to control the magnitude of the variance.

Assuming C is the matrix formed by stacking the centroids
cj, we choose K = CCT to simulate the correlation between
observations.

Using the data generation method described earlier, our
synthetic dataset can effectively mimic real-world heteroge-
neous datasets, capturing the desired trait relatedness.

B. EXPERIMENT RESULTS
We assessed the ability of TgSLMM in our synthetic data sets.
The experimental setting is listed in Table 1.

To evaluate the performance of the proposed model in
identifying active variables in different data sets, Tree-Lasso,
LMM-Lasso, MCP, SCAD, Lasso,2 BOLT-LMM, LTMLM
and LMM-Select are also tested. The baselines we choose in
this paper are all highly cited and have been proven effective
bymany scholars. In general, ourmethod exceeds all the other
methods. The results are shown in Figure 2 considering the
golden criterion ROC curves.

In Figure 2(a) as n increases, and in Figure 2(b) as p
decreases, the ratio of p

n gets smaller and the performance
gets better as expected. Compared to Tree-Lasso along with
other methods, our method is more robust with big data
sets, which suits the real-world situation. As we increase
the number of response variables in Figure 2(c), increase
the number of distributions in Figure 2(d), or decrease the
proportion of active variables in β as Figure 2(e), the problem
becomes more challenging. Figure 2(f) and Figure 2(g) show
that our method is more flexible to different magnitudes of
covariance of explanatory variables and response variables.
In Figure 2(e), we notice that when the proportion of
active variables in β is large, the performance of TgSLMM
and LMM-Lasso is similar. However, it contradicts the
background of our research that the active variables should
be sparse among data. Through our experiments, it is hard

2We modify Lasso, MCP, SCAD to support multidimensional data
processing, the performance they yield has no observed difference. Our
contributions and the details can be viewed in our codes.
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FIGURE 2. ROC curves for experiments with different parameters. We show the full image of ROC curves to compare our method with previous
methods. For each configuration, the reported curve is drawn over five random seeds.

FIGURE 3. The yielded β vectors.

for Tree-Lasso to identify the active variables on high
dimensional heterogeneous data.

TgSLMM also performs best in most cases in the figure
of Precision-Recall curves. These figures are shown in
Appendix.

C. ANALYSIS OF YIELDED β AND Y
We use the same experimental setting3 as in Figure 1
to perform the ablation studies. The results are shown in
Figure 3 and 4.

Figure 3 shows that TgSLMM recovers both the values and
structure of ground truth effect size, revealing the supreme
ability of TgSLMM in variable selection. LMM-Lasso
has trouble finding enough useful information. Trapped
into the confounding factors, the Tree-Lasso discovers too

3Other parameters are as follow: m is 10; d is 0.05; σ 2
e is 0.001; σ 2

y is 1;
σ 2
ϵ is 0.05.

VOLUME 12, 2024 50783



H. Liu et al.: Sparse Variable Selection on High Dimensional Heterogeneous Data

FIGURE 4. The simulated responses matrices and the predicted responses
results by different models.

many false positives. Tree-Lasso also falls short when the
data set becomes complicated in the Figure 2. Based on
Figure 4, both prediction performance of TgSLMMand Tree-
Lasso are convincing, LMM-Lasso fails as reported before.
Unsurprisingly, the proposed TgSLMM also behaves the best
in estimating β with respect to mean-squared error through
almost all the experimental settings. The other approaches
cannot discover any meaningful information.

By using the proposed method, we are able to detect
weak signals and reveal clear groupings in the patterns of
associations between explanatory variables and responses
and apply our method to many applications, such as variable
selection, effect sizes estimation, and response prediction.

V. REAL GENOME DATA EXPERIMENTS
Having shown the capacity of TgSLMM in recovering
explanatory variables of synthetic data sets, we now demon-
strate how TgSLMM can be used in real-world genome
data and discover meaningful information. To evaluate the
method, we focus on some practical data sets, Arabidopsis
thaliana, Heterogeneous Stock Mice and Human Alzheimer
Disease. Since Arabidopsis thaliana and Heterogeneous
StockMice have been studied for over a decade, the scientific
community has reached a general consensus regarding these
species [49]. With such authentic golden standard, we could
plot the ROC curve and assess the model’s performance using
the area under it. However, since Alzheimer’s disease is a
very active area of research with no ground truth available,
we list the genetic variables identified by our proposed model
and verify the top genetic variables by searching the relevant
literature.

A. DATA SETS
1) ARABIDOPSIS THALIANA
The Arabidopsis thaliana data set we obtained is a collection
of around 200 plants, each with around 215,000 genetic

variables [50]. We study the association between these
genetic variables and a set of observed responses. These
plants were gathered from 27 different countries in Europe
and Asia, so that geographic origin served as a potential
confounding factor. For example, different sunlight condi-
tions in different regions may affect the observed responses
of these plants. We test the genetic associations between
genetic variables with 44 different responses such as days to
germination, days to flowering, etc.

