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ABSTRACT Real-time systems mostly interact with the external world and each input operation must
meet predetermined deadlines to be useful. However, in many real-time applications, a partial result is
also acceptable. We developed a reward-based mixed criticality system based on the resource reservation
approach to address the problem of ensuring the effective execution of low- and high-criticality tasks in
both low- and high modes, even under heavy workloads. Using dedicated servers with pessimistic resource
allocation for each high criticality task ensured their execution in both modes unaffected by low criticality
tasks. The surplus resources are reclaimed and assigned to low critical tasks’ server by utilizing a greedy
reclamation of unused bandwidth (GRUB) algorithm. Three strategies were suggested for server allocation
to low criticality tasks: a dedicated server for all low criticality tasks, a single server for each low criticality
task, and two servers (mandatory and optional) for each low criticality task. Our analysis revealed efficiency
of the first approach by achieving 100% schedulability at a 1.1 target utilization, scheduling 20% and 50%
more task sets than the second and third approaches, respectively.Moreover, the effectiveness of the proposed
approach over existing imprecise mixed criticality approaches were demonstrated through comprehensive
experimentation.

INDEX TERMS Greedy reclamation, imprecise computation, imprecise mixed criticality (IMC) systems,
mixed criticality systems, real-time systems, resource reservation reward-based scheduling, servers.

I. INTRODUCTION
Real-time systems include a wide range of systems, from
basic control loops in embedded systems to complex net-
works of distributed systems. The specifications, standards,
and applications of these systems cover a wide range of
areas such as industrial automation, aviation, automobile,
smartphones, andmedical systems.Modern real-time embed-
ded systems frequently interact outside the environment;
consequently, their output must be generated in real time, i.e.,
within a certain amount of time or it is rejected and considered
a failure. Therefore, both logical and temporal correctness are
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key factors for defining the correctness of the systems. Being
logically correct implies generating an accurate result, which
is typically required in general computing systems. However,
real-time system scheduling imposes additional emphasis
on temporal correctness, which simply refers to generating
accurate results within a given period. Real-time systems
are reactive systems that must produce relevant outputs
for specific inputs under predetermined time constraints.
For example, the airbag in a vehicle must be deployed
in a fractions of a second, neither too soon nor too late.
Safety-critical applications are primarily based on real-time
systems wherein a controller malfunction can result in severe
casualties, thereby endangering life. Fundamentally, there
are two categories of real-time constraints: hard and soft

49134


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0001-9117-3692
https://orcid.org/0000-0002-7972-9990
https://orcid.org/0000-0002-5198-5730
https://orcid.org/0000-0001-9135-8881
https://orcid.org/0000-0003-3448-9804
https://orcid.org/0000-0002-8366-3533
https://orcid.org/0000-0002-5196-8148


A. Ali et al.: Mixed Criticality Reward-Based Systems Using Resource Reservation

constraints. In hard real-time systems, missing a deadline can
result in catastrophic consequences, including fatalities and
loss of resources. Examples include vehicle airbag systems
or high-speed rail signaling systems. Unlike hard real-time
systems, deadlines missed in soft real-time systems such as
surveillance systems or the global positioning system (GPS)
does not cause catastrophic consequences; however, it affects
the service quality of the system.

Many applications employing real-time systems now
exhibit another crucial feature known as criticality level,
which is attributed to the emergence of safety critical systems
with various functionalities such as safety critical, mission
critical, and low critical. The assurance level required to
prevent a safety-critical system component from failing is
referred to as criticality and there can be up to five levels
of criticality. A safety-critical system with two or more
levels of functionalities is commonly known as a mixed
criticality system (MCS). A good example of an MCS
with multiple levels of functionalities is a modern vehicle.
The modern vehicle performs safety-critical functions with
a higher level of criticality, such as in airbag systems or
antilock braking systems, and mission critical functions
with a lower level of criticality, such as in radio or air-
conditioning systems. Because the operational safety of the
entire system relies heavily on safety-critical functionalities,
their failure may have disastrous effects, such as loss of assets
or human life. Mission-critical functionalities have no effect
on the safety of the system because of their lower criticality
level; however, their failure degrades the overall service
quality of the system. A safety-critical system with different
functionalities of various criticality levels operating in a
single and reliable computing environment is referred to as
an MCS.

The traditional safety-critical real-time systems had to
be tested and certified in their entirety to show that they
were safe to use. On the other hand, the design of an
MCS is subjected to certification at different criticality
levels by the certification authority (CA) for their successful
deployment. The concern of CA is only the temporal
correctness of the safety-critical part of an MCS under very
pessimistic assumptions (e.g. worst-case execution times
(WCETs) calculated from static analysis of a code), while the
responsibility of system designer is to ensure that the entire
system operates correctly by guaranteeing the correctness
under less pessimistic assumptions (e.g. WCETs from the
measurements of a code). Therefore, for the guaranteed
execution of high critical tasks in any scenario, CAs consider
highly pessimistic cases that are rare and improbable to really
occur. Consequently, exaggerated WCETs are considered for
these highly critical tasks, leading to wastage of resources.
Vestal [1] suggested designating a high critical task with
multiple WCETs to manage this exaggeration. Owing to
the optimistic WCETs of high critical tasks, all high- and
low critical tasks can be successfully scheduled, and hence,
they can better utilize the hardware resources. This operating

mode of an MCS is known as the low criticality mode.
The system mode is changed to a high criticality mode
when, in a rare scenario, the execution of a highly critical
task cannot be completed according to its optimistic WCET.
In the high critical mode, certified pessimistic assumptions
are utilized for scheduling high critical tasks, and this affects
the schedulability of low critical tasks, and therefore, they are
dropped in this mode.

The problem of scheduling real-time tasks in overload
conditions refers to those critical situations in which the
computational demand requested by the task set exceeds
the time available on the processor. The primary risk is
potential deadline misses for critical tasks, impacting overall
system behavior. In real-world scenarios, system overloads
can arise due to factors like simultaneous arrival of tasks,
malfunctioning of input devices, unexpected environmental
variations, and operating system exceptions. For example,
the systems that are designed with inefficient approach might
function well under regular circumstances but collapse during
peak load situations when demands exceed resources. Even
well-designed systems can face load spikes due to multiple
simultaneous events.

The motivation behind the studied work is to address
the challenges posed by overloaded scenarios in real-time
MCSs. In realistic MCS model [2], the execution of low
criticality tasks in both low and high modes holds significant
importance. These systems play a vital role in safety-critical
domains such as aerospace, defense, and medical devices,
where timely and dependable task execution is crucial.
The schedulability of MCSs with heavy workloads is a
challenging research problem in the field of real-time
systems. Ensuring the schedulability of high criticality tasks
while guaranteeing partial or complete schedulability of low
criticality tasks in the high mode is difficult because heavy
workloads can lead to deadline misses and system failures.
The significance of this research lies in the development
of an effective MCS scheduling strategy that ensures the
successful execution of high critical tasks while maintaining
system stability and quality by ensuring the execution
of low criticality tasks in both low and high modes.
By achieving this, the proposed approach contributes to
enhancing the reliability, safety, and performance of MCSs
under demanding workloads, thus advancing the field of
real-time systems and critical applications.

To address the issue of the schedulability of low critical
tasks in both modes, several scheduling strategies were
proposed by Burns and Baruah [3]. To enable low criticality
tasks to make progress after the system shifts to high mode,
they suggested retaining the schedulability of these tasks
without affecting the schedulability of high criticality tasks.
In the context of a fixed priority system, this can be achieved
by: (i) adjusting the priority of these tasks to be lower
than any high criticality task, (ii) reducing the execution
time requirements of low criticality tasks to ensure their
execution in the spare capacity available in high mode, or
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(iii) extending the period of low criticality tasks to achieve
a similar outcome. The proposed approach in our research
work draws inspiration from the second approach. However,
in the proposed approach, by associating a reward with the
execution of low criticality tasks, their reduced WCET can
be extended to enhance their output quality, leading to an
improvement in overall system performance.

