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ABSTRACT Numerous supervised learning models aimed at classifying 12-lead electrocardiograms into
different groups have shown impressive performance by utilizing deep learning algorithms. However, few
studies are dedicated to applying the Generative Pre-trained Transformer (GPT) model in interpreting
electrocardiogram (ECG) using natural language. Thus, we are pioneering the exploration of this uncharted
territory by employing the CardioGPT model to tackle this challenge. We used a dataset of ECGs (standard
10s, 12-channel format) from adult patients, with 60 distinct rhythms or conduction abnormalities annotated
by board-certified, actively practicing cardiologists. The ECGs were collected from The First Affiliated
Hospital of Ningbo University and Shanghai East Hospital. The dataset is partitioned into training (80%),
validation (10%), and test (10%) cohorts for comprehensive evaluation. Each cohort contains ECGs from
distinct patients, considering some patients took repeated ECG measurements. The proposed algorithm is
evaluated in two levels, self-performance measurement and comparison with the residual neural network
classification model. Two scores are used for self-performance measurement, including Bilingual Evaluation
Understudy (BLEU) and Recall-Oriented Understudy for Gisting Evaluation (ROUGE). To compare the
performance of the proposed model with the residual neural network model, we assessed the F1 score and
area under the receiver operating characteristic curve (AUC). We have observed promising performance
metrics across multiple evaluation criteria through an extensive evaluation of a large 12-lead ECG database
comprising 1,128,553 ECG readings from 754,920 patients. The CardioGPT model exhibited high BLEU
and ROUGE scores with 0.68 (95% CI: 0.66, 0.71) and 0.81 (95% CI: 0.79, 0.84). Furthermore, in the
classification performance measurement setting, the CardioGPT achieved an average F1-score of 0.91(95%
CI: 0.89, 0.93) and AUC of 0.82(95% CI: 0.79, 0.84) and has higher scores than that of the convolutional
neural network model, indicating its proficiency in accurately classifying ECG recordings. By leveraging
the power of transformer structure model and natural language processing, the GPT model addresses the
challenge of imbalanced learning commonly encountered in ECG classification tasks. The results indicate
that the GPT model can accurately interpret ECG using natural language, providing valuable insights into
the underlying patterns and abnormalities present in the data. Significance: The pioneering application of
the GPT model for interpreting ECGs with natural language demonstrates its potential to address ECG
classification challenges and offer valuable insights into cardiac health.
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I. INTRODUCTION
Heart disease is the leading cause of death globally, and stan-
dard 12 lead electrocardiogram (ECG) testing is an effective
and economical tool in heart disease diagnostics, which can
provide valuable information about the electrical activity of
the heart [1]. The interpretation of ECG reading generally
includes rhythms, conduction conditions, and abnormal mor-
phological findings [2]. The interpretation of ECG signals is a
challenging task that requires extensive training and expertise
since multiple risky medical conditions can present avari-
cious ECG morphological representations [3]. Therefore,
developing an automated ECG interpretation system can sig-
nificantly benefit the medical community. Significant efforts
have been made to develop an automated method for ECG
classification, particularly for 12-lead ECGs, that mimics the
accuracy of a human expert [4], [5]. Various approaches to
achieving automatic ECG classification, including rule-based
systems, template matching, and machine learning.
Rule-based systems use a set of predefined rules and
algorithms to identify specific features and patterns in the
ECG signal [6], [7]. The rules can be based on existing
medical knowledge, making the interpretation consistent and
reliable. This approach may not be flexible enough to handle
all possible variations in ECG signals and may not be able
to account for abnormalities with acceptable sensitivity and
specificity. Template matching compares the ECG signal to a
pre-existing database of templates to identify abnormalities
[8], [9]. This approach shared similar pros and cons with
rule-based methods. Machine learning algorithms use a large
dataset of labeled ECG signals to train a model to identify
patterns and classify the ECG signal into different categories
[10], [11], [12], [13], [14]. Transformer neural network algo-
rithms have been used to enhance model performance in
ECG classification tasks [15], [16], [17] and time series data
analysis [18]. These approaches have the potential to learn
from large datasets and identify subtle patterns that may not
be apparent to humans, leading to improved accuracy. They
also require a large amount of high-quality data to train the
algorithm and may be limited by the quality and representa-
tiveness of the data available. Additionally, these algorithms
may be more difficult to interpret and explain, potentially
leading to concerns about transparency and accountability.
All of the aforementioned methods simplified the issue by
approaching ECG interpretations as a multilabel or multiclass
classification problem. Consequently, they fail to incorporate
the expertise of human professionals in diagnosing medical
conditions or identifying ECG morphological abnormali-
ties. In this study, we introduce a novel model, CardioGPT,
designed to produce a natural language interpretation of
ECGs, akin to the output of a human expert—an innovation
unprecedented in its field. The CardioGPT model is trained
on a large corpus of over a million ECGs from a diverse
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patient population. This proposed approach also employs a
wavelet scattering network [19] for feature extraction, which
can effectively capture complex patterns in ECG signals.
Recent research works have shown the effectiveness of the
wavelet scattering network as a feature extraction tool on
ECG signals [20], [21], [22]. The wavelet scattering network
is an enhancement over the conventional wavelet transform.
Its advantages stem from its ability to offer both temporal and
frequency resolutions that remain invariant to translations and
stable against deformations, while preserving high-frequency
information [19]. We then compare performance and saliency
maps to baseline models subject to similar constraints. This
research aims to develop a robust and accurate system for
automatic ECG diagnosis in natural language, with potential
implications for supporting healthcare professionals in iden-
tifying cardiac conditions.