2) HETEROGENEOUS STOCK MICE
The heterogeneous stock mice data set contains mea-
surements from around 1700 mice, with 10,000 genetic
variables [51]. These mice were raised in cages by four
generations over a two-year period. In total, the mice came
from 85 distinct families. The obvious confounding variable
is genetic inheritance due to family relationships. We study
the association between the genetic variables and a set
of 27 response variables that could possibly be affected
by inheritance. These 27 response variables fall into six
different categories, relating to the glucose level, insulin level,
immunity, EPM, FN and OFT respectively.

3) HUMAN ALZHEIMER DISEASE
We use the late-onset Alzheimer’s Disease data provided
by Harvard Brain Tissue Resource Center and Merck
Research Laboratories [52]. It consists of measurements from
540 patients with 500,000 genetic variables. We test the
association between these genetic variables and 28 responses
corresponding to a patient’s disease status of Alzheimer’s
disease.

4) PREPROCESSING OF REAL GENOMIC DATA
Each element of the explanatory variables X takes values
from {0,1} according to the number of minor alleles
frequency (MAF) at the given locus in each individual.
We also standardized the traits data, according to the analysis
and statistics law. In the experiments, we found that the
standardizing process is very crucial to the performance of
the model.

B. ARABIDOPSIS THALIANA
Since we have access to a validated gold standard of the
Arabidopsis thaliana data set, we compare the alternative
algorithms in terms of their ability in recovering explanatory
variables with a true association. Figure 5 illustrates the
area under the ROC curve for each response variable for
Arabidopsis thaliana. By analyzing the results, we conclude
that TgSLMM equals or exceeds the other methods for
all of responses. TgSLMM allows for dissecting individual
explanatory variable effects from global genetic effects driven
by population structure.

Further, we simply apply linear regression and cross-
validation to evaluate the proposed model’s ability of
response prediction versus all the algorithms. Using the

50784 VOLUME 12, 2024



H. Liu et al.: Sparse Variable Selection on High Dimensional Heterogeneous Data

FIGURE 5. Area under ROC curve for the 44 traits of Arabidopsis thaliana.

TABLE 2. Discovered genetic variables with TgSLMM.

explanatory variables our proposed method selects, 61.4%
of prediction for Arabidopsis thaliana is better than
using origin data set, 56.8% is better than using the

data after employing Tree-Lasso, 79.5% is better than
applying LMM-Lasso, 84.1% is better than MCP and
SCAD, 66.0% is better than Lasso, 91.0% is better than
LMM-BOLT, 56.7% is better than LTMLM. Our method
only works worse than LMM-Select while considering
prediction.

C. HETEROGENEOUS STOCK MICE
For Heterogeneous Stock Mice data set, ground truth is also
available so that we could evaluate the methods based on
the area under their ROC Curve as Figure 6. TgSLMM
behaves as the best one on 22.2% of the traits and achieves
the highest ROC area for the whole data set as 0.627. The
second best model is MCP with the area of 0.604. The
areas under ROC of Tree-Lasso, Lasso and SCAD are 0.582,
0.591 and 0.590 respectively. The areas of the remaining
models are all around 0.5, showing little ability to process
such complex data sets. On traits Glucose_75, Glucose_30,
Glucose.DeadFromAnesthetic, Insulin.AUC, Insulin.Delta
and FN.postWeight, our method TgSLMM behaves the best.
The results are interesting: the left side of the figure mostly
consists of traits regarding glucose and insulin in the mice,
while the right side of the figure consists of traits related to
immunity. This raises the inspiring question of whether or not
immune levels in stockmice are largely independent of family
origin.

D. HUMAN ALZHEIMER DISEASE
Finally, we proceed to the Human Alzheimer’s Disease
data set and report the top 99 genetic variables our model
discovered in Table 2 to foster further research.

Due to space limitation, we only verify the top 10 reported
genetic variables with prior research. The 1st discovered
genetic variable is corresponded to apoB gene, which
can influence serum concentration [53] in Alzheimer’s
disease [54]. The 2nd one is associated with ARHGAP10
gene (also called GRAF2), which is an important paralogon
of ARHGAP26 that closely related to the Alzheimer’s
disease [55] and affects the developmentally regulated
expression of the GRAF proteins that promote lipid droplet
clustering and growth, and is enriched at lipid droplet junc-
tions [54], [56]. The 3rd SNPGNPDA2 is discovered to show
the environment and gene association with obesity. They
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FIGURE 6. Area under ROC curve for the 27 traits of mice.