In this research work, we adopted a resource reservation
technique with reward-based scheduling. The resource reser-
vation technique is a class of techniques that can ensure the
schedulability of high criticality tasks in MCSs during peri-
ods of heavy workload. These techniques work by reserving
system resources such as CPU time, memory, or bandwidth
for high criticality tasks, while still allowing low criticality
tasks to execute when resources are available. The main idea
of the proposed approach is providing high criticality tasks
with sufficient resources to ensure their execution in both
modes, even under heavy system workloads. Reward-based
scheduling is adopted for scheduling low critical tasks. The
basic concept of this technique is to compromise precision
for timeliness when resources are insufficient for achieving
the WCET guarantees. It divides each low critical task into a
pair of logical parts: the mandatory part produces an output
with the minimum acceptable quality, and the execution of
the optional part enhances the quality of the produced output
when there is sufficient computing capacity; otherwise, it is
discarded.

The performance of the proposed approach is evaluated
through a comprehensive comparison with other state-of-
the-art [3], [4], [5] scheduling algorithms for the IMC
model. The results demonstrate that the proposed technique
outperforms these approaches in terms of heavy workloads.
The proposed technique effectively ensures the schedulability
of high criticality tasks without being affected by the
behavior of low critical tasks. Three different strategies
are provided to schedule low critical tasks in both modes.
The advantages of the proposed system include improved
schedulability, i.e., reserving sufficient system resources for
high criticality tasks, even in heavy workload situations;
providing strong guarantees for WCETs and response times
of high criticality tasks; and ensuring a predictable and
reliable system performance. Further, the proposed technique
enables efficient resource sharing by allowing low criticality
tasks to use unused resources, which increases overall system
efficiency while providing strong guarantees for highly
critical tasks.

The main contributions of this study can be summarized as
follows:
• We proposed a modified version of the earliest deadline
first (EDF) approach with a tuned deadline EDF-TD for
high servers that schedule high critical tasks.

• We proposed a resource reservation technique in
the reward-based scheduling paradigm that effectively
schedules high criticality tasks independently of the
behavior of low criticality tasks. Furthermore, low
criticality tasks are also provided some service in the

high mode instead of being discarded. The pseudocode
for the proposed technique is also provided.

• We performed extensive experiments to evaluate the
effectiveness of the proposed technique over existing
IMC strategies.

To the best of our knowledge, this is an initial attempt
in MCSs to address a resource reservation based approach
within the paradigm of reward-based scheduling in a
single-core environment. Furthermore, in the context of the
multicore partitioned approach, where tasks are allocated
to different cores, the scheduling behavior of each core
closely emulates that of a single-core system, subject to
the exclusion of various sources of indeterminism within
the multicore paradigm. This is due to the fact that the
multicore partitioned approach lacks task migration between
cores. Hence, the advent of multicore processors can also
benefit from the applicability of single-core algorithms.
Moreover, this research work focuses on periodic task
model that are commonly encountered in various real-world
applications, including industrial automation, automotive
systems, and multimedia processing, where tasks often need
to be executed at regular intervals. For example, in a chemical
plant temperatures, pressure and other attribute are measured
periodically and all information is passed to the controller.
By focusing on periodic task models, we aim to provide a
targeted analysis of the challenges and solutions related to
this specific scenario. However, the proposed system holds
the potential to incorporate sporadic task models.

The remainder of the paper is organized as follows:
Section II discusses the relevant literature. Section III
describes the proposed system model by defining a task
model and discussing the behavior of the system. Section IV
describes the proposed technique and defines server specifi-
cations along with the pseudocode of the proposed technique.
The motivation to support this approach is also discussed.
Section V outlines the necessary conditions required for the
schedulability of the proposed technique. Section VI dis-
cusses the schedulability analysis of the proposed technique
in both low and high modes. Section VII analyzes the results
obtained from the experimental evaluation. Section VIII
concludes the study, and Section IX highlights the future
work of the proposed technique.

II. RELATED WORK
The domain of real-time systems on a uniprocessor, wherein
schedulability is the primary concern, has been widely
studied. Most studies investigated overload systems in
which it is difficult to satisfy deadlines for all tasks, and
the execution or abortion of tasks is determined by the
system. In such systems, the primary goal is increasing
the performance factor. To address this problem, imprecise
computation with mandatory and optional semantics for a
task were initially introduced. The primary focus of this
approach was to guarantee the execution of mandatory parts,
whilemitigating the overall system error. The time required to
execute an optional part indicates the accuracy of the system;
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a complete execution indicates zero error, whereas abortions
indicate the highest possible error. Another strategy of a
similar nature is described in a framework called increased
rewards with increased service (IRIS), wherein there is no
separation of a task into mandatory and optional parts, and
the task can run for as long as the scheduler permits with
no upper bound. Therefore, an increased reward is associated
with increased services. Aydin et al. [6] developed an optimal
reward-based scheduling algorithm for periodic tasks where
the reward function was associated with the execution of
the optional part of a task beyond its mandatory part. Based
on this approach, a schedule is considered feasible if each
mandatory part of all tasks is completed by the deadline. If the
accrued reward is equal to the optional portion of all tasks,
the schedule is considered precise; that is, all mandatory
and optional parts can be scheduled successfully to provide
the maximum reward function. Another strategy involves
defining distinct quality-of-service (QoS) parameters for
various tasks. Based on the specificQoSmeasures, the system
selects certain QoS levels for various applications depending
on the available resources for maximizing the overall system
utility.

An emerging practice in the design of safety-critical real-
time systems is the integration of different applications with
different criticality levels into a shared computing platform
known as an MCS, which was first introduced by Vestal [1]
in 2007. An MCS is executed in two modes: the low critical
mode and the high critical mode. All low- and high-criticality
tasks are successfully scheduled in low modes for reduced
WCETs for highly critical tasks. The system switches to
highly critical mode when a highly critical task signals for
more computations than their reduced WCETs. Therefore,
to guarantee the schedulability of high criticality tasks
with their pessimistic WCETs, all low criticality tasks are
discarded in the high critical mode. Several earlier scheduling
strategies, including fixed priority and dynamic priority
scheduling algorithms were expanded to accommodate the
behavior of MCS.

The MCS schedulability problem has recently attracted
considerable research attention. Burns and Davis [2] offer a
comprehensive overview of MCSs designed to handle tasks
with varying levels of criticality, from safety-critical to non-
critical, on a single computing platform. They discuss various
aspects of MCSs, such as their challenges, design principles,
scheduling techniques, and fault tolerance mechanisms,
aiming to provide a valuable resource for researchers and
practitioners in the field. Most MCS research is based on
Vestal’s [1] mixed criticality model. However, this model
significantly affects the low criticality task services, and
therefore, the vestal mixed criticality model is criticized
by certain system designers [3], [7]. Therefore, operating
in the high mode while serving low critical tasks is very
challenging. To address this problem, several new MC
scheduling strategies have been developed. For example,
adjusting the priorities of certain low criticality tasks [8]
or reducing the execution frequency of low criticality tasks

through a period extension [7] for ensuring schedulability.
However, some applications may choose a lower-quality
output to avoid missing deadline instead of achieving a
delayed result with precise quality. Consequently, extending
the period of low criticality tasks is ineffective for such
applications. Various techniques have been investigated to
address this problem, including the reduction of a few or
all low critical tasks’ executions times [3], [4] by using
an imprecise mixed criticality (IMC) model [5], [9], or by
efficient controlling the budget [10].

The first paper of Baruah and Vestal [11] on MCS with
EDF Scheduling was published in 2008. A slack-basedmixed
criticality technique, criticality-based EDF (CBEDF), was
developed by Park and Kim [12] for EDF scheduled tasks.
They attempt to delay the execution of highly critical tasks as
far as possible by using a series of online and offline analyses.
Delaying high criticality tasks helped acquire free time slots
for scheduling low critical tasks. Su et al. [13] used the elastic
task model, which makes use of available capacity by altering
the task periods. By defining the maximum period, they
suggested a reduced level of service for each low criticality
task. Lipari and Buttazzo [14] utilized a reservation model to
examine EDF in MCSs wherein sufficient budget is reserved
for the pessimistic and certified WCETs of high criticality
tasks. Some low criticality tasks can be executed in the slack
spared by highly critical tasks using an efficient reclamation
mechanism because the high criticality tasks are executed
in the low mode with optimistic WCETs. Further, these
high criticality tasks are executed as early as possible by
tuning their deadlines to maximize the reclaimed capacity.
Our proposed system is loosely based on this approach .