Il. METHODS

A. STUDY DESIGN

The study design, depicted in Fig. 1, provides an overview of
the research approach. The dataset comprises 12 lead ECG
waveform recordings and their corresponding textual diagno-
sis or explanations, where each recording is accompanied by
one or more sentences offering interpretations from certified
physicians. To enhance data quality, noise reduction tech-
niques are applied to the ECG waveform recordings before
utilizing the Wavelet Scattering Transformation to gener-
ate 3D wavelet scattering transformation feature matrices.
To facilitate model training, the textual diagnosis is translated
from Chinese to English using an OpenAI GPT-3 model [23],
and subsequently, a GPT-4 completion model decomposes the
textual diagnosis into classification labels. To prepare the data
for further analysis, input data is preprocessed and flattened
as required by subsequent models. The entire dataset is then
divided into three cohorts: a training cohort (70%), a valida-
tion cohort (10%), and a testing cohort (20%). The training
cohort is utilized to learn patterns from the data, whereas the
validation cohort is employed to fine-tune hyperparameters
like learning rate, epoch number, and layer configurations
to optimize model performance. Lastly, the testing cohort is
used to evaluate the model’s effectiveness and to compare its
performance against residual net neural network models.

B. DATA COLLECTION AND PROCESSING

Our dataset comprised retrospective data from adult patients
(aged >18 years) who had an ECG at three hospitals. The
dataset included standard 10 seconds, 12-channel ECGs
recorded at a sampling rate of 500 Hz using ECG machines
from GE Healthcare and Philips Healthcare. The institutional
review boards of The First Affiliated Hospital of Ningbo
University and Shanghai East Hospital approved this study
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FIGURE 1. The overview of research approach and data flow in the study. The coefficients of wavelet scattering
transformation are input of 3D GPT model and Resnet model. The 12 lead ECG waveform data are input for 2D

models.

and granted the waiver application to obtain informed con-
sent (approval code 2022RS036). The noise contamination
sources in the ECG data were due to power line interference,
electrode contact noise, motion artifacts, muscle contraction,
baseline wandering, and random noise [24]. As is well known,
the presence of noise can be a remarkable obstacle to any
statistical analysis. Thus, we implemented a noise reduction
approach to process raw ECG data. Since the frequency range
of normal ECG is from 0.5Hz to 50Hz, the Butterworth
bandpass filter [25] was used to remove the signal with
a frequency above 50Hz and below 0.5 Hz. According to
the standard ECG measurement mechanism [26], [27], two
constraints must be satisfied: first, the voltage value of lead
II should always be equal to the sum of voltage values of
lead I and lead III; second, the sum of voltage values of lead
aVR, aVL, and aVF should be equal to zero. Moreover, some
of the electrodes could slip off during the test resulting in
ECGs displaying a straight line. We created an automatic
error-checking algorithm that detects the presence of these
undesirable cases and excluded such ECG records from the
study.

C. WAVELET SCATTERING NETWORK

FOR FEATURE EXTRACTION

The wavelet scattering network [19], [28] is a type of deep
neural network that can extract features from ECG signals
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by decomposing them into a series of wavelet coefficients.
The wavelet scattering network consists of a series of wavelet
transforms and non-linear operations, which can capture
complex patterns in ECG signals [29]. For example, Fig. 2.
showcases the results of the Wavelet Scattering Transform
applied to two ECG signals. Panel A displays a Lead Il ECG
signal representing Sinus Rhythm, while Panel B exhibits the
corresponding ECG signal for Atrial Flutter. Upon applying
the Wavelet Scattering Transform to the ECG signals, Panels
C1 and C2 visualize the spectra of the wavelet-scattered ECG
in Panel A (Sinus Rhythm). Similarly, Panels D1 and D2
depict the spectra of the wavelet-scattered ECG in Panel B
(Atrial Flutter). The exceptional capability of the Wavelet
Scattering Network accurately distinguished intricate distinc-
tions in two types of ECG signals.

D. CARIDOGPT MODEL

The CardioGPT model represents a groundbreaking advance-
ment in 12-lead ECG data interpretation, building upon the
foundation of the Contrastive Language-Image Pretraining
(CLIP) model developed by OpenAl [30]. CLIP, based on
the GPT architecture, is a multimodal model renowned for
its ability to comprehend both images and textual descrip-
tions. By leveraging CLIP’s powerful capabilities, we treat
the 12-lead ECG data as a sequence of vectors, employ-
ing a transformer model comprising self- attention and
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FIGURE 2. Wavelet scattering transform comparison for atrial flutter and sinus rhythm. Wavelet scattering transformation applied to
lead 11 ECG data for two distinct cardiac rhythms: (A) Sinus rhythm and (B) Atrial flutter. Panels C1 and C2 display the spectra of the
wavelet-scattered ECG in 2A, while panels D1 and D2 exhibit the spectra of the wavelet-scattered ECG in 2B.

feedforward layers that capture long-term dependencies in the
input sequences.

