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ABSTRACT This study addresses H∞ filtering against DoS attacks within the framework of singular
Markov jump systems. To provide a more comprehensive depiction of the issue pertaining to cyber security,
DoS attacks are perceived as occurring in an unpredictable manner and can be represented by a collection
of a random variable that follows the Bernoulli distribution. Consequently, the corresponding filter error
system is formulated. Utilizing a set of viable linear matrix inequalities, this research establishes criteria
of stochastically admissible for filter error system, ensuring a specified H∞ performance. A filter design
method under DoS attacks is proposed. Finally, the effectiveness of this method is demonstrated through a
practical example involving a tunnel diode model.

INDEX TERMS Bernoulli distribution, singularMarkov jump system, denial of service (DoS) attacks, tunnel
diode model.

I. INTRODUCTION
Stochastic phenomena are often exist in control systems,
which may be caused by changes in certain correlated
structures between subsystems. Markov jump systems are
renowned for their ability to model dynamic systems with
abrupt changes [1], [2]. Singular systems, as a special
dynamic system model in a more general form than state-
space systems, can better describe a class of complex systems
with singular properties, and they have been widely used
in electric power systems, circuit systems, and astronautical
systems. Besides, random abrupt factors such as failure
occurrence can lead to mutations in its own structure and
parameters [3], [4], [5], [6]. When the parameters of the
singular system are mutated, some researchers built singular
Markov jump systems (SMJSs). SMJSs combine properties
of both singular systems and Markov jump systems. As a
type of stochastic hybrid system, SMJSs can be used for
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modeling the actual systems. Up to now, numerous research
findings on SMJSs have sprung up, such as stability research
on SMJSs [7], time-delay problem [8], and design results of
controllers and observers [9], [10], [11].

In addition, security issues under network attacks have
attracted much attention [12], [13], [14], [15], [16]. When
it comes to cybersecurity, one must pay attention to the
growing threat of cyber attacks. Network attacks refers
to the use of computer network system vulnerabilities or
weaknesses, malicious operation or interference behavior.
These attacks can take a variety of forms, with one
common form of attack being DoS attack. DoS attacks
are a common, simple, effective, and extremely harmful
method among many network attack techniques. Their
main method of attack is to maliciously consume network
bandwidth and system resources, causing system paralysis
and disabling the function of serving normal users, thereby
denying them access to services [17], [18], [19]. In network
security, it is very important to prevent and deal with DoS
attacks.
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TABLE 1. Notation clarification in this article.

Moreover, the issue of filtering has consistently been a
focal point of investigation in the field of control. The primary
goal is to eliminate specific interference, interruptions,
or frequency elements in the initial signal to ensure that the
final signal accurately represents the properties of the input
signal. Compared with kalman filtering, H∞ filtering offers
significant advantages in estimation accuracy and robustness.

However, based on the above analysis, the problem of
filtering under DoS attack in SMJSs and its application have
not been solved, which is the motivation of this paper. The
main contributions include the following two aspects:
(I) This article presents the H∞ filtering issue for SMJSs

under the impact of DoS attacks. It is worth mentioning
that the DoS attacks can be represented by a random
variable that follows Bernoulli distribution. And the
filter gains are computed, leading to the proposal of a
method for secure filter design for SMJSs.

(II) For the first time, an efficient criterion is established
for filter error systems (FES) within the context of
SMJSs. Furthermore, this criterion is applicable to
systems experiencing DoS attacks. Ultimately, the
effectiveness of the suggested approach is confirmed
through experimentation with a circuit containing a
tunnel diode.

The notation used in this work is given in Table 1.