The IMC model is used by Burns and Baruah [3], and it
helps reduce the execution budget for low criticality tasks
when the system switches to the high criticality mode. They
extended the adaptive mixed criticality (AMC) approach
to test the schedulability of an IMC task set under fixed-
priority scheduling. Via comparison, the schedulability under
EDF with virtual deadlines (EDF-VD) outperforms AMC.
Furthermore, Baruah et al. [4] analyzed the schedulability
of an IMC model under MC-fluid scheduling. However,
in practical scenarios, it suffers from a substantial schedul-
ing overhead caused by the frequent context switching,
significantly affecting the scheduling performance of the
system. The initial attempt to analyze the schedulability and
performance of the IMC model under EDF-VD scheduling
was reported by Liu et al. [5]. This approach is similar to that
of the earlier mixed criticality model. However, unlike the
earlier model, this approach does not discard low criticality
tasks after switching to the high criticality mode. Instead,
they are scheduled at reduced execution times. If a highly
critical task is executed because of its low WCET without
signaling completion, then the high criticality mode is
activated. After the switch time instant, high criticality tasks
are scheduled using their high criticality WCET whereas
low criticality tasks are scheduled using a reduced execution
time. However, this approach suffers from limitations such
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as poor performance in heavy workloads and no guarantee
of executing low criticality tasks beyond its high WCET
in the high mode if resources are available. As previously
mentioned, the IMC model allows controlled performance
reduction for low criticality tasks in high mode due to shorter
WCET.

The following papers demonstrates recent trends in the
IMC framework. The study conducted by Jiang et al. [9]
proposed HIART-MCS introducing a novel hardware proces-
sor enabling task approximation along with an intermediate
system mode for running less critical tasks with reduced
precision. They developed a theoretical model and schedu-
lability analysis to ensure system timing and optimize mode
switching. HIART-MCS was the first practical framework
for imprecise MCSs. Jiang et al. [15] presented a novel
IMC framework that mitigated computation errors caused by
imprecise computation, achieved real-time performance near
that of a conventional MCS, enhanced system-level through-
put, and provided flexibility for run-time configuration.
Zhang et al. [16] studied the energy minimization problem of
non-preemptive dynamic priority scheduling and developed
schedulability tests for non-preemptive earliest deadline
first with virtual deadline (NP-EDFVD) for IMC tasks.
They introduced the uniform single-speed (USS) algorithm
based on the schedulability tests of NP-EDFVD. The USS
algorithm aimed to reduce energy consumption while safe-
guarding IMC correctness and achieved an average energy
savings of 25.62%. In a study conducted by Zhang et al. [17],
they explored the partitioned scheduling of an IMC taskset on
a uniformmultiprocessor platform by employing EDF-VD as
the uniprocessor task scheduling algorithm. They primarily
aimed to address the optimization problem of identifying
a feasible task-to-processor assignment while optimizing
the processor speed in low mode in order to minimize
the system’s average energy consumption in low mode.
Zhang [18] introduces an energy-aware mixed criticality
real-time scheduling approach for the IMC task model.
Their work addresses the energy minimization problem
by using dynamic voltage and frequency scaling (DVFS).
The proposed energy-aware IMC scheduling algorithm
(EA-IMC) efficiently schedules tasks with the energy-
efficient speed of SLO in low mode and the maximum proces-
sor speed Smax in high mode. Experimental results showed
an average 24.55% energy reduction. Zhang et al. [19]
introduced a criticality-aware EDF (CA-EDF) scheduling
algorithm designed to enhance schedulability by delaying
low criticality task execution. Their work established schedu-
lability conditions for CA-EDF using the Demand Bound
Function. Experimental results demonstrated about 13.10%
improvement in the schedulability ratio. Zhang and Chen [20]
introduced the energy-efficient allocating algorithm (EEAA),
a partitioning algorithm driven by genetic algorithms.
They investigated a range of parameter combinations to
optimize task-to-processor assignments and minimize energy
consumption. Their experiments demonstrated a substantial
energy savings of 12.56% achieved by EEAA. Another

noteworthy trend is the adoption of precise mixed criticality
scheduling [21] where all tasks receive full execution budget.
Inspired by MC-Fluid and using dynamic voltage and
frequency scaling (DVFS), it minimizes processor speed
under normal conditions and restores full speed during task
overruns (mode switch). The precise MC scheduling is
extended to constrained-deadline tasks using demand-based
schedulability analysis, allowing flexible virtual-deadline
settings [22].

Besides uniprocessor systems, significant research has
also been conducted in MCSs in a multicore environment.
Research related to QoS in the multicore paradigm was
extensively studied under MCSs. Chai et al. [23] provided a
comprehensive survey of the recent research on MCSs. Their
work covers various aspects of MCSs, including the system
architecture, scheduling algorithms, resource allocation, fault
tolerance, and QoS provisioning. Further, they discuss the
challenges and opportunities in the design and implemen-
tation of MCSs, and they provide insights into future
research directions. Another study by Pathan [24] proposes a
federated-scheduling algorithm for parallel mixed criticality
tasks on multiple processors that improves the schedulability
and QoS of the system. The proposed algorithm employs
efficient task partitioning technique to maximize system
utilization and reduce the interference between tasks of
different criticality levels. Roy et al. [25] proposed a
scheduling algorithm called SLAQA, which considers the
quality level of tasks in a task graph and the heterogeneity
of the distributed system to optimize scheduling. SLAQA
assigns high-quality tasks to powerful processing nodes and
low-quality tasks to less powerful nodes, minimizing the
execution time while meeting quality requirements, which
makes it useful for high-performance applications such as
video processing and multimedia.

The motivation behind the proposed approach is to address
the challenges posed by overloaded scenarios in real-time
MCSs. As heavy workloads might result in missed deadlines
or even system breakdowns, it is challenging even in low
mode to guarantee the schedulability of high criticality tasks
along with the partial or complete execution of low criticality
tasks. The significance of this research work lies in the
development of an effective MCS scheduling strategy that
ensures the successful execution of high critical tasks while
maintaining system stability and quality by ensuring the
execution of low criticality tasks in both low and high modes
even in heavy workloads. In this research work, we adopted a
resource reservation technique with reward-based scheduling
framework. To the best of our knowledge, this is an initial
attempt in MCSs to address heavy workload scenarios
by utilizing a resource reservation based approach within
the paradigm of reward-based scheduling in a single core
environment.

III. SYSTEM MODEL
We utilized a resource reservation-based approach for
scheduling high criticality tasks independent from the
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behavior of low criticality tasks. Low criticality tasks in the
systems are characterized as soft real-time tasks that allow
imprecise computation. Therefore, reward-based scheduling
framework was used to schedule them. We adopted a
uniprocessor architecture to schedule reward-based mixed
criticality workload.

A. TASK MODEL
In our system, we considered n independent periodic and
preemptive tasks set T = (t1, t2, t3, ..tn) scheduled in a
uniprocessor system. A task in the system is represented by
ti which refers to ith task in a tasks set T . However, a specific
job of task is represented by tij which refers to jth job of the ith

task. MCS tasks are scheduled in the low criticality mode at
first, and then, they are switched to the high criticality mode
when a highly critical task does not signal completion within
its low-mode WCET. Each task ti in the MCS task set T is
specified by a 4-tupled parameter ti = (Pi,CLO

i ,CHI
i ,L) as

• Pi ∈ R+ is the task’s period, defined as the shortest
interval between successive jobs. (The task’s deadline
Di and period Pi are considered equal, and Di = Pi).

• CLO
i ∈ R

+ represents the optimistic WCET of a task.
• CHI

i ∈ R
+ represents the pessimistic WCET of a task.

• L ∈ (LO,HI ) represents the criticality level, with LO
and HI indicating low criticality and high criticality of a
task, respectively.

Reward-based scheduling is only concerned with the
execution of low criticality tasks in the system which is
composed of the mandatory part execution emi , and the
optional part execution eoi . Execution of the mandatory part
delivers theminimum acceptable output, whereas the optional
part enhances the quality of the output. A reward function
Ri(xij) is used to measure the quality of a system, where xij
denotes the optional part of the jth job of the ith task that is
being executed by the CPU. The reward function Ri(xij) of a
task ti is given by (1).