To adapt the transformer model to handle 3D input
variables and capture vital spatial information, additional
architectural modifications and techniques are introduced.
Here, we outline the primary steps involved in interpreting
3D input variables from Wavelet Scattering transformation
using the CardioGPT model (shown in Fig. 3).

Patch Embedding (appendix 1 p 4): The input 3D feature
is intelligently partitioned into smaller fixed-size (16 by 16)
2D patches, effectively converting them into tokens. These
patches are then projected into lower-dimensional embed-
dings, enabling the model to capture essential local visual
information.

Positional Encoding (appendix 1 p 4): To preserve the cru-
cial spatial relationships between the patches, we incorporate
positional encoding into the patch embeddings. This strate-
gic addition provides each patch with a unique positional
embedding, indicating its relative position within the image.
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Consequently, the model gains a comprehensive understand-
ing of the spatial layout of the patches.

Diagnosis Encoder: The diagnosis sentences undergo a
tokenization encoder process, generating new representations
in the form of a sequence of vectors. Each vector captures a
specific component of the diagnosis sentence. The diagno-
sis vocabulary encompasses a total of 4157 distinct tokens,
ensuring comprehensive coverage for accurate and meaning-
ful representations.

E. STATISTICAL ANALYSIS

Two-sample t test, two-sample test for proportions, and
Chi-square test were adopted to test the difference of the
sample numbers, average ages, and genders between training
and testing groups. The following performance measures
were formally analyzed, including the receiver operating
characteristic curve (AUC)and F1-score. A two-sided 95% CI
summarizes the sample variability in the estimates. The CI for
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FIGURE 3. CardioGPT model architecture for 3D ECG data interpretation.
The CardioGPT model integrates the foundational concepts of the
Contrastive Language-lmage Pretraining (CLIP) model to interpret 3D
input variables from Wavelet Scattering transformations. The model
employs patch embedding, positional encoding, and a diagnosis encoder
to effectively capture spatial and diagnostic information, enabling
comprehensive ECG data interpretation.

the AUC was estimated using the Sun and Su optimization
of the Delong method implemented in the pROC package.
In contrast, CIs for Fl-score, and AUC were obtained by the
bootstrap method with 20,000 replications. BLEU (Bilingual
Evaluation Understudy) [31] is a commonly used metric that
measures the similarity between the generated captions and
reference captions (appendix 1 p 5). It calculates a score
based on n-gram overlap between the generated and refer-
ence captions. Higher BLEU scores indicate better matching
with reference captions. ROUGE (Recall-Oriented Under-
study for Gisting Evaluation) [32] is a metric commonly used
in text summarization tasks (appendix 1 p 6). It measures
the overlap between the generated and reference captions
based on n-grams. Higher ROUGE scores indicate better
matching with reference captions. We use the package of
NLTK to compute BLEU scores and the nlg-eval library to
attain ROUGE scores. All analyses were done by R version
3.5.3 and Python 3.9.
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IIl. RESULTS

The proposed approach is evaluated on a large ECG database
with 1,128,553 ECG readings from 754,920 patients between
Jan 1, 2013 and Dec 2022 (shown in Table 1). The database
consists of 12 lead ECG waveforms and diagnoses text. Each
diagnosis was used to generate 60 classification labels (shown
in Table 1), which are designed for benchmark comparison
with the convolutional neural network classification model.
The mean age of the patients was 57.9 years (SD 15.8) and
32,377 (45.8%) were women. We validated our deep learn-
ing model with the test dataset consisting of 225,643 ECGs
recorded, corresponding to 150,984 unique patients (89,080
[59%] women; mean age 50.8 years [SD 17.1]). 238,018
(26.36%) of the 902,910 ECGs in the training and validation
dataset were multilabel, as were 59,730 (26.47%) of 225,643
in the test dataset (Fig. 4A). Fig 4B illustrates the distribution
of ECGs with one label and more than one label among
major rhythms. The major rhythms include sinus rhythm,
sinus bradycardia, sinus tachycardia, sinus arrhythmia, atrial
fibrillation, atrial flutter, and atrial tachycardia.

Table 2 presents the CardioGPT’s performance using dif-
ferent feature inputs. Taking with 2D ECG data input, the
CardioGPT achieves a BLEU score of 0.65 (with a 95%
confidence interval of 0.62 to 0.78) and a ROUGE score of
0.78 (with a 95% confidence interval of 0.75 to 0.80). When
using Wavelet Scattering Features with 3D input, the model’s
performance improves, achieving a higher BLEU score of
0.68 (with a 95% confidence interval of 0.66 to 0.71) and a
higher ROUGE score of 0.81 (with a 95% confidence interval
of 0.79 to 0.84).