II. PROBLEM FORMULATION
Following is the SMJSs:

Ex (ζ + 1) = A
(
ϕζ

)
x (ζ )+ B

(
ϕζ

)
w (ζ )

y (ζ ) = C
(
ϕζ

)
x (ζ )+ D

(
ϕζ

)
w (ζ )

z (ζ ) = Q
(
ϕζ

)
x (ζ )

(1)

where x (ζ ) ∈ Rκ denotes the system state, y (ζ ) ∈ Rδ
represents the measured output, and z (ζ ) ∈ Rτ signifies
the estimated signal. Matrix E ∈ Rκ×κ is singular with
rank (E) = ϱ ≤ κ . The sequence

{
ϕζ

}
constitutes a

Markov chain that takes value in a limited state space Y =

{1, 2, · · · , y}. The transitions between states adhere to the
rules dictated by the Markov chain, which characterized by
the following transition probability:

πrd = Pr
{
ϕζ+1 = d | ϕζ = r

}
,

where 0 ⩽ πrd ⩽ 1,
∑y

d=1 πrd = 1.
Remark 1: Singular systems poses greater challenges due

to the potential occurrence of incompatible phenomena
within their homogeneous initial value problems, setting
them apart from state space systems. Additionally, the

complexity arising from multi-mode jumps and nonlinear
factors complicates system analysis, often leaving their
control issues largely unexplored.

We can obtain that:
Ex (ζ + 1) = Arx (ζ )+ Brw (ζ )
y (ζ ) = Crx (ζ )+ Drw (ζ )
z (ζ ) = Qrx (ζ )

(2)

The expression for the ỹ (ζ ) can be reformulated as follows:

ỹ (ζ ) = µ̄ (ζ ) y (ζ ) . (3)

The variable µ̄ (ζ )) is a random variable describing attack
occurrences, which follows Bernoulli distribution. A value
of 0 indicates a DoS attack occurs, while a value of
1 signifies the absence of an attack. The probability value is as
follows:

Pr {µ̄ (ζ ) = 1} = µ̄

The variable µ̄ resides within the range [0, 1] and signifies
the probability of DoS attacks.

E {µ̄ (ζ )} = µ̄, E {µ̄ (ζ )− µ̄} = 0

E
{
| µ̄ (ζ )− µ̄ |

2
}

= µ̄ (1 − µ̄) .

Remark 2: Cyber security has emerged as a pervasive
issue, with network systems encountering escalating risks
due to the impact of network attacks. DoS attacks involve
hackers employing diverse attackmethods to disrupt services,
potentially leading to system destruction and network inca-
pacitation. Based on the above analysis, we consider the DoS
attacks in this paper.
The filter under possible DoS attacks can be designed

as{
x̃ (ζ + 1) = Afr x̃ (ζ )+ Bfr µ̄ (ζ ) {Crx (ζ )+ Drw (ζ )}

z̃ (ζ ) = Cfr x̃ (ζ )

(4)

where Afr , Bfr , Cfr are the filter parameters.
The following FES can be obtained from (2) and (4), where

ψ (ζ ) =
[
xT (ζ ) x̃T (ζ )

]T , e (ζ ) ≜ z (ζ )− z̃ (ζ ).
Êψ (ζ + 1) = Arψ (ζ )+ Brw (ζ )+ (µ̄ (ζ )− µ̄)

{Crψ (ζ )+ Drw (ζ )}

e (ζ ) = 2rψ (ζ )

(5)

where

Ê ≜ diag {E, I } ,2r =

[
QTr

−CT
fr

]T
,

Ar =

[
Ar 0

µ̄BfrCr Afr

]
,Br =

[
Br

µ̄BfrDr

]
Cr =

[
0 0

BfrCr 0

]
,Dr =

[
0

BfrDr

]
.
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Definition 1: [20] The system (5) is regular and causal,
if the following conditions meet:

det
(
sÊ − Ar

)
̸= 0

deg
(
det

(
sÊ − Ar

))
= rank

(
Ê

)
with w (ζ ) ≡ 0.
Definition 2: [21] The system (5) is considered stochas-

tically admissible when w (ζ ) ≡ 0, given that FES satisfies
both regularity and causality criteria:

∞∑
ζ=0

E
{
∥ ψ (ζ ) ∥

2
| ψ (0) , ϕ (0)

}
< ∞

Definition 3: [22] The system represented by (5) main-
tains anH∞ performance index γ , when e (ζ ) fulfills:

E


∞∑
ζ=0

eT (ζ ) e (ζ )

 < γ 2
∞∑
ζ=0

wT (ζ )w (ζ ) .

with zero-initial conditions.

