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ABSTRACT Interpreting machine learning models is facilitated by the widely employed locally
interpretable model-agnostic explanation (LIME) technique. However, when extending LIME to signal
data, its credibility falters due to perturbation techniques used to generate local datasets. These techniques
disrupt temporal dependencies among features, leading to unrealistic data points and potentially misleading
explanations. Additionally, LIME faces instability and local fidelity issues, limiting its suitability for real-
world applications. The absence of a dedicated LIME package tailored for interpreting signal data further
diminishes comprehensibility, especially when applied to models trained on such data. In this paper,
we introduce Signal-based LIME (Sig-LIME) to address these limitations. Sig-LIME leverages a novel data
generation technique that captures temporal dependence among features, enhancing credibility and stability.
It combines a random forest model and heatmaps to provide illuminating explanations for predictions
drawn from electrocardiogram (ECG) signals, improvingmodel transparency. Empirical findings underscore
the enhanced interpretability and comprehension of model predictions attained by Sig-LIME compared
to baseline LIME. Our quantitative evaluation based on an analysis of variance (ANOVA) framework,
reveals a notable improvement in stability with Sig-LIME, evidenced by an f-statistic of 0.0 and p-values
of 1, indicating a complete absence of variation between multiple runs. Regarding local fidelity, Sig-LIME
surpasses the baseline LIME, exhibiting a lower average Euclidean distance of 0.49 compared to 17.24. Sig-
LIME excels in generating data more akin to the original, achieving remarkable stability and significantly
enhancing credibility and local fidelity in the explanations it generates.

INDEX TERMS Deep learning, ECG signal, explanation, LIME, Sig-LIME, cardiac arrhythmia, artificial
intelligence.

I. INTRODUCTION
Interpretability is a crucial aspect in the field of machine
learning (ML), enabling the understanding and explanation of
decisions made by ML models in a coherent and meaningful
way [1], [2]. Although a precise mathematical definition of
interpretability remains elusive, researchers have highlighted
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its significance through various perspectives and defini-
tions [3]. Among these perspectives, a commonly accepted
concept focuses on the extent to which individuals can
understand the rationale behind a machine learning model’s
decision [4]. This perspective emphasizes the importance of
human comprehension and the ability to identify the causal
factors that influence the model’s predictions.

The importance of interpretability in deep learning is espe-
cially prominent in critical domains, such as healthcare [5],
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and security [6], [7]. In these domains, the reliability of
decision-making processes holds significant implications,
especially as legal frameworks in certain regions [8] require
medical professionals to provide justifications for their diag-
noses. However, the lack of interpretability in deep learning
models poses a significant obstacle to their real-world
applicability [9]. Therefore, unraveling the decision-making
processes within these models is essential to ensure not only
the accuracy, fairness, and ethical nature of predictions but
also to cultivate a higher degree of trust in situations where
decisions have a substantial impact on individuals’ lives [10].
Improving the understandability of complex deep learning

models has led to the emergence of the field of interpretable
deep learning. Techniques encompass a wide range, includ-
ing generating graphical interpretations, defining IF-THEN
rules, and assigning weights to features, all with the goal of
clarifying the opaque logic of complex models [11]. This
endeavor has resulted in numerous innovative approaches
that can be categorized based on factors such as intrinsic
or post-hoc complexity, model-agnostic or model-specific
nature, and local or global scope. Notably, model-agnostic
techniques have received significant attention due to their
capability to interpret the decision-making process of any
machine learning model without modifying its internal
workings, as extensively discussed in [10]. The majority
of contemporary research works in the field of Explainable
Artificial Intelligence (XAI) has concentrated on devising
methodologies primarily for computer vision and natural
language processing applications while the exploration and
development of methods for time series data have received
comparatively less [12].

Among these techniques, the locally interpretable
model-agnostic explanation (LIME) method [13] serves as
an example of a model-agnostic approach. LIME plays
a crucial role in approximating the accuracy of specific
ML models. This method entails perturbation strategies
that create surrogate data points for making predictions.
Subsequently, an interpretableMLmodel is trained to explain
the underlying reasons for these predictions [14]. However,
it is important to note a significant limitation of LIME.
In the baseline LIME’s perturbation technique disrupts the
temporal relationships present in signals, such as ECG and
EEG [15], potentially resulting in unlikely and unrealistic
data points [16].