Table 3 presents the F1-Score and AUC metrics for both
the Transformer Model and the Residual Net Converlu-
tional Neural Network (CNN) Model across 60 different
cardiac conditions. The CardioGPT achieves an overall mean
F1-Score of 0.91 (with a 95% confidence interval of 0.89 to
0.93) and an AUC of 0.82 (with a 95% confidence interval of
0.79 to 0.84). In comparison, the Residual Net CNN Model
achieves a lower overall mean F1-Score of 0.83 (with a 95%
confidence interval of 0.80 to 0.85) and an AUC ROC of 0.73
(with a 95% confidence interval of 0.69 to 0.75).

The results indicate that the Transformer Model outper-
forms the Residual Net CNN Model in terms of both F1-Score
and AUC, suggesting that the Transformer Model is more
effective in classifying various cardiac conditions.

IV. DISCUSSION

The accurate interpretation of ECG readings is paramount in
guiding precise clinical decisions and timely interventions,
underscoring its critical role in patient care [33]. ECGs offer
essential insights into the presence, extent, and severity of
arrhythmias such as atrial fibrillation, atrial flutter, supraven-
tricular tachycardia, and atrioventricular block [34], [35].
However, physician interpretation of ECG readings is not
without challenges. Notably, the precision of diagnosis might
be compromised when distinguishing visually similar ECG
waveforms or when dealing with combinations of multiple
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TABLE 1. Baseline characteristics of the training, validation and testing
cohorts. The data includes the number and percentage of individuals with
specific electrocardiogram recordings, along with the mean age and
standard deviation. P-values are provided to indicate significant
differences between the two cohorts, and NA indicates not applicable.

Training + Testing P-
Validation Cohort Value
ECG recordings 902,910 225,643 NA
Age (meanzstd) 53.56+18.91 49.5+18.39 <0.05
Male (0, % in | by | 0%
651,846 162,961
Sinus rhythm (n, %) (72.19) (72.22) 0.80
101,778 25,444
Sinus bradycardia (n, %) (11.27) (11.28) 0.96
11,889
Sinus tachycardia (n, %) 47,555 (5.27) (5.27) 0.97
High left ventricular 11,794
voltage (n, %) 47,073 (5.21) (5.23) 0.80
10,288
Sinus arrhythmia (n, %) 41,152 (4.56) (4.56) 0.98

Atrial fibrillation (n, %) 37,042 (4.1) 9,261 (4.1) 0.97
Normal
electrocardiogram (n, %) 32,561 (3.61) 8,140 (3.61) 0.98
Right axis deviation (n,
%) 26,989 (2.99) 6,747 (2.99) 0.99

Left axis deviation (n, %) | 26,734 (2.96) 6,683 (2.96) | 0.99
Complete right bundle

branch block (n, %) 25,215 (2.79) 6,325 (2.8) 0.79
Premature atrial

contraction (n, %) 24,656 (2.73) 6,191 (2.74) 0.74
Premature ventricular

contraction (n, %) 18,568 (2.06) 4,642 (2.06) 0.99

First degree
atrioventricular block (n,

%) 16,826 (1.86) 4,207 (1.86) 0.98
Incomplete right bundle

branch block (n, %) 11,937 (1.32) 2,984 (1.32) 0.99
Early repolarization (n,

%) 11,243 (1.25) 2,811 (1.25) 0.99
Poor data quality (n, %) 8,548 (0.95) 2,137 (0.95) 099
Left anterior fascicular 0.99
block (n, %) 7,224 (0.8) 1,806 (0.8)
Clockwise rotation (n, %) | 7,014 (0.78) 1,754 (0.78) 0.99
Counterclockwise 0.99
rotation (n, %) 6,394 (0.71) 1,598 (0.71)

Atrial flutter (n, %) 5,299 (0.59) 1,325 (0.59) 099
Pacemaker thythm (n, %) | 4,058 (0.45) 1,015 (0.45) 0.99
Intraventricular

conduction block (n, %) 4,651 (0.52) 1,190 (0.53) 0.48
Complete left bundle

branch block (n, %) 4,373 (0.48) 1,096 (0.49) 0.95
Atrial tachycardia (n, %) 2,465 (0.27) 616 (0.27) 099
Atrial thythm (n, %) 2,192 (0.24) 548 (0.24) 099
Supraventricular 0.99
tachycardia (n, %) 2,163 (0.24) 541 (0.24)
Accelerated atrial thythm 0.99
(n, %) 2,104 (0.23) 526 (0.23)

No electrocardiographic 0.99
activity seen (n, %) 1,932 (0.21) 483 (0.21)

Dual chamber pacemaker 0.99
(n, %) 1,588 (0.18) 397 (0.18)