III. MAIN RESULTS

Theorem 1: The FES (5) achieves stochastic admissibility
and attains an H∞ performance level γ > 0, for given
a contant µ̄ ∈ [0, 1], and a matrix 8̃ =

[
8T 0

]T
fullfills ÊT 8̃ = 0, alongside the existence of matrix 3̃r =[
3̃1r 3̃2r

]T and symmetric positive definite matrix P̄r ,
conforming to the following condition:

ℜr =


Qr Rr 2T

r AT
r Hr

∗ −γ 2I 0 BT
r Zr

∗ ∗ −I 0 0
∗ ∗ ∗ −P−1

r 0
∗ ∗ ∗ ∗ −P−1

r

 < 0 (6)

where

Qr ≜ −ÊT P̄r Ê + Sym
{
3̃r8̃

TAr

}
Hr ≜

√
µ̄ (1 − µ̄)CT

r

Zr ≜
√
µ̄ (1 − µ̄)DT

r

Rr ≜ 3̃r8̃
TBr

Pr ≜
∑
d∈Y

πrd P̄d

Proof : Two non-singular matrices G̃, K̃ are introduced:

G̃−T P̄r G̃−1
=

[
P̄1r P̄

2
r

P̄3r P̄
4
r

]
G̃ÊK̃ =

[
Iκ̂+ϵ 0
0 0

]
K̃T 3̃r =

[
3̃T

11r 3̃
T
12r

]T G̃−T 8̃ =
[
0 8̃T

1

]T
G̃Ar K̃ =

[
⊛ ⊛
⊛ A4r

]
.

It is easy to derive

Sym
{
AT
r 8̃3̃

T
r

}
− ÊT P̄r Ê < 0,

which implies that

K̃−T

[
⊛ ⊛

⊛ Sym
{
AT
4r8̃13̃

T
12r

} ]
K̃−1 < 0, (7)

Then, we construct the following Lyapunov function:

V (ζ ) ≜ ψT (ζ ) ÊT P̄r Êψ (ζ ) .

Characterizing E {∆V (ζ )} ≜ E {V (ζ + 1)− V (ζ )}, and
ξ (ζ ) ≜

[
ψT (ζ ) wT (ζ )

]T . According to ÊT 8̃ = 0, one

has Sym
{
ψT (ζ + 1) ÊT 8̃3̃T

r ψ (ζ )
}

= 0, the following
condition can be obtained

E [ ∆V (ζ )+ eT (ζ ) e (ζ )− γ 2wT (ζ )w (ζ )

+ Sym
{
ψT (ζ + 1) ÊT 8̃3̃T

r ψ (ζ )
}
]

= ξT (ζ )ℜrξ (ζ )

< 0.

The condition can be deduced that

E
{
∆V (ζ )+ eT (ζ ) e (ζ )

}
< 0. (8)

Then, let δ ≜ inf {λmin (−ℜr )}, this leads to

E {V (∞)− V (0)} = E


∞∑
ζ=0

1V (ζ )


≤ E


∞∑
ζ=0

(
−δψT (ζ ) ψ (ζ )

)
which means that

∞∑
ζ=0

E
{
∥ ψ (ζ ) ∥

2
}

= E


∞∑
ζ=0

(
ψT (ζ ) ψ (ζ )

)
≤

1
δ

{E {V (0)− V (∞)}}

< ∞. (9)

Therefore, based on Definition 2, it can be concluded that
the system (5) is stochastically admissible.
Letting 9 = E

{
eT (ζ ) e (ζ )− γ 2wT (ζ )w (ζ )

}
, the

following inequality can be obtained

9 ≤

∞∑
ζ=0

E
{
1V (ζ )+ eT (ζ ) e (ζ )− γ 2wT (ζ )w (ζ )

}
=

∞∑
ζ=0

E
{
ξT (ζ )ℜrξ (ζ )

}
< 0

which means

E


∞∑
ζ=0

eT (ζ ) e (ζ )