Furthermore, LIME faces challenges like instability and
local fidelity, reducing its suitability for real-world applica-
tions [17], [18], [19], [20]. The randomness introduced by
LIME’s perturbation technique results in different samples
and explanations for the same instance, rendering the
explanations inconsistent and unreliable. The challenge of
local fidelity arises from the complex temporal dependencies
among attributes in time series data, which are essential for
generating valid and substantial explanations. Independently
perturbing data disrupts these temporal relationships, leading
to explanations that do not adequately represent the local
behavior of the deep learning model. Furthermore, the

absence of a dedicated LIME package tailored for inter-
preting signal data results in less comprehensible outcomes,
especially when applied to models trained on such data [16].
This work introduces the Signal-based LIME (Sig-LIME)

technique to address the above-mentioned limitations of
LIME. The main focus is to enhance the interpretability of
deep learning models in the context of signal data, with
particular emphasis on ECG signals.

Sig-LIME employs a novel data generation approach to
provide explanations at the signal level for models that
work with signals such as electrocardiogram (ECG) signals.
This method maintains the temporal correlations between
features through signal segmentation and controlled noise
introduction. By utilizing this strategy, Sig-LIME enhances
decision-making and extracts more valuable insights from
complex signal datasets.

To provide comprehensive explanations for predictions
derived from ECG signals, Sig-LIME also integrates a
Random Forest model and heatmaps. The Random Forest
model, capable of capturing complex feature relationships in
the data, enhances the depth and accuracy of explanations.
Heatmaps offer a visually intuitive representation of feature
contributions to model predictions, making it easier to under-
stand complex model behaviors. The primary contributions
of this work can be summarized as follows:

• Advancing Interpretability for Deep Learning Models
in Signal Data: This study introduces the Signal-based
LIME (Sig-LIME) method, enhancing the interpretabil-
ity of deep learning models in the context of signal data
analysis, with a particular focus on applications such
as electrocardiogram (ECG) signals. Sig-LIME provides
a framework for effectively unraveling the complex
decisions made by these models.

• Mitigation of LIME Limitations in Signal Data: To
overcome the constraints of the locally interpretable
model-agnostic explanation (LIME) technique, Sig-
LIME introduces innovative data generation techniques
and incorporates a random forest model and heatmaps.
By preserving temporal relationships and addressing
issues of instability and local fidelity, Sig-LIME offers
more reliable and credible explanations for interpreting
signal data.

• Enhanced Precision in Model Explanations: Sig-LIME
ensures the precision and comprehensibility of expla-
nations by preserving temporal feature relationships
in signal data. Through controlled noise and signal
segmentation techniques, it enhances the decision-
making process, leading to valuable insights from
complex datasets. Furthermore, the combination of a
random forest model and heatmaps provides transparent
and intuitive explanations for ECG signal predictions.

The paper is organized as follows: It commences by
reviewing related works in interpretable machine learning
in Section II. Subsequently, it delves into the limitations of
LIME explanations, particularly in the context of signal data,
in Section III. Section IV introduces Sig-LIME, an enhanced
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approach. Section V presents experimental results showcas-
ing Sig-LIME’s effectiveness in enhancing interpretability
for a hybrid CNN-GRU model. Finally, Section VI provides
the conclusion, summarizing the findings, emphasizing
contributions, and suggesting future research directions.

II. RELATED WORKS
In recent years, machine learning (ML) and deep learning
(DL) have emerged as transformative forces in classify-
ing cardiac arrhythmias. For instance, [21] showcases the
innovative use of convolutional neural networks (CNNs)
in arrhythmia detection, leveraging advanced optimization
techniques to enhance model performance. This signifies a
substantial leap in accuracy and efficiency for ECG analysis.
Similarly, [22] highlights the nuanced capabilities of ML
algorithms in differentiating between various ECGbeat types.

The rapid advancements in ML and DL techniques
highlight their transformative impact on cardiac healthcare
diagnostics. Yet, the role of interpretability in machine
learning remains essential, as it ensures clear and meaningful
understanding of model decisions [1], [2]. Concurrently, the
field of interpretable machine learning has seen significant
growth in methods enhancing model transparency [23], [24],
[25], crucial for building trust and comprehensibility in
healthcare AI applications.