Acute anterior

myocardial infarction (n,

%) 1,371 (0.15) 347 (0.15) 0.86
Atrial paced rhythm (n,

%) 1,187 (0.13) 297 (0.13) 0.99
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TABLE 1. (Continued.) Baseline characteristics of the training, validation
and testing cohorts. The data includes the number and percentage of
individuals with specific electrocardiogram recordings, along with the
mean age and standard deviation. P-values are provided to indicate
significant differences between the two cohorts, and NA indicates not

applicable.
First-degree
atrioventricular block (n,
%) 1,065 (0.12) 267 (0.12) 0.99
Atrioventricular
conduction block (n, %) 884 (0.1) 221 (0.1) 0.99
Acute inferior myocardial
infarction (n, %) 838 (0.09) 213 (0.09) 0.86
Junctional escape rhythm
(n, %) 698 (0.08) 175 (0.08) 0.99
Acute coronary syndrome
(n, %) 674 (0.07) 168 (0.07) 0.99
Second-degree
atrioventricular block (n,
%) 629 (0.07) 160 (0.07) 0.88
Junctional escape beat (n,
%) 596 (0.07) 167 (0.07) 0.21
Atrial escape beat (n, %) 577 (0.06) 168 (0.07) 0.09
Ventricular pre-excitation
(n, %) 529 (0.06) 132 (0.06) 0.99
Right ventricular
hypertrophy (n, %) 498 (0.06) 125 (0.06) 0.99
Accelerated junctional
rhythm (n, %) 483 (0.05) 121 (0.05) 0.99
Third-degree
atrioventricular block (n,
%) 478 (0.05) 120 (0.05) 0.99
Ventricular pre-excitation
type B (n, %) 466 (0.05) 118 (0.05) 0.94
Right bundle branch
block (n, %) 442 (0.05) 111 (0.05) 0.99
Sinus capture (n, %) 409 (0.05) 102 (0.05) 0.99
Ventricular tachycardia
(n, %) 382 (0.04) 95 (0.04) 0.99
Ventricular conduction
block (n, %) 354 (0.04) 93 (0.04) 0.71
Ventricular pre-excitation
type A (n, %) 338 (0.04) 84 (0.04) 0.99
Complete atrioventricular
dissociation (n, %) 324 (0.04) 88 (0.04) 0.53
Premature junctional
contraction (n, %) 301 (0.03) 75 (0.03) 0.99
Atrial escape rhythm (n,
%) 271 (0.03) 68 (0.03) 0.99
Ventricular escape beats
(n, %) 264 (0.03) 69 (0.03) 0.79
Ventricular escape
rhythm (n, %) 233 (0.03) 58 (0.03) 0.99
Sinus arrest (n, %) 179 (0.02) 47 (0.02) 0.83
Junctional rhythm (n, %) 180 (0.02) 45 (0.02) 0.99
Atrial arrhythmia (n, %) 131 (0.01) 33 (0.01) 0.99
Left bundle branch block
(n, %) 104 (0.01) 30(0.01) 0.56
Ventricular fibrillation (n,
%) 102 (0.01) 26 (0.01) 0.99
Incomplete left bundle
branch block (n, %) 83 (0.01) 24 (0.01) 0.61

conditions. Certain rhythm and conduction abnormalities,
like sinus tachycardia, atrial tachycardia, idioventricular
tachycardia, and ventricular tachycardia, exhibit subtle
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FIGURE 4. Analysis of multilabel ECG distribution and major rhythm classification. A shows the
distribution of multilabel ECGs in the training, validation, and test datasets. B displays the
distribution of ECGs categorized by major rhythms and the presence of one label or multiple labels.

TABLE 2. Model performance (95% Cl) with different features input. The
metrics of Bilingual Evaluation Understudy (BLEU) and Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) are reported, along with their
respective 95% confidence intervals in parentheses. The results indicate
the model’s performance in generating outputs based on the different
feature inputs.

ECG data (2D) Wavelet scattering
Features (3D)
0.68 (0.66, 0.71)

0.81(0.79, 0.84)

BLEU
ROUGE

0.65 (0.62, 0.78)
0.78 (0.75, 0.8)

differences in impulse origin sites, posing challenges, partic-
ularly for less experienced ECG interpreters [36].

Prior investigations in ECG interpretation predominantly
utilized machine learning approaches that often focused on
single or multilabel classification of ECG recordings [10],
[11],[12], [13], [14]. However, they typically excluded expert
estimations of medical conditions and ECG morphological
abnormalities. Our study introduces a novel dimension by
generating natural language interpretations of ECG read-
ings, akin to those articulated by medical experts. Our
CardioGPT model, combined with the wavelet scattering
technique, excels in extracting comprehensive information
from complete ECG diagnoses — a pivotal clinical endeavor.
Impressively, the model attains BLEU and ROUGE scores
of 0.68 (95%CI: 0.66, 0.71) and 0.81 (95%CI: 0.79, 0.84),
respectively.

Harnessing the synergy of wavelet scattering networks and
transformer models, our CardioGPT model was trained on an
expansive dataset of 754,920 patients encompassing 59 types
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of abnormal ECGs and a normal counterpart. This dataset
comprehensively represents rhythms, conduction abnormal-
ities, and morphological findings. Notably, over 25% of
ECG readings exhibit multiple condition labels, augment-
ing dataset complexity and encompassing a diverse array
of abnormalities (Fig. 4). Our results establish CardioGPT’s
superiority, outperforming several existing methods in terms
of AUC scores for multilabel ECG classification. This suc-
cess owes to the wavelet scattering network’s ability to
capture intricate ECG signal patterns, facilitating the Car-
dioGPT model in learning discriminative features for precise
ECG interpretation. For instance, the diagnosis of atrial fib-
rillation attains a mean Fl-score of 0.95 (95% CI: 0.90,
0.99), underscoring the algorithm’s adeptness in extracting
and discerning complex features even amidst highly similar
ECG waveforms.