 < γ 2
∞∑
ζ=0

wT (ζ )w (ζ ) .
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Building upon the prior discussion, it can be deduced
that the FES (5) achieves stochastically admissible and
simultaneously satisfies theH∞ performance index γ .
Theorem 2: For given scalars µ̄ ∈ [0, 1], γ > 0, and a

matrix 8̃ =

[
8

0

]
fullfills ÊT 8̃ = 0, if matrices Rr , Kr ,

Mr , 4r =

[
41r b142r
43r b242r

]
, 3̃r =

[
3̃1r 3̃2r

]T , symmetrical

positive definite matrix P̄r ≜

[
P̄11r P̄12r
∗ P̄22r

]
exist, such that

the condition (10) holds for each r ∈ Y :
[h̄r ]11 [h̄r ]12 [h̄r ]13 [h̄r ]14 [h̄r ]15

∗ −γ 2I 0 [h̄r ]24 [h̄r ]25
∗ ∗ −I 0 0
∗ ∗ ∗ [h̄r ]44 0
∗ ∗ ∗ ∗ [h̄r ]44

 < 0 (10)

where

[h̄r ]12 ≜

[
3̃T

1r8
TBr

3̃T
2r8

TBr

]
[h̄r ]13 ≜

[
Qr −MT

r
]T

[h̄r ]14 ≜

[
Ar4T

1r + b1µ̄CT
r Kr Ar4

T
3r + b2µ̄CT

r Kr
b1Rr b2Rr

]
[h̄r ]24 ≜

[
BTr 4

T
1r + b1µ̄DTr Kr B

T
r 4

T
3r + b2µ̄DTr Kr

]
[h̄r ]15 ≜

[
b1

√
µ̄ (1 − µ̄)CT

r Kr b2
√
µ̄ (1 − µ̄)CT

r Kr
0 0

]
[h̄r ]25 ≜

[
b1

√
µ̄ (1 − µ̄)DTr Kr b2

√
µ̄ (1 − µ̄)DTr Kr

]
[h̄r ]11 ≜

[
Or −ET P̄12r + Ar83̃2r
∗ −Q22rλ

]
[h̄r ]44 ≜

[ ∑
d∈Y πrd P̄11r −4T

1r −41r N1r
∗ N2r

]
,

with

Or ≜ −ET P̄11rE + Sym
{
3̃T

1r8
TAr

}
N1r ≜

∑
d∈Y

πrd P̄12r −4T
3r − b142r

N2r ≜
∑
d∈Y

πrd P̄22r − b24T
2r − b242r

Hence, the system (5) is stochastically admissible. Simul-
taneously, the desired filter gains are designed as follows:

Afr = 4−1
2r R

T
r , Bfr = 4−1

2r K
T
r , Cfr = MT

r . (11)

Proof : Since (Pr −4λ)P−1
r (Pr −4λ)

T
≥ 0, one has

Pr −4T
r −4r +4rP−1

r 4T
r ≥ 0,

which means

−4rP−1
r 4T

r ≤ Pr −4T
r −4r . (12)

Define Rr = ATfr4
T
2λ, Kr = BTfr4

T
2λ, Mr = CT

fr .

FIGURE 1. Tunnel diode model.

One can obtain from (10) that
Or 3̃r8̃

TBr 2
T
r AT

r 4
T
r Hr4

T
r

∗ −γ 2I 0 BT
r 4

T
r Zr4

T
r

∗ ∗ −I 0 0
∗ ∗ ∗ −4rP−1

r 4T
r 0

∗ ∗ ∗ ∗ −4rP−1
r 4T

r

 < 0 (13)

For (13), by multiplying the matrix equation with
diag {I , I , I , 4r , 4r }

−1 and its transpose, the following can
be derived by employing the schur complement:[

91
r,λ 9

2
r,λ

∗ 93
r,λ

]
< 0,

where

91
r,λ = AT

r PrAr + µ̄ (1 − µ̄)CT
r PrCr − ÊT P̄r Ê

+ Sym
{
3̃r8̃

TAr

}
+2T

r 2r

92
r,λ = AT

r PrBr + µ̄ (1 − µ̄)CT
r PrDr + 3̃r8̃

TBr

93
r,λ = BT

r PrBr + µ̄ (1 − µ̄)DT
r PrDr − γ 2I ,

which is equivalent to (6), this proof is finalized.