Among these approaches, the Locally Interpretable
Model-Agnostic Explanation (LIME) technique stands out
as a prominent method for generating local explanations
to elucidate individual predictions [12]. By approximating
the behavior of intricate models, LIME addresses the
challenge of interpretability by creating surrogate models that
capture the model’s behavior around a specific instance of
interest [26].
However, researchers have identified certain limitations

within LIME that have prompted them to explore extensions
and modifications in order to address these challenges. One
such extension is Guided-LIME [14], which introduces a
hybrid approach by integrating LIME with Formal Concept
Analysis (FCA) for structured sampling of instances to
enhance LIME global explanation. OptiLIME [27] addresses
the trade-off between the LIME explanation’s stability and
fidelity and proposed a framework that automatically finds
the best kernel width that maximizes the stability while
retaining a predefined level of fidelity.

ALIME [20] on the other hand, employs an autoencoder
as a weighting function for the local model to improve
robustness and accuracy of the local model. It achieves
this by adding a small amount of white Gaussian noise
to the training data and utilizing the autoencoder to
compute the latent representations for both the explana-
tion instance and the generated points, which are subse-
quently weighted using an exponential kernel as a distance
measure.

MeLIME [28] proposes three key modifications to LIME:
data generation using different kernels, improvements to the
explanation generation method, and adaptive sample size

adjustment based on data complexity. These enhancements
aim to enhance the accuracy, interpretability, and adaptability
of LIME’s explanations for better understanding of machine
learning models. K-LIME [29] utilizes an unsupervised
learning technique called k-means to partition the dataset into
K clusters. Each cluster then applies a local general linear
model, and the K is adjusted to maximize the R2 for all local
models.

LIME-SUP [30] replaces the unsupervised clustering
technique used in K-LIME with a supervised partitioning
tree to enhance the quality of explanations. NormLIME [31]
introduces a class-specific global explanation by aggregating
and normalizing a group of defined local explanations.
DLIME [32] proposed a deterministic version of LIME,
replacing the random perturbation technique with Agglom-
erative Hierarchical Clustering to cluster the data and
employing K-nearest Neighbor to select the relevant cluster
for the instance being explained.

LIME-Aleph [33] applies the Inductive Logic Program-
ming approach Aleph to generate explanations in the form
of logic rules that capture combinations of features and their
relationships. audioLIME [11] leverages source separation
algorithms to provide audibly interpretable explanations
based on waveform predictions. The perturbations used in
audioLIME are created by switching on/off components
extracted by source separation to generate listenable expla-
nations.

While various methods have been proposed to improve
LIME’s instability and lack of fidelity in general, they might
not be directly suitable for signal data like ECG signals, given
their unique characteristics and temporal dependencies [34].
The temporal dependencies and unique characteristics of
signal data further exacerbate the issues associated with the
random perturbation technique [20].
To address these challenges, it is crucial to create

specialized enhancements for LIME when it is applied to
signal data. Complementing this discourse, our previous
study B-LIME [35] presents a notable advancement in
model interpretability. B-LIME improves upon the original
LIME framework, tailoring it for the specific nuances of
ECG signal analysis. This adaptation signifies a crucial step
towards making deep learning models in cardiac health-
care more transparent and comprehensible. Our work with
Sig-LIME aligns closely with this objective, aiming to further
enhance the interpretability of DL models in signal data
analysis.

The Sig-LIME method introduces enhancements to the
data generation and explanation techniques used by LIME,
designed specifically for generating signal-level explanations
for models that take signals as input, such as ECG signals.
Sig-LIME considers the unique characteristics of the data,
preserving temporal dependencies and ensuring local fidelity.
As a result, the explanations produced by the Sig-LIME
method are more accurate, credible, and reliable, enabling
healthcare professionals to gain deeper insights into the
model’s decisions and enhance clinical decision-making.
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FIGURE 1. The framework of the hybrid model. The model combines two blocks of 1D CNN and one block of GRU structure. Each 1D CNN block
contains a max-pooling, a dropout, a batch-normalization layer.

III. EXPLORING LIME EXPLANATIONS: INVESTIGATING
OUTCOMES AND LIMITATIONS
With a focus on electrocardiogram (ECG) signals, we com-
prehensively explore the application of local interpreta-
tion through model-agnostic techniques, specifically LIME,
within the context of signal data in this section. These
investigations encompass the development of deep learning
models, including gated recurrent unit (GRU) algorithms
and one-dimensional convolutional neural networks (1D
CNN). The primary goal is to utilize LIME to furnish
explanations for the predictionsmade by these hybridmodels,
with a specific emphasis on evaluating the interpretability,
reliability, stability, and local validity of each explanation.