Additionally, our study’s ECGs derive from diverse
sources, encompassing two hospitals with distinct ECG
machines and a large patient cohort spanning genders, ages,
and various clinical heart conditions — including patients with
multiple arrhythmias. This diversity augments the spectrum
of diseases represented in our dataset. We also devised a
robust comparison methodology with a mainstream Residual
Neural Network model, highlighting our model’s supe-
rior classification accuracies and F1 scores across different
rhythm classes.

Remarkably, our work pioneers a deep learning approach
that systematically investigates nearly all rhythm and con-
duction dysfunction-induced arrhythmias. The result is an
end-to-end, Al-driven, automated ECG interpretation model,
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TABLE 3. Comparison of classification performance between GPT and
CNN models with 95% confidence intervals. The F1-score and AUC metrics
are used to evaluate the models’ performance for 60 different conditions,
including sinus rhythm, sinus bradycardia, sinus tachycardia, high left
ventricular voltage, sinus arrhythmia, atrial fibrillation etc. The values in
parentheses represent the 95% confidence intervals for each
performance metric.

Conditions Transformer Model Residual Net CNN
Model
F1-Score | AUC F1-Score | AUC
0.95(0.90 | 0.84(0.80 | 0.80(0.75 | 0.89(0.84
Sinus rhythm ,0.99) ,0.89) ,0.86) ,0.94)
0.99(0.92 | 0.88(0.84 | 0.84(0.79 | 0.86(0.81
Sinus bradycardia , 1.06) ,0.93) ,0.88) ,091)
0.97(0.90 | 0.82(0.78 | 0.82(0.75 | 0.83(0.79
Sinus tachycardia , 1.04) ,0.86) ,0.89) ,0.88)
High left 0.96(0.90 | 0.92(0.88 | 0.80(0.74 | 0.81(0.76
ventricular voltage | , 1.03) , 0.96) , 0.86) , 0.86)
0.93(0.88 | 0.81(0.77 | 0.85(0.79 | 0.83(0.78
Sinus arrhythmia ,0.98) ,0.85) ,0.92) ,0.88)
0.93(0.89 | 0.95(0.90 | 0.77(0.71 | 0.83(0.79
Atrial fibrillation ,0.97) ,0.99) ,0.84) ,0.87)
Normal 0.92(0.86 | 0.92(0.87 | 0.80(0.74 | 0.87(0.82
electrocardiogram ,0.98) , 0.96) , 0.86) ,0.92)
Right axis 0.98(0.93 | 0.83(0.78 | 0.81(0.74 | 0.86(0.82
deviation , 1.03) ,0.87) ,0.88) ,091)
0.96(0.92 | 0.80(0.75 | 0.83(0.78 | 0.89(0.84
Left axis deviation | , 1.01) ,0.85) ,0.87) ,0.94)
Complete right
bundle branch 0.97(0.91 | 0.92(0.88 | 0.88(0.84 | 0.85(0.80
block , 1.02) ,0.96) ,0.93) ,0.90)
Premature atrial 0.92(0.88 | 0.91(0.86 | 0.78(0.74 | 0.81(0.77
contraction , 0.96) , 0.95) , 0.83) , 0.86)
Premature
ventricular 0.99(0.92 | 0.91(0.86 | 0.84(0.79 | 0.87(0.83
contraction , 1.06) , 0.96) ,0.89) ,0.91)
First degree
atrioventricular 0.98(0.93 | 0.92(0.87 | 0.85(0.80 | 0.88(0.83
block , 1.03) ,0.96) ,0.90) ,0.92)
Incomplete right
bundle branch 0.93(0.87 | 0.81(0.77 | 0.76(0.71 | 0.86(0.81
block ,0.99) , 0.85) ,0.81) ,0.90)
Early 0.93(0.88 | 0.85(0.81 | 0.85(0.79 | 0.88(0.83
repolarization ,0.98) , 0.90) ,0.92) ,0.93)
0.93(0.88 | 0.82(0.78 | 0.78(0.73 | 0.85(0.80
Poor data quality ,0.99) , 0.86) ,0.83) ,0.90)
Left anterior 0.80(0.75 | 0.82(0.78 | 0.78(0.72 | 0.72(0.68
fascicular block , 0.85) ,0.87) ,0.83) ,0.77)
0.86(0.80 | 0.85(0.80 | 0.76(0.69 | 0.74(0.69
Clockwise rotation | , 0.92) , 0.90) ,0.83) ,0.78)
Counterclockwise 0.85(0.79 | 0.80(0.76 | 0.78(0.74 | 0.73(0.68
rotation ,091) , 0.85) ,0.83) ,0.78)
0.83(0.76 | 0.78(0.73 | 0.76(0.70 | 0.74(0.70
Atrial flutter ,0.89) ,0.83) ,0.81) ,0.79)
0.81(0.75 | 0.83(0.78 | 0.78(0.72 | 0.74(0.70
Pacemaker rhythm | , 0.87) , 0.88) , 0.85) ,0.78)
Intraventricular 0.84(0.78 | 0.78(0.73 | 0.77(0.71 | 0.72(0.67
conduction block ,0.90) ,0.82) ,0.83) ,0.77)
Complete left
bundle branch 0.91(0.87 | 0.79(0.75 | 0.80(0.74 | 0.71(0.67
block ,0.96) ,0.84) , 0.86) ,0.76)
0.84(0.79 | 0.76(0.71 | 0.76(0.70 | 0.74(0.69
Atrial tachycardia ,0.89) ,0.81) ,0.82) ,0.78)
0.86(0.81 | 0.75(0.71 | 0.77(0.72 | 0.71(0.66
Atrial rhythm ,091) ,0.79) ,0.82) ,0.76)
Supraventricular 0.88(0.84 | 0.85(0.80 | 0.76(0.71 | 0.73(0.68
tachycardia ,0.93) ,0.90) , 0.80) ,0.78)
Accelerated atrial 0.84(0.77 | 0.83(0.79 | 0.80(0.73 | 0.75(0.70
rhythm ,091) ,0.88) , 0.86) ,0.80)
No
electrocardiographi | 0.92(0.86 | 0.82(0.77 | 0.79(0.73 | 0.73(0.69
¢ activity seen ,0.97) ,0.87) ,0.86) ,0.78)
Dual chamber 0.92(0.85 | 0.79(0.75 | 0.76(0.70 | 0.73(0.68
pacemaker ,0.98) ,0.83) , 0.83) ,0.77)
Acute anterior
myocardial 0.83(0.77 | 0.77(0.72 | 0.78(0.72 | 0.74(0.69
infarction ,0.89) ,0.82) , 0.85) ,0.78)
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TABLE 3. (Continued.) Comparison of classification performance
between GPT and CNN models with 95% confidence intervals. The
F1-score and AUC metrics are used to evaluate the models’ performance
for 60 different conditions, including sinus rhythm, sinus bradycardia,
sinus tachycardia, high left ventricular voltage, sinus arrhythmia, atrial
fibrillation etc. The values in parentheses represent the 95% confidence
intervals for each performance metric.