Ri(xij) = wi · fi(xij) (1)

where xij is the amount of CPU time allocated to the execution
of optional part eoi and w denotes the weight of a low critical
task which allows us to distinguish between the importance
of optional parts of different low criticality tasks. The
function fi is considered to be a continuously differentiable,
non-decreasing, and linear function over non-negative real
numbers [6] which means that the benefit to the overall
system increases uniformly during the execution of optional
parts. The overall cumulative reward Rcumi obtained during
a hyper period H for a low critical task ti is determined
using (2).

Rcumi =

H/Pi∑
j=1

Ri(xij) (2)

Consider two low criticality tasks with P1 = 6, em1 = 2,
eo1 = 2, P2 = 12, em2 = 3, eo2 = 3, and one high criticality
task with P3 = 8, CLO

3 = 2, CHI
3 = 4. Moreover, lets

FIGURE 1. Schedule of a given task set.

assume the weight w1 of task t1 to be 5 and the weight w2 of
task t2 to be 3 which highlights the importance of t1. The
schedule produced by the EDF algorithm of the given task
set is shown in Fig. 1.

As evident from Fig. 1, task t3 which is classified
as a high critical task, consistently achieves successful
execution in each invocation. Conversely, tasks t1 and
t2, categorized as low critical tasks, face challenges in
securing complete execution within the available resources.
However, the execution of low critical tasks is ensured by
adopting the reward-based scheduling framework. In this
context, the successful execution of low critical tasks pertains
to the successful execution of their mandatory parts, while the
execution of their optional parts contribute to enhancing the
output quality. Fig. 1 illustrates this scenario, showcasing
the accomplished execution of mandatory parts of both tasks
t1 and t2 during each invocation, coupled with the additional
benefit of executing their optional parts as denoted by Oi,
resulting in a reward. The optional part of task t1 receives
no CPU time in its initial invocation due to the absence of an
available time window. However, during the first invocation
of task t2 and the second invocation of task t1, a one-unit
time window becomes available, allowing execution of the
optional part of task t1 due to its higher weight. Likewise,
during the fourth invocation of task t1 and the second
invocation of task t2, a three-unit time window is available,
facilitating the complete execution of the optional part of task
t1 due to its higher weight. Subsequently, execution of one
unit of the optional part of task t2 is also carried out. The
reward accrued from the given task set can be calculated by
considering the CPU time consumed by optional parts of jobs
for low criticality tasks. Let the linear reward functions of
t1 and t2 be given by f1(t1) = 5 · x1j and f2(t2) = 3 · x2j.
Fig. 1 reveals that task t1 is invoked 4 times within a 24-unit
hyperperiod, as task t1 has a period of 6 units. In its initial
invocation, the optional part of task t1 does not receive any
execution (i.e., eoi = 0 units), and hence 5 ∗ 0. Subsequently,
during the second, third, and fourth invocations, the optional
part of task t1 receives 1 unit, 0 units, and 2 units of execution,
respectively. Therefore, the total reward for a low criticality
task t1 over a hyperperiod of 24 is given by

∑4
j=1 R1(x1j)

which is calculated as (5∗0)+ (5∗1)+ (5∗0)+ (5∗2) = 15.
Similarly, the total reward for the low criticality task t2 over
the hyperperiod will be

∑2
j=1 R2(x2j) which elaborates into

(3 ∗ 0)+ (3 ∗ 1) = 3. This yields the total cumulative reward
for the low critical tasks as 15+ 3 = 18.
In order to more clearly see the reward accrued for a task

during a hyperperiod, we compute the reward in percentage

VOLUME 12, 2024 49139



A. Ali et al.: Mixed Criticality Reward-Based Systems Using Resource Reservation

FIGURE 2. Schedulability of tasks using the EDF algorithm.

(RPi) using (3), whereas the total reward in percentage (TRP)
accrued for all tasks in a particular task set can be calculated
using (4).

RPi =

∑H/Pi
i=1 xi
eoi · H

· 100 (3)

TRP =
RPi + RPi+1+, · · · + RPn

n
· 100 (4)

We implemented a server-based technique in our system
where a task or group of tasks is assigned to a server.
To schedule these servers efficiently, we used a novel
approach to the EDF algorithm, i.e., EDF with tuned deadline
(EDF-TD) to schedule these servers. While EDF-VD offers
benefits in terms of handling varying execution times, its
complexity and overhead makes it less suitable for the
specific requirements of the proposed system because the
proposed system seeks an approachwith optimized efficiency
and lower complexity. In the proposed system, we are
only interested in tuning the deadline of high servers.
Consequently, the additional complexity and increased com-
putational overhead of EDF-VD for the calculation of virtual
deadlines have an impact on the overall system performance.
Therefore, to effectively tune the deadline of a high server,
we utilize the equation in (5) to tune Dt as

Dt =
CLO
i

CHI
i /Pi

(5)

The EDF-TD scheduler is used because the bandwidth
assigned to a high critical server is highly pessimistic.
Therefore, when scheduled close to the deadline, it consumes
more bandwidth than required. Therefore, we used amodified
EDF in which the deadline of a high server was tuned to
schedule jobs of high criticality tasks as early as possible.
Consider two tasks with t1 = (4, 2, 0,LO) and t2 =
(5, 2, 3.5,HI ) and their schedulability with EDF algorithm
is demonstrated in the Fig. 2. Due to a later deadline, task
t2 is scheduled close to the deadline which leaves only a
one unit window. This available window is not feasible if the
system switches to high mode at time 4 thereby highlighting
the significance of an early deadline.

The early execution of the high server also spares some
unused bandwidth that is reclaimed and utilized for the
execution of a low server. In other algorithms, it is difficult to
achieve such bandwidth reclamation. For example, in the least
laxity first algorithm, the tasks are scheduled according to
their laxity, which is the difference between the deadline and
the time remaining to complete the task. Tasks with higher
minimum laxity were assigned higher priorities and executed
first; this refers to the possibility that a task with a shorter
execution time and a later deadline may be scheduled before

tasks with longer execution times and earlier deadlines.
Therefore, it does not provide an efficient schedulability
of tasks. In the maximum urgency first (MUF) algorithm,
priorities are assigned to tasks based on the maximum
urgency of tasks. The maximum urgency is the ratio of
the remaining time to the deadline. The major drawback of
MUF is that it is a nonpreemptive algorithm. The modified
maximum urgency first (MMUF) algorithm is a modification
of the MUF algorithm. The MMUF algorithm extends MUF
by adding preemption threshold to prevent the starvation of
lower priority tasks. The preemption threshold specifies the
minimum urgency level that a task must reach before it can
preempt the task currently being executed. However, after
each instant of execution, the urgency level of each task is
recalculated, and the task with the highest urgency level is
selected for execution by the scheduler. This dynamic nature
of MMUF introduces some overhead because the priorities
need to be recalculated frequently, which affects system
performance.

B. SYSTEM BEHAVIOR
The system schedules all tasks of MCS in a uniprocessor
environment. The system, also known as a dual-criticality
system, has two operational modes that are recognized as
the low criticality and high criticality modes. The system
contains two types of tasks based on their criticality levels:
low and high critical tasks. Each task behaves differently
in each mode. All highly critical tasks are executed with
their optimistic WCETs, or CLO

i , when the system initiates
task execution in the low mode. In the improbable case, the
system is alerted to mode transition using a high critical task
when it fails to complete execution because of its lowWCET
CLO
i . Upon changing the mode, all high critical tasks CLO

i
are switched to CHI

i and continue to execute until they are
completed successfully. Afterwards, the system operates in
the high critical mode.