A. HYBRID DEEP LEARNING MODEL FOR CARDIAC
ARRHYTHMIAS CLASSIFICATION
To begin our investigation, we built a hybrid deep learning
model that effectively combines the characteristics of 1D
CNN and GRU algorithms. The goal is to categorize ECG
data into four different categories of cardiac arrhythmias.
For the purpose of accurately capturing spatial and tem-
poral relationships in the ECG data, the proposed model
architecture combines 1D CNN and GRU. [36]. This hybrid
design capitalizes on the characteristics of both techniques,
enabling effective feature extraction from signals while
also capturing temporal relationships, hence improving
arrhythmia classification accuracy [37], [38].
The 1D CNN component serves as a feature extractor [39],

[40], while the GRU component acts as a sequence modeler
enabling the model to provide a posterior probability for the
presence of arrhythmias in the input sequence, leading to
higher classification accuracy [37]. The model architecture
is illustrated in Fig. 1.
The 1D CNN component comprises of two convolutional

layers, each followed by a max-pooling, dropout, and batch-
normalization layer, as well as a rectified linear unit (ReLU)
activation function. This configuration enables the model to
absorb hierarchical information from the input ECG data.

The convolutional layers process the input signals using a
collection of teachable filters to extract regional information
important for classifying arrhythmias. By introducing non-
linearity, the ReLU activation function allows the model
to recognize complicated patterns [41]. The max-pooling
layers reduce the spatial dimensionality while maintaining
the most important characteristics by down-sampling the
feature maps [42]. The dropout layer mitigates overfitting
by randomly setting inputs to zero during training with a
specified rate [43]. This helps in preventing the network
from relying too heavily on specific features. Furthermore,
the batch-normalization layer normalizes inputs within each
mini-batch, leading to a more efficient and stable learning
process [44].

The GRU component is then given the output of the
1D CNN component. GRU is a form of recurrent neural
network (RNN) that is particularly successful at representing
sequential data [45]. By maintaining a concealed state
that integrates data from earlier time steps, it can capture
long-term dependencies. The model’s GRU layer enables
the modeling of temporal dependencies in the ECG data,
allowing it to recognize patterns that change over time [46].
The fully connected layer in the proposed deep learning

model consists of two dense layers. The first dense layer
has 512 nodes with a rectified linear unit (ReLU) [47]
activation function, introducing non-linearity to the network.
The second dense layer has four nodes representing the
four classes of arrhythmias and uses the softmax activation
function. This function provides class probabilities, which
show the chance that each arrhythmia class the supplied
ECG data belongs to [48]. The softmax activation layer
enables interpretation of the model’s level of confidence in its
predictions, with the class with the highest probability being
taken into account as the anticipated arrhythmia class.

Backpropagation and gradient descent optimization meth-
ods are used to train the model. Sparse cross-entropy is
the employed loss function, which assesses the dissimilarity
between the anticipated probability and the actual labels [49].
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During training, the model learns the optimal weights and
biases that minimize the loss function and improve the
accuracy of the predictions.

B. UTILIZING LIME FOR EXPLANATIONS
LIME serves as our chosen approach for generating expla-
nations to shed light on the predictions made by the
hybrid CNN-GRU model. By perturbing instances of interest
and observing the model’s responses, LIME approximates
the local behavior of the complex model, thus providing
interpretable insights into the decision-making process [14].
In this exploration, LIME is applied to elucidate the hybrid
model’s predictions for cardiac arrhythmias, with a focus on
enhancing understandability and transparency.

To facilitate the integration of LIME with our Hybrid
1D CNN-GRU model, we leverage the ‘‘RecurrentTabu-
larExplainer’’ package, specifically tailored for handling
multidimensional inputs, such as sequential data processed
by deep learning models [50], [51]. As shown in Fig. 2, the
integration procedure involves themodel and the instance (the
sample being explained).

FIGURE 2. Integrating LIME procedure. LIME requires a sample
(heartbeat) to explain and a DL model (1D CNN-GRU) to generate
explanation.