Atrial paced 0.86(0.80 | 0.77(0.72 | 0.79(0.74 | 0.73(0.68
rhythm ,0.92) ,0.81) ,0.85) ,0.78)
First-degree
atrioventricular 0.84(0.78 | 0.78(0.73 | 0.78(0.72 | 0.73(0.69
block ,0.89) ,0.82) ,0.83) ,0.78)
Atrioventricular 0.83(0.78 | 0.80(0.76 | 0.78(0.71 | 0.75(0.70
conduction block ,0.89) , 0.85) ,0.84) ,0.79)
Acute inferior
myocardial 0.80(0.75 | 0.82(0.78 | 0.76(0.70 | 0.73(0.68
infarction , 0.86) , 0.86) ,0.82) ,0.77)
Junctional escape 0.87(0.83 | 0.82(0.77 | 0.75(0.69 | 0.75(0.71
rhythm ,0.92) , 0.86) ,0.82) ,0.79)
Acute Coronary 0.86(0.80 | 0.78(0.73 | 0.79(0.73 | 0.75(0.70
Syndrome ,0.92) ,0.83) , 0.86) ,0.79)
Second-degree
atrioventricular 0.81(0.76 | 0.85(0.80 | 0.80(0.73 | 0.72(0.68
block ,0.85) ,0.89) , 0.86) ,0.76)
Junctional escape 0.83(0.79 | 0.82(0.78 | 0.78(0.73 | 0.71(0.67
beat ,0.87) ,0.87) ,0.83) ,0.76)
0.91(0.85 | 0.81(0.76 | 0.77(0.72 | 0.71(0.67
Atrial escape beat ,0.97) , 0.85) ,0.82) ,0.75)
Ventricular pre- 0.83(0.78 | 0.81(0.77 | 0.77(0.72 | 0.71(0.67
excitation ,0.87) ,0.86) ,0.81) ,0.75)
Right ventricular 0.82(0.75 | 0.79(0.75 | 0.79(0.73 | 0.71(0.67
hypertrophy ,0.89) ,0.83) ,0.84) ,0.75)
Accelerated 0.86(0.79 | 0.77(0.73 | 0.79(0.75 | 0.74(0.69