By implementing a resource reservation technique in a
reward-based scheduling framework, our main objective was
ensuring the effective schedulability of low critical tasks
in overloaded settings without compromising the execution
of highly critical tasks in either mode. To schedule highly
critical tasks in low- and high-critical modes, a separate server
was assigned to each highly critical task with a bandwidth
corresponding to the high-mode utilization of all highly
critical tasks. This indicates that highly critical tasks are
independent of the behavior of low criticality tasks because
they have sufficient bandwidth to schedule CLO

i and CHI
i at

low and high-critical modes, respectively. Excess Bandwidth
from high critical task servers are allocated to a server or
servers for scheduling low criticality tasks. It follows that the
the allocated bandwidth will be sufficient for the server to
schedule all low criticality tasks if their bandwidth is greater
than or equal to the utilization of low critical tasks they are
serving. However, if the server bandwidth is less than the
utilization of low critical tasks, then it is difficult to schedule
all low critical tasks in the server with a given bandwidth.
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TABLE 1. Reward-based mixed criticality task set.

FIGURE 3. Schedule of the task set without reward-based scheduling.

In the low mode, highly critical tasks rarely take longer
than their CLO

i ; the server of the low critical tasks uses
this extra bandwidth from high server to efficiently schedule
low critical tasks at least for their mandatory execution.
In addition, each low critical task additionally executes
beyond its mandatory part to enhance the quality of imprecise
outcomes when the recovered bandwidth is sufficient. The
schedulability of highly critical tasks is not disturbed bymode
transition or by being in a high mode because the server for
low critical tasks executes only in the bandwidth spared by the
server of the high critical tasks. However, the schedulability
of low critical tasks is also affected owing to the pessimistic
CHI
i of a highly critical task in the highly critical mode.

In contrast to many earlier techniques that fully discard all
low critical tasks in the high mode, our proposed system
attempts to execute as many low critical tasks as possible
within the the available bandwidth.

C. RESEARCH MOTIVATION
The feasibility problem for a periodic workload of a
reward-based MCS can be solved by simultaneously satis-
fying two key factors: guaranteed schedulability of highly
critical tasks with CLO

i and low critical tasks with emi with
an additional effort to enhance the system performance by
executing some or complete eoi .
Our proposed system efficiently satisfies these conditions,

particularly in overloaded situations. As an example, consider
the periodic task set T = (t1, t2) listed in Table 1.

The task set summarized in Table 1 makes it apparent
that the total utilization of task set is greater than 1 i.e.,∑n

i=1
CLOi
Pi
= 1.04, therefore, it cannot be scheduled by

using any fixed or dynamic priority scheduling algorithm,
as depicted in Fig. 3.
The above task set can be scheduled with an acceptable

result and some additional reward, as shown in Fig. 4,
using a reward-based scheduling approach, which trades
off the precision of low critical tasks with their timeliness.
By applying (4), a total cumulative reward of 87.5% is
produced for low critical tasks over a hyperperiod of 24.

IV. PROPOSED MIXED CRITICALITY REWARD-BASED
SCHEDULING
In an insufficient number of resources for ensuring worst-
case outcomes for soft real-time tasks, the reward-based

FIGURE 4. Schedule of the task set with reward-based scheduling.

scheduling framework compromises accuracy in the favor of
timeliness. The feasibility of such a workload can be satisfied
by fulfilling only the following conditions for a task between
its arrival time and deadline: Each low critical task either
completely executes or receives at least mandatory execution;
each highly critical task receives sufficient execution such
that in low mode, its CLO

i is executed successfully and when
the system switches to the high mode, its CHI

i execution is
ensured.

A. SERVER SPECIFICATION
In this study, a server-based technique is proposed for
scheduling tasks. In this approach, a task or a group of tasks
is assigned to the server Si. We used two types of servers, low
server SLOi and high server SHIi for the schedulability of low-
and high-criticality tasks, respectively. Specifications of the
low server SLOi = (QLOi ,Ti), whereQLOi denotes the budget of
the server used to schedule low critical tasks, and Ti denotes
the time period of the server after which the server replenishes
its budget. Likewise, the specifications of a high server SHIi =
(QLOi ,QHIi ,Ti), where QLOi denotes the low budget of the
server used to schedule the high- critical tasks in the low
mode, whereas QHIi denotes the high budget of the server
used to schedule highly critical tasks in the high mode where
Ti denotes the period of the server after which the server
replenishes its budget. The tuple (QLOi ,QHIi ,Ti) specifies
the parameters for SHIi , in which QLOi = CLO

i , QHIi =

CHI
i , Ti = Pi, whereas low sever SLOi may be described

by only two components, (QLOi ,Ti), where QLOi = BLO · Ti
and Ti = Pi and BLO refers to the bandwidth of the low
server. These servers act as a dedicated CPU for schedulabilty
of these tasks. The proposed server-based technique involves
dividing the available resource of a uniprocessor into distinct
servers, each with allocated resources and capacity similar
to a dedicated CPU. The criticality levels of tasks determine
the server they are assigned to, and tasks are executed
within their allocated resources during predefined time slots.
This approach ensures the effective execution of tasks while
ensuring critical tasks receive the required resources in any
scenario. Each server is assigned a portion of the bandwidth,
such that the total bandwidth of all these servers is equal to 1.

In our proposed system, each highly critical task is
assigned a separate server SHIi . The bandwidth of this high
server BHIi corresponds to the high-mode utilization of the
highly critical task. The allocation of such a high fraction of
resources to SHIi ensures the schedulability of highly critical
tasks at both low and high modes.

BHIi = UHI
tHIi

(6)

The notation tHIi in (5) represents the ith high critical
task, while UHI signifies the high mode utilization. As a
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whole, it refers to the high mode utilization of ith high critical
task. Equation (6) indicates adequate bandwidth allocation
to a high server, and as a result, the schedulability of a
highly critical task is ensured in both modes and becomes
independent of the behaviors of low criticality tasks. Now,
to schedule low critical tasks, the leftover bandwidth (BLO)
from the high servers is allocated to the low servers SLOi ,
as shown in (7).

BLO = 1−
∑
ti∈T

BHIi (7)

The server can be in any of the following states: The server
is in the inactive state if no tasks are available for execution
at time t . When a task arrives at time t , the server switches
to an active state. When a certain task begins execution and
consumes the capacity of a server by using (8), the server
shifts from an active state to a running state. Equation (8)
shows the consumption rate of a server’s budget at a certain
time.

dQi = −Uactdt (8)

The bandwidth of the currently active servers is shown by
the variable Uact . At time t , if all servers are active, then
the value of Uact will be 1, meaning that the server capacity
is used as the unit rate. If some of the servers are active,
the capacity is consumed at a slower rate (i.e., Uact < 1),
allowing for the recovery of the free bandwidth of the system.
The server returns to an active state from a running state when
it is preempted by another server with an earlier deadline.
Once all the server tasks have been successfully executed,
it shifts to an inactive state.

From (7), we can conclude that all low critical tasks in
the system can be scheduled successfully if utilization of low
critical tasks is less than or equal to BLO. However, all low
critical tasks cannot be scheduled successfully if utilization
of low critical tasks exceeds BLO. To overcome this problem,
the proposed technique schedules the mandatory execution of
all low critical tasks. Furthermore, it ensures the maximum
possible execution of the optional parts of low critical
tasks for the maximum reward. As discussed previously, the
execution of a highly critical tasks beyond CLO

i are rare.
Therefore, we reclaimed the excess bandwidth from a high
server using an algorithm called greedy reclamation of the
unused bandwidth (GRUB) [26]. The reclaimed bandwidth
is then allocated to the low servers. By using variable Uact ,
the reclaiming mechanism of the GRUB algorithm is used.
This variable determines the current CPU utilization rate by
a task in execution. When a highly critical job within a high
server executes for eij units and eij < CHI

i , then the recovered
bandwidth can be calculated using (9).

U rec
=
CHI
i − eij
Pi

(9)

Asmentioned previously, each high critical task is assigned
a separate server. For assigning low criticality tasks to low
server, three different strategies are proposed in this research.

In the first strategy, all low critical tasks are allocated to a
single server. In the second strategy, each low criticality task
is allocated to a single dedicated server, whose cumulative
bandwidth should not exceed maximum BLO. In the last
strategy, all low critical tasks are assigned to two separate
servers. Mandatory parts of these low critical tasks are
scheduled on one server, and their optional parts, on another
server. The sum of the bandwidths of both servers must
not exceed BLO. Consequently, the effectiveness of these
strategies are evaluated and compared.