FIGURE 7. Precision-Recall curves for experiments with different parameters.

have impact on neurodegenerative and neurodevelopmental
diseases [57]. The 4th SNP is expressed by the SYNPO2,
which influences hypercholesterolemia or hypertension that
has a identified a link between cognitive deficits [58].
The 6th SNP known as the LY75, has close relation with

the significantly differentially expression in the time-series
paired analysis involving APOE4 carriers and non-carriers,
which could affect Alzheimer’s disease [59]. The 7th genetic
variable is associated with AGAP1. AGAP1 can regulate
membrane trafficking, actin remodeling [60] and is reported
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FIGURE 8. The yield β vector.

to be associated with Alzheimer’s disease. The 8th one
is coded by gene FAM114A1. Biologists have found that
FAM114A1 is highly expressed in the developing neocor-
tex [61]. Also, from ‘‘the amyloid hypothesis’’, beta-amyloid
accumulation is mainly cause Alzheimer’s disease [62]. The
9th is corresponded with gene CNTNAP2 and the direct
downregulation of CNTNAP2 by STOX1A is associated with
Alzheimer’s disease [63].

VI. DISCUSSIONS
A. COMPLEXITY
Since a tree associated with L responses can have at most
2L − 1 nodes, it is computationally efficient and spatially
economical to run TgSLMM. The complexity of TgSLMM
is dependent on two parts. First, the decomposition of the
random effect matrix K to rotate the explanatory variable
and response data is cubic cost, which determines the
complexity of the first step. If we reduce the covariance K
to a low-rank representation calculated from a small subset
of ns explanatory variables. The runtime is reduced from
O(nk2) to O(n2s k). Second, we employ a smoothing proximal
gradient method that is originally developed for structured-
sparsity-inducing penalties. By using the efficient method,
the convergence rate of the algorithm is O( 1

ϵ
), given the

desired accuracy ϵ and the time complexity per iteration
of the smoothing proximal gradient for the Tree-Lasso is
O(p2k+p

∑
v ∈ V |Gv|). Thus the overall complexity for our

method is O(n2s k +
1
ϵ

× (p2k + p
∑
v ∈ V |Gv|)).

B. RUNTIME
To evaluate its effectiveness and practicability, we have
empirically measured the runtime on the Arabidopsis thaliana
dataset mentioned in our paper. On a four-core computer
(3GHz 12MB L2-Cache, 8GB Memory), TgSLMM required
about 4 hours CPU time. In this paper, we show that our
method is scalable to large genetic dataset.

VII. CONCLUSION
In this paper, we aim to solve the challenging task of sparse
variable selection when the data are not i.i.d. This type of
situation often occurs in genomics since different batches
of medical data are collected from different sources for
different purposes. Due to such confounding factors, naiv̈ely
applying the traditional variable selection methods will result
in a huge number of false discoveries. In addition to that,
existing algorithms ignore the convoluted interdependency
among responses, hence a joint analysis that can utilize such
relatedness information in a heterogeneous data set is crucial.
To address these problems, we propose the tree-guided sparse
linear mixed model for sparse variable selection. Apart from
extending the recent solutions of LMM that can correct
confounding factors, we can perform variable selection
simultaneously further to account the relatedness between
different responses. By conducting extensive experiments,
we compare our method with state-of-art methods and deeply
analyze how confounding factors from the high dimensional
heterogeneous data set influence the capability of the model
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FIGURE 9. The simulated responses matrix and the yield responses results.

to identify active variables. We show that traditional methods
easily fall into the trap of utilizing false information, whereas
our proposed model outperforms other existing methods in
both the synthetic data set and real genome data set. We make
our source code available.4

APPENDIX A
SYNTHETIC EXPERIMENT RESULTS
A. THE PRECISION-RECALL CURVE OF SYNTHETIC
EXPERIMENT
The Figure 7 shows the full images of Precision-Recall curves
in synthetic experiments to compare our method with other
existing methods by using the same parameters in our paper.
For each configuration, the reported curve is drawn over five
random seeds. And we can see that TgSLMMbehaves almost
always best.

4https://github.com/lebronlambert/TgSLMM

B. ESTIMATION OF β

The Figure 8 shows the β vectors yielded bymethods we used
in our paper together with the ground truth β vector generated
in the synthetic experiments. The figures show that TgSLMM
yields the best result with the number about 0.95 of the area
under ROC curves. The area of Tree-Lasso is about 0.84, that
of LMM-Lasso is around 0.71. The area under ROC of MCP,
SCAD, Lasso, LMM-BOLT, LTMLM and LMM-Select is
0.81, 0.81, 0.80, 0.57, 0.50 and 0.41 respectively.

C. PREDICTION OF Y
Figure 9 shows the Y results recovered. TgSLMM also yields
the best result.5

5The parameters that Figure 8 and Figure 9 used are just the same
experimental setting in Section IV-C in our paper. n is 250; p is 500; k is
50; m is 10; d is 0.05; σ 2

e is 0.001; σ 2
y is 1; σ 2

ϵ is 0.05; random seed is 0.
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FIGURE 10. ROC curves for experiments with different parameters.

D. THE ROC CURVE OF SYNTHETIC EXPERIMENT
The Figure 10 shows the remaining images of ROC curves
in synthetic experiments to compare our method with other
existing methods by using the same parameters in our paper.
For each configuration, the reported curve is drawn over five
random seeds. And we can see that TgSLMMbehaves almost
always best.
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