junctional rhythm ,0.93) ,0.82) , 0.84) ,0.78)
Third-degree

atrioventricular 0.92(0.85 | 0.79(0.74 | 0.79(0.74 | 0.71(0.67
block ,0.99) ,0.83) , 0.85) ,0.76)
Ventricular pre- 0.83(0.78 | 0.83(0.78 | 0.79(0.73 | 0.72(0.68
excitation type B , 0.88) , 0.87) , 0.85) ,0.77)
Right bundle 0.88(0.84 | 0.75(0.70 | 0.78(0.73 | 0.74(0.69
branch block ,0.92) , 0.80) ,0.83) ,0.79)
0.89(0.82 | 0.76(0.71 | 0.75(0.70 | 0.71(0.67
Sinus capture ,0.96) ,0.81) ,0.81) ,0.75)
Ventricular 0.83(0.78 | 0.75(0.71 | 0.76(0.72 | 0.74(0.70
tachycardia , 0.88) , 0.80) , 0.80) ,0.79)
Ventricular 0.89(0.82 | 0.75(0.71 | 0.79(0.75 | 0.72(0.67
conduction block , 0.96) , 0.80) ,0.84) ,0.77)
Ventricular pre- 0.84(0.78 | 0.84(0.79 | 0.78(0.72 | 0.71(0.67
excitation type A ,0.91) , 0.88) ,0.84) ,0.76)
Complete
atrioventricular 0.88(0.81 | 0.82(0.77 | 0.75(0.70 | 0.74(0.69
dissociation ,0.94) ,0.87) , 0.80) ,0.79)
Premature
junctional 0.88(0.83 | 0.80(0.75 | 0.76(0.71 | 0.74(0.70
contraction ,0.92) ,0.84) , 0.80) ,0.78)
Atrial escape 0.86(0.81 | 0.76(0.71 | 0.78(0.73 | 0.75(0.70
rhythm ,0.92) ,0.81) ,0.84) ,0.79)
Ventricular escape | 0.81(0.75 | 0.80(0.76 | 0.75(0.69 | 0.74(0.70
beats ,0.88) ,0.84) ,0.81) ,0.78)
Ventricular escape | 0.90(0.85 | 0.80(0.76 | 0.76(0.71 | 0.74(0.69
rhythm ,0.95) ,0.84) , 0.80) ,0.79)
0.84(0.79 | 0.77(0.73 | 0.78(0.72 | 0.72(0.68
Sinus arrest ,0.88) ,0.81) ,0.84) ,0.77)
0.82(0.77 | 0.79(0.75 | 0.78(0.74 | 0.72(0.67
Junctional rhythm ,0.88) ,0.84) ,0.83) ,0.77)
0.80(0.74 | 0.79(0.74 | 0.78(0.74 | 0.74(0.70
Atrial arrhythmia ,0.87) ,0.84) ,0.82) ,0.78)
Left bundle branch | 0.87(0.81 | 0.81(0.77 | 0.76(0.71 | 0.74(0.70
block ,0.93) ,0.85) ,0.82) ,0.79)
Ventricular 0.88(0.82 | 0.81(0.77 | 0.79(0.73 | 0.75(0.70
fibrillation ,0.94) ,0.85) ,0.84) , 0.80)
Incomplete left
bundle branch 0.80(0.76 | 0.75(0.71 | 0.76(0.70 | 0.73(0.68
block ,0.84) , 0.80) ,0.82) ,0.77)
0.91(0.89 | 0.82(.79, | 0.83(0.8, | 0.73(0.69
Mean ,0.93) 0.84) 0.85) ,0.75)
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signifying an unprecedented advance. This study underscores
the significance of advanced wavelet scattering features and
the CardioGPT model in precise ECG analysis, offering
robust outputs and accurate cardiac condition classification.
By amalgamating CLIP’s strengths with tailored transformer
model adaptations, CardioGPT emerges as a leading-edge
solution for 12-lead ECG data interpretation. Its unique
prowess in comprehending both images and text, coupled
with its adept handling of 3D input variables, ushers in novel
avenues for advanced diagnostics and analysis in cardiology.
These findings portend enhanced automated ECG interpre-
tation systems, fostering improved patient outcomes and
contributing to streamlined, dependable cardiac diagnoses.

V. STUDY LIMITATIONS

While our study presents a promising approach for ECG
interpretation using the CardioGPT model, it is essential
to acknowledge the following limitations. Our evaluation
is based on a large ECG database with 754,920 patients.
However, the data in this database might be subject to certain
biases, such as the demographics of the patient population,
data collection procedures, and the quality of annotations.
These biases could potentially impact the generalizability
of our model to diverse patient populations or real-world
clinical settings. Secondly, the proposed approach utilizes
both wavelet scattering networks and transformer models,
which can be computationally intensive, especially for large
and complex ECG signals with multiple leads. Deploying
the CardioGPT model in real-time clinical applications might
require careful consideration of computational resources and
optimization strategies. Finally, although our approach yields
superior performance, the interpretability of the model’s deci-
sions could be a challenge. Deep learning models, including
transformers, are known for their black-box nature, making it
difficult to provide transparent explanations for the model’s
predictions. Ensuring the interpretability of the CardioGPT
model is an ongoing area of research.

APPENDIX
Appendix is available online.

DATA AND CODE AVAILABILITY

While we are unable to share the full dataset due to pri-
vacy or proprietary constraints, we are committed to sharing
a portion of the dataset used in our study. This partial
dataset, representative of the overall dataset used in our
experiments, is made available in a publicly accessible
repository (PhysioNet. https://doi.org/10.13026/wgex-er52.).
The MATALB program for ECG denoising was put under
https://github.com/zheng 120/ECGDenoisingTool.
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