B. REWARD-BASED RESOURCE RESERVATION
ALGORITHM
The following novel reward-based algorithm (Reward-Based
Resource Reservation (RBRR) uses the discussed server
mechanism to schedule tasks of an MCS in a reward-based
scheduling environment.

In Algorithm 1, line 1 initializes the active servers to
zero. Line 2 demonstrates criticality mode of the system.
In lines 3 and 4, all active tasks are assigned to the servers
using the function given in lines 8–16. Highly critical tasks
were assigned to dedicated high servers with a tuned deadline,
whereas low critical tasks are assigned to a low server. The
bandwidth of these servers is summed and the variable Uact

is updated accordingly. Line 6 schedules all active servers
using EDF-TD. In line 7, the server with earliest deadline is
shifted to the running state and its tasks begin to execute using
the function in lines 17–30. In line 18, if a server contains
more than one task, then these tasks are scheduled based on
their deadlines. In line 20, a job with an earlier deadline is
executed. Line 21 shows the consumption rate of the capacity
of the server. If a highly critical task does not indicate the
completion and the capacity of the server is fully consumed,
then the server’s tuned deadline is shifted to the actual
deadline and the criticality mode of the system is switched
to the high mode in lines 22–27. However, in lines 28–29,
when the capacity of a low server is exhausted, its deadline
is postponed, its capacity is replenished, and the function is
returned.

After analyzing the time complexities of the main
loops in the pseudocode, we obtain an approximate upper
bound on the overall time complexity. The first loop
While activeTasks = true iterates over all tasks in the task set,
and the second loop While Uact

̸= 0 executes until all tasks
have been scheduled and executed. The time complexity of
these loops depends on the number of tasks and the amount
of time it takes to execute operations within loops.

Assuming that the EDF algorithm used to schedule tasks
has a time complexity of O(nlogn), where n represents the
number of tasks and that the execution of a job with the
earliest deadline takes constant time, the time complexity of
the second loop can be approximated using O(nlogn).

The time complexity of the first loop depends on operations
performed within the loop. Assuming that the operations
within the loop take constant time, the time complexity
can be approximated using O(n). Therefore, the overall
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Algorithm 1 Reward-Based Resource Reservation
Algorithm (RBRR)
Input : A reward-based mixed criticality task set T
Output: Schedulability of the given task set T

1 Uact
← 0

2 L ← LO
3 while activeTasks = true do
4 Assign_Server(tij)
5 while Uact

̸= 0 do
6 Schedule Active Servers using EDF − TD
7 Server_Execution()

/* Function for Assigning Server */
8 Function Assign_Server(tij):
9 if tij ∈ THIi then
10 SHIi = active
11 dHIi = floor(CLO

i /(CHI
i /P))

12 Uact
= Uact

+ BHIi
13 else
14 SLOi = active
15 Uact

= Uact
+ BLO

16 return
/* Function for Server Execution */

17 Function Server_Execution():
18 Schedule tasks inside server using EDF
19 while server_capacity ̸= 0 or tasks available do
20 Execute job with earliest deadline
21 dQi = −Uactdt
22 if server_capacity = 0 then
23 if tij ∈ THIi then
24 if L = LO and di ̸= P then
25 di = P
26 L = HI
27 else
28 Di = di + P
29 Qi is replenished
30 return

time complexity of a given pseudocode is approximated as
O(nlogn).

V. SCHEDULABILITY TESTS
We employed a series of schedulability tests to ascertain the
schedulability of tasks in different modes and on various
servers. These tests assess whether a given task set can
be executed within the specified constraints, ensuring that
critical tasks meet their deadlines while effectively utilizing
the available system resources.

A. SCHEDULABILITY TEST IN LOW MODE
The schedulability of all tasks executed in low mode is
assessed in this test. The utilization of all high critical tasks
tHIi in low mode ULO

tHIi
and the utilization of the mandatory

parts emi of all low critical tasks is calculated and the following

condition is tested:

n∑
i=1

(ULO
tHIi
+
emi
P
) <= 1

If this condition holds for all tasks executed in low mode, the
task set is considered schedulable in low mode.
Proof: A necessary and sufficient schedulability condition

for an EDF system [27] is that the total utilization of the task
set must be less than or equal to 1,

∑n
i=1(Ui) <= 1. The

feasibility of the proposed system in low mode depends on
the successful execution of all high critical tasks tHIi as well
as at least the mandatory parts emi of all low critical tasks.
Therefore, the total utilization of tHIi and emi are equal to∑n

i=1(U
LO
tHIi

) and
∑n

i=1(e
m
i /P), respectively. By combining,

we get the schedulability condition of the proposed system
in low mode.

B. SCHEDULABILITY TEST IN HIGH MODE
In this test, we focus on the high critical tasks executed in high
mode. The total bandwidth BHI used by these high critical
tasks in high mode is calculated and the following condition
is tested:

BHI <= 1

If this condition holds for all high critical tasks executed in
high mode, the task set is considered schedulable in high
mode.
Proof: The feasibility of the proposed system in high mode

depends on the successful execution of all high critical tasks
tHIi for their high modeWCET CHI

i . From (6), the bandwidth
allocated to all tHIi is equal to

∑n
i=1(U

LO
tHIi

). Therefore, the
schedulability condition in high mode holds if the available
bandwidth is less than or equal to 1.

C. SCHEDULABILITY TEST OF HIGH SERVER
For each high critical task tHIi executed on a high server,
their utilizations in low mode ULO

tHIi
and high mode UHI

tHIi
are

calculated and the following conditions are tested:

n∑
i=1

ULO
tHIi

<= BHI

n∑
i=1

UHI
tHIi

<= BHI

If these conditions are satisfied for all high critical tasks
executed on high servers, the high server is considered
schedulable.

D. SCHEDULABILITY TEST OF LOW SERVER
For a low server, the utilization of the mandatory parts emi
of all low critical tasks is calculated. This calculated value
is then compared with the available bandwidth BLO of low
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TABLE 2. Reward-based mixed criticality task set.

server along with the reclaimed bandwidth U rec as follows:

n∑
i=1

emi
P

<= BLO + U rec

If this condition holds for a low server, it is considered
schedulable.
Proof: As the BHI is equal to the total utilization of high

critical tasks in high mode, the BHI is not fully utilized by
high critical tasks in low mode and the remaining bandwidth
is allocated to low server. Therefore, the low server is
deemed schedulable if the total utilization of low critical tasks
assigned to it is less than or equal to its allocated bandwidth
BHI along with the additional bandwidth reclaimed U rec.

VI. SCHEDULING ANALYSIS
We analyzed the schedulability of our proposed system in
both low and high modes for a reward-based mixed criticality
workload for three alternate strategies. We employed a task
set of three tasks denoted by t1, t2, and t3, where t1 and t2
represent low critical tasks and t3 represents a highly critical
task. Table 2 presents the parameters of the given task set.

A. SCHEDULABILITY IN THE LOW MODE
As mentioned previously, we used the following three
strategies to schedule a given task set in the lowmode: a single
server with bandwidthBLO is assigned to all low critical tasks,
a single dedicated server with a cumulative bandwidth less
than or equal to BLO is assigned to each low critical task,
and each low critical task is assigned to two servers i.e.,
a mandatory server and an optional server, both having a total
bandwidth less than or equal to BLO. High critical task tHI3 is
assigned to a dedicated server with BHI = 0.5, and therefore,
all low critical tasks are scheduled in the remaining available
bandwidth of 0.5. Note that the color schemes to depict the
analysis of task set schedulability employed in Figures 5 to 10
are as follows: light green indicates themandatory part of task
t1, sky blue represents the mandatory part of task t2, yellow
represents task t3, and dark green is utilized for both tasks
t1 and t2 to denote their optional parts. However, the red color
represents the amount of execution time missed by a task.

1) SINGLE SERVER FOR ALL LOW CRITICAL TASKS
In this strategy, we use two servers with BLO = 0.5 and
BHI = 0.5 because a single server is allocated to all low
critical tasks. The given task set does not appear schedulable
because utilization of low criticality tasks in low mode
ULO > BLO. Budget Qi and period Ti for SLOi and SHIi will

FIGURE 5. Schedulability with a single server for all low critical tasks.