IV. A PRACTICAL EXAMPLE
A circuit model includes a tunnel diode is presented in
Figure 1 [23]. The parameters within the tunnel diode circuit
satisfy the equation id (t) = 0.002ud (t).
Define x1 (t) = ud (t), x2 (t) = id (t), the follow-

ing equation can be obtained from Kirchhoff’s law, and
r ∈ {1, 2}.

Cẋ1 (t) = −0.002x1 (t)+ x2 (t)
0 = −x1 (t)− Rrx2 (t)+ w (t)
y (t) = Crx (t)+ Drw (t)
z (t) = Qrx (t)

Additionally, the parameters in circuit is C = 1.6F , R1 =

1�, R2 = 5�, the following are the parameters of the system:

A1 =

[
−0.002 1

−1 −1

]
,A2 =

[
−0.002 1

−1 −5

]
.

The disturbance input is chosen as w (ζ ) =

√
1.66

1+ζ 2
. Addi-

tionally, initial conditions are set as x (0) =
[
1.10 −1.07

]T ,
and x̃ (0) =

[
0 0

]T . In this example, two modes are
considered and the specific mode transformation diagram is
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FIGURE 2. Mode evolution.

FIGURE 3. Simulation curves when µ̄ = 0.5.

shown in Figure 2. Furthermore, we consider three cases of
attack probability, which are analysed as follows:

Case 1: If the attack probability µ̄ = 0.5:
The filter gains can be calculated from Theorem 2:

Af 1 =

[
0.4321 −0.0042
0.0035 −0.0003

]
Bf 1 =

[
0.5231

−0.0113

]
Af 2 =

[
0.4415 0.0810

−0.0042 −0.0016

]
Bf 2 =

[
0.3870

−0.0136

]
Cf 1 =

[
1.1871 0.0265

]
Cf 2 =

[
1.1051 0.2073

]
The state estimation of the system based on the obtained

filter parameters leads to the following simulation curves.
Figure 3 plots the sequence diagram of the DoS attack
when µ̄ = 0.5, the filtering error e (ζ ) and xf (ζ ) − x (ζ ),
respectively.

Case 2: If the attack probability µ̄ = 0.7:
Combining with the circuit parameters above, the follow-

ing filter gains are obtained by solving the linear matrix
inequality in Theorem 2:

Af 1 =

[
0.2954 −0.0046
0.0054 −0.0003

]
Bf 1 =

[
0.6113

−0.0162

]
Af 2 =

[
0.3619 0.0649
0.0024 −0.0004

]
Bf 2 =

[
0.4208

−0.0212

]
Cf 1 =

[
1.1937 0.0085

]
Cf 2 =

[
1.1028 0.1982

]

FIGURE 4. Simulation curves when µ̄ = 0.7.

FIGURE 5. Simulation curves when µ̄ = 0.9.

Based on the filter parameters obtained above, the
following simulation results can also be obtained in Figure 4.

Case 3: If the attack probability µ̄ = 0.9:
We can obtain the following filter gains:

Af 1 =

[
−0.0257 −0.0012
0.0387 0.0015

]
Bf 1 =

[
0.6796

−0.1200

]
Af 2 =

[
0.1331 0.0065

−0.0050 0.0005

]
Bf 2 =

[
0.4518
0.0133

]
Cf 1 =

[
1.0198 0.0393

]
Cf 2 =

[
0.9295 0.0386

]
The state estimation of the system based on the obtained

filter parameters leads to the following simulation curves in
Figure 5.
By comparing the simulation results under three different

attack probabilities, we can find that the filtering error e (ζ )
shows different simulation effects under different probability
of attack, but eventually tend to be stable. This indicates that
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the filter designed in this paper achieves the expected state
estimation effect and the design is effective.

V. CONCLUSION
This paper delves into the H∞ filtering of discrete-time
SMJSs against DoS attacks, where the DoS attacks follow
Bernoulli distribution. Some criteria for regular, causal, and
stochastically stability, along with assessing H∞ perfor-
mance of the FES are established. Linear matrix inequalities
are employed for filter design, showcasing their feasibility
and deriving filter parameters. Finally, a practical example by
using a tunnel diode demonstrates the method’s efficacy and
superiority. Future research should explore nonlinearities in
SMJSs and address challenges arising from limited access to
state information.
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