The LIME explanation process begins by selecting a
specific heartbeat from the MIB-BIH dataset that requires
interpretation. This instance is presented to the Hybrid CNN-
GRU model, and its prediction is obtained. LIME then
perturbs the features of the instance while keeping the
label constant, generating a dataset of perturbed instances.
These instances are used to train an interpretable surrogate
model, such as Ridge regressionmodel, that approximates the
behavior of theHybrid CNN-GRUmodel in the vicinity of the
selected instance.

RecurrentTabularExplainer is a specific module of LIME
designed to handle multidimensional input, particularly
sequential data processed by deep learning models [52]. The
result of the LIME integration is presented in Fig. 3, which
encapsulates the explanations meticulously generated by this
method. This figure features three insightful plots, each
offering a unique perspective into the underlyingmechanisms
of the Hybrid CNN-GRU model’s decision-making process.

The prediction probabilities plot, exemplified in the figure,
portrays the distribution of predicted probabilities across
diverse classes. It provides insights into how the model
allocates probabilities to various potential outcomes based on
the input features.

FIGURE 3. LIME explanation. Due to the absence of a dedicated backage
for signal data, researchers usually use the tabular data package which
mainly focuses on the feature names.

Furthermore, the feature importance plot, a key element
of the ensemble, presents a ranked exposition of individual
feature significances in steering themodel’s predictions. Each
feature carries a distinct weight indicative of its influence
on the model’s output. This plot empowers users to discern
pivotal features, identifying those that exert maximum impact
on predictions, ultimately revealing the fundamental rationale
guiding the model’s decisions.

Lastly, the feature value plot takes center stage, depicting
the intricate interplay between individual feature values
and the model’s resultant output. This plot highlights the
delicate relationship between specific feature values and
their corresponding influences on predictions. It offers a
clear understanding of both the direction and magnitude of
these effects, demystifying the complex associations between
feature attributes and predictions. Another feature value
plot, elegantly displayed in Fig. 4, further enriches this
narrative.

FIGURE 4. Feature value plot of LIME explanation. The x axis represents
the feature weight while the y axis represents the feature name.

C. INVESTIGATING LIME EXPLANATIONS ON THE HYBRID
1D CNN-GRU
In this section, we embark on a profound exploration of
the application of LIME approach within the context of
the Hybrid 1D CNN-GRU model for cardiac arrhythmia
classification.
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Our investigation is guided by a comprehensive assessment
of LIME explanations based on the interpretation properties
elucidated in [10], which encompass Understandability,
Fidelity, Stability (Robustness), and local fidelity, all of
which are crucial elements in establishing the reliability and
comprehensibility of model explanations.

Guiding our investigative expedition are the following cen-
tral inquiries that underpin our understanding and evaluation
of LIME explanations:

• Understandability: We delve into the extent to which
the provided explanations are inherently understandable,
catering to diverse audiences, including medical practi-
tioners and domain experts.

• Fidelity and Credibility: We scrutinize the credibility of
the explanations, assessing the extent to which they can
be relied upon for their accuracy and reliability.

• Stability: We investigate the consistency and stability
of LIME explanations across diverse scenarios, encom-
passing different runs and perturbations.

• Local Fidelity: Recognizing LIME’s inherently local
focus, we inquire into whether the explanations faith-
fully and accurately capture the behavior of the Hybrid
1D CNN-GRU model within the specific context of
individual instances.

As depicted in Fig. 5, these pivotal questions act as
the compass that guides our inquiry, steering us toward a
comprehensive understanding of the symbiotic relationship
between LIME explanations and the intricate landscape of
cardiac arrhythmia classification. Through our meticulous
investigation, we aim not only to shed light on the nuances
of model interpretability but also to ascertain the potential of
LIME to augment healthcare practices by offering transparent
and elucidated predictive insights.

FIGURE 5. Guideline of LIME investigation. The main aim is to investigate
LIME explanation based on main interpretation properties.

1) INVESTIGATING THE UNDERSTANDABILITY OF LIME
EXPLANATIONS
Explanation understandability is a crucial aspect when
using LIME method to interpret machine learning models,
particularly in the context of signal data such as ECG signals.

However, a significant challenge arises from the absence
of a dedicated package in LIME that is specifically tailored
for signal data interpretation. This limitation contributes to

the provision of less understandable, especially when applied
to models trained on signal data.

Signal data, including ECG signals, possess unique charac-
teristics and temporal dependencies that demand specialized
treatment during the explanation process [