FIGURE 6. Schedulability with dedicated servers for all low critical tasks.

be (6, 12) and (2, 4, 8), respectively. The proposed schedule
is shown in Figure 5.

Because of the availability of all tasks at t = 0, both servers
are in an active state. The capacity of server SLOi is 6 and that
of server SHIi is 2. Server SHIi begins executing tHI3 because
of an earlier deadline. Because all servers are active, Uact

=

SLOi + S
HI
i = 1, which is the servers’ capacity consumed per

unit of rate.
At t = 2, t3 is executed completely, and low critical tasks

inside a low server begin to execute at a unit rate because
dHIi = 4 and SHIi is active until t = 4. Server SHIi switches to
the inactive state at t = 4 and its bandwidth BHI is subtracted
from Uact . The server SLOi capacity is consumed at a rate
of 0.5.

At the current rate, the server’s capacity is consumed at
a 0.5 rate while executing tasks for one unit of time using
the GRUB algorithm’s [26] reclaiming mechanism. Although
ULO > BLO, the reclaimed bandwidth is what is required
to satisfy the schedulability of low critical tasks within the
server SLOi . Thus, all jobs were effectively scheduled by both
servers, and it obtained a total reward of 29.2% for the low
critical tasks.

2) SINGLE SERVER FOR EACH LOW CRITICAL TASKS
In this strategy, the system contains three servers, SLO1 , SLO2 ,
and SHIi , with bandwidths BLO1 = 0.25, BLO2 = 0.25, and
BHI = 0.5, respectively. This is because each low critical
task is assigned a separate server. SLO1 = (1.5, 12), SLO2 =

(3, 12), SHIi = (2, 4, 8), shows the parameters of the given
servers. The proposed algorithm’s schedule is shown in Fig. 6.
When the SLO2 budget is completely used, at t = 10, it is

recharged at q2 = 3 and calculates its deadline as d2 = 24.
Subsequently, SHIi preempts SLO2 to schedule t3, and when
t3 is executed at t = 12, the second job of t1 misses its
deadline. Therefore, the schedule above cannot satisfy the
feasibility constraints for a given task set.

3) SEPARATE SERVERS FOR MANDATORY AND OPTIONAL
PARTS
A low critical task comprises two parts, and therefore,
it is assigned to two servers, SLOM and SLOO , to execute its
mandatory part emi and its optional part eoi , respectively.When
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FIGURE 7. Separate servers for the mandatory and optional parts of low
critical tasks.

mandatory part emi is completely executed by server SLOM ,
only then the server SLOO is activated to execute optional
part eoi . Therefore, in this strategy, there are three servers in
the system SHIi , SLOM , and SLOO with bandwidths BHI = 0.5,
BLOM = 0.25, and BLOLO = 0.25, respectively. SLOM = (2, 8),
SLOO = (3, 12), and SHIi = (2, 4, 8) are the parameters for the
given servers. The proposed algorithm’s schedule is shown in
Fig. 7.

At time 0, only SLOM and SHI servers are active and the
capacity utilization rate of servers is 0.75. Task t3 begins
execution within the SHI server due to the server’s earliest
deadline and finishes execution at time 2. The mandatory part
of task t1 inside SLOM starts executing at 0.75 rate because
server SHI will still be active until its deadline. At time 4,
mandatory part of task t1 finishes due to which the server SLOO
becomes active and server SHI switches to inactive state, thus
changing the capacity utilization rate to 0.5. At time 5, the
budget of server SLOM is exhausted. Consequently, the server
SLOM replenishes its budget and recalculates its deadline to 16.
However, due to the earlier deadline, server SLOO preempts
server SLOM to execute the optional part of task t1. At time 6,
server SLOO switches to inactive state as there are no pending
optional parts to execute. Consequently, server SLOM remains
the only active server within the system, continuing the
execution of task t2 at a rate of 0.25 and finishing mandatory
part of task t2 at time 8, subsequently triggering the activation
of server SLOO . At time 8, a new job of task t3 is released and
the server SHI becomes active. With all servers concurrently
active in the system, task t3 begins execution at a unit rate.
Task t3 completes the execution at t = 10, but server SHIi
will remain active until t = 12 and therefore, the emi of
t2 is executed at a unit rate inside SLOO because of its earliest
deadline. When the server SLOO reaches its deadline at t = 12,
it stops executing eo2, recharges its budget q1 = 3, calculates
its next deadline d = 24, and shifts to an inactive state. At this
point, the emi of t2 is not completed by its deadline and the
given schedule is not feasible.

4) SCHEDULABILITY IN HIGH MODE
Schedulability of the task set in the high mode is similar to
that in the lowmode with only two differences: a high-budget
QHIi is used by server SHIi ; the actual deadlines of highly
critical tasks will be used for server SHIi instead of shorter
deadlines. Fig. 8, Fig. 9, and Fig. 10 show the schedules
provided by all three strategies in the high mode.

Fig. 8, Fig. 9, and Fig. 10 show that the proposed system
can successfully deliver complete or partial services to low

FIGURE 8. Single server for all low critical tasks in the high mode.

FIGURE 9. Dedicated servers for each low critical task in the high mode.

FIGURE 10. Separate servers for the mandatory and optional parts of low
critical tasks in the high mode.

critical tasks while guaranteeing the schedulability of the
highly critical tasks in the high mode. We observe that the
third strategy, depicted in Fig. 10, performs worse than the
other two strategies, as shown in Fig. 8 and Fig. 9.

VII. EXPERIMENTS AND RESULTS
Reward-based mixed criticality task sets were used as
the workload to analyze the effectiveness of the proposed
technique. For a given utilization, the effectiveness was
studied by comparing all three proposed strategies discussed
earlier with studies considering the IMC model, AMC
approach [3], MC-Fluid approach [4], utilization-based
test [5], and demand-bound function test [5] with respect
to schedulability performance. In the experiment, SS, DS,
MOS, UTIL, DBF, AMC, and MCF denote the single-server
strategy, dedicated server strategy, mandatory and optional
server strategies, utilization-based test [5], demand-bound
function test [5], Adaptive Mixed Criticality approach [3],
and MC-fluid approach [4], respectively. The experimental
results show that the SS strategy outperforms all other
approaches.

A. TASK SET GENERATION
Task sets of reward-based mixed criticality workloads were
produced randomly for the experimental evaluation, and the
utilization of the initial task being produced was set to zero.
BHI ,RHI ,RLO, and PMax parameters are adjusted to create a
random task set. The parameter BHI specifies the bandwidth
assigned to the high servers. The ratio of CLO

i to CHI
i for

highly critical tasks is represented as RHI . Similarly, the ratio
of emi to eoi for low critical tasks is represented by RLO. The
maximum task period is denoted as PMax . A dedicated server
for high critical tasks captures the probability parameter
of a generated task in the system to be a highly critical
task because it provides sufficient bandwidth to each highly
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FIGURE 11. Schedulability analysis of system with BHI = 0.5.

critical task to guarantee its schedulability in both modes.
The criticality level, computation time, and period of a mixed
criticality task characterize the random generation. If L =
LO, the task being created is a low critical task; if L = HI ,
it is a high critical task. TheCLO

i of a low critical task consists
of two parts: emi and eoi , where e

m
i = eoi · R

LO. Similarly, the
computation time for high critical tasks is CHI

i = CLO
i · R

HI .
RLO and RHI are fixed multipliers, ranging from 1 to 1.5. For
each mixed criticality task ti, period P is determined through
a uniform random distribution with a range of 1ms to PMax .

B. RESULT ANALYSIS
The mixed criticality task set size n ranges from 2 to
6, RLO and RHI range from 1 to 1.5, BHI ranges from
0.1 to 0.9, and PMax is 30ms. The settings were evaluated
experimentally using various simulation parameters. The n
parameter represents the number of tasks in the task set, RLO

represents eoi /e
m
i , R

HI represents CHI
i /CLO

i , and for a high
critical task,BHI represents their servers’ total bandwidth. For
the experimental evaluation, there were at least 100 task sets
at each point in Fig. 11 and Fig. 12, and at least 1000 task sets
for each of the points in Fig. 13 and Fig. 14. The results of the
experiments conducted on the behavior of low critical tasks
in a given task set using a single server, multiple dedicated
servers, and mandatory and optional servers were compared
with other IMC approaches.

Percentage of task sets that can be scheduled using all these
methods are shown in Fig. 11, with BHI = 0.5, RHI =
1.5, and target utilizations ranging from 0.1 to 1.8. Target
utilizations beyond 1 indicate overloaded scenarios. The SS,
DS, andMOS strategies had 100% schedulability for 1.1, 0.9,
and 0.8 target utilizations, respectively. Similarly, the DBF,
UTIL, MCF, and AMC strategies had 100% schedulability
with 0.6, 0.55, 0.55, and 0.45 target utilizations, respectively.
The schedulability percentage for all strategies decreases
gradually; however, the SS strategy still outperforms all
other strategies showing higher schedulabilty. Moreover, the
performances of the AMC, MCF, UTIL, and DBF strategies
can can be observed only within the maximum utilization
of 1. This is because of the lack of schedulability of task
sets in overloaded scenarios. The significance of the proposed
approach is as follows: observed at a target utilization

FIGURE 12. Reward percentage of system with BHI = 0.5.

U = 1.1, where the SS strategy schedules 100% of the
task sets and DS and MOS strategies schedules 80% and
50% of the task sets whereas DBF, UTIL, MCF, and AMC
strategies had zero schedulability. Therefore, the approaches
are evaluated, and the results indicate that the SS strategy
schedules 20%more task sets than that using the DS strategy,
50% more tasks than that using the MOS strategy, and 100%
more tasks than that using the DBF, UTIL, MCF, and AMC
strategies for U = 1.1. Moreover, when U = 1.2, the
schedulability of the SS strategy decreases to 84%, whereas
those of DS andMOS decrease to 56% and 24%, respectively.
The SS strategy has a comparatively 28% and 60% higher
schedulability than that of the DS and MOS strategies,
respectively. Further, the schedulability of all strategies for
mixed criticality task sets decreases with an increase in
target utilization, which highlights the effects of increasing
utilization on the overall system performance.

Unlike other approaches, the schedulability of the pro-
posed approach accrues a reward, as shown in Fig. 12. The
SS, DS, and and MOS strategies yield rewards of 100% for
U = 0.9, U = 0.6, and U = 0.4, respectively. The
100% of the reward percentage of a strategy for a given
target utilization reveals that the complete execution of all
low critical tasks (mandatory parts, as well as optional parts).
In terms of accrued rewards, the SS strategy outperforms the
other two strategies. The rewards gained by the DS and MOS
strategies is 76% and 52%, respectively, for U = 0.9. This
indicates that the rewards gained by using the SS strategy
are 24% and 48% higher than those of the DS and MOS
strategies.

Fig. 13 illustrates the influence of the imprecise mixed crit-
icality task sets on the schedulability of all IMC approaches
using the weighted acceptance ratio and varying BHI settings.
Fig. 13 reveals that the SS strategy outperforms all other
strategies with varying parameters of BHI . However, the DS
and MOS strategy perform better than the DBF, UTIL, MCF,
and AMC strategies, and after BHI = 0.5, their difference
in performance with DBF becomes negligible. Moreover,
the UTIL and MCF strategies exhibited similar trends with
different BHI values, whereas the performance of AMC up to
BHI = 0.5 is considered the worst of all strategies; however,
after BHI = 0.5, the difference is minimal.
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FIGURE 13. High server bandwidth BHI vs. weighted schedulability.

FIGURE 14. High server bandwidth BHI versus weighted gain reward.

The weighted ratio of the accrued reward when scheduling
reward-based mixed criticality task sets for various param-
eters of BHI are shown in Fig. 14. We observe that the SS
strategy outperforms the other two in terms of providing
services to low critical tasks with different values of BHI .
However, when BHI = 0.6, the difference in the performance
of SS andDS strategies isminimal, whereas theMOS strategy
performs the worst of all three proposed strategies.

A 3D graph was converted into a 2D graph by utilizing the
weighted schedulability measure [28]. Target utilization set
u and the weighted schedulability ratio Sw(u) is evaluated as
using (10), where S(Ui) represents the schedulability ratio for
target utilization Ui.

Sw(u) =
∑
Ui∈u

Ui · S(Ui)/
∑
Ui∈u

Ui (10)

The weighted schedulability ratio of the gained rewards
Rw(u) can be evaluated using (11), where R(Ui) represents
the reward ratio for target utilization Ui.

Rw(u) =
∑
Ui∈u

Ui · R(Ui)/
∑
Ui∈u

Ui (11)

Fig. 13 illustrates that weighted schedulability decreases
with an increase in BHI . A higher value of BHI indicates more
highly critical tasks in the task set than low critical tasks.
A higher value of BHI increases the workload utilization to
grow, which in turn affects the schedulability and accrued
rewards. For higher workload utilization, the SS strategy
performed better compared with all other strategies. The
dominance of the SS strategy compared with the other

strategies in terms of the weighted schedulability ratio and the
weight obtained reward ratio is shown in Fig. 13 and Fig. 14,
respectively.

In the proposed approach, scalability has been a central
consideration during the design and development phases. The
comprehensive evaluations conducted, including simulations
and analysis, assess the performance of the proposed
approach as the scale of the system increases. The results
indicate that the resource reservation and reward-based
scheduling approach holds promise for real-time systems like
autonomous vehicles, medical implants, industrial control
systems, and advanced avionics, where high critical tasks
such as collision avoidance, pacemakers, flight control, etc.
are guaranteed execution while low critical tasks such as
in-flight entertainment or cabin temperature control can
adapt to available resources or even delayed if resources
are limited. These considerations are aimed at accommo-
dating the growing demands and complexities that may
be encountered in practical deployments. The proposed
approach has the potential to maintain a balance between
efficiency and scalability to meet the requirements of real-
world applications.

VIII. CONCLUSION
We used a reward-based scheduling framework for real-time
MCS in a uniprocessor paradigm and addressed the schedul-
ing problems for low- and high-criticality tasks in both
modes under overload conditions. We proposed a resource
reservation-based system in which the schedulability of
the low critical tasks has no effect on the schedulability
of highly critical tasks in both low and high modes. The
proposed RRBS algorithm reflects the concepts of dividing
the resource CPU into server partitions and each task
being scheduled inside the servers with a specified budget
and period. Using the server mechanism, we assigned the
dedicated server to each highly critical task for guaranteed
schedulability in both modes. For scheduling low critical
tasks, we applied and analyzed three strategies in the
available bandwidth, along with the reclaimed bandwidth
spared by the servers of highly critical tasks caused by their
optimistic WCET rather than the certified WCET. In the
first strategy, all low critical tasks were assigned to a single
reservation server. In the second strategy, a single dedicated
reservation server was allocated to each low criticality
task. In the third strategy, each low criticality task was
executed on two different servers, i.e., the mandatory and
optional servers. The proposed technique was evaluated using
extensive experimentations with other IMC approaches. The
experimental evaluation indicated that the proposed tech-
nique outperformed other IMC approaches. The proposed
technique successfully achieved the schedulability of low
critical tasks with no impact on the highly critical tasks’
schedulability, even in overloaded scenarios. However, the
schedulability of the low critical tasks are affected by certified
WCETs of high critical tasks in the high mode. Therefore, the
proposed system attempts to schedule the maximum number
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TABLE 3. List of equations.

of low criticality tasks within the available bandwidth, unlike
earlier approaches that completely discard low critical tasks.

IX. FUTURE WORK
The adoption of more than two criticality levels for mixed
criticality tasks is a recent trend in real-time mixed criticality
systems. Another important tendency is to go beyond the
uniprocessor paradigm and utilize multiprocessor architec-
tures for mixed criticality systems. We aim to investigate a
system with more than two criticality levels in a multicore

TABLE 4. List of acronyms.

environment for our future work. We used a periodic task
model in the proposed method in which tasks are executed
within a specified window and repeated after the specified
period. We are also looking forward to extend the proposed
method to an aperiodic task model, or to a combination
of periodic and aperiodic tasks model. For real-time mixed
criticality systems, the proposed method can be applied to
fault-tolerant and power-aware systems.

APPENDIX
See Tables 3 and 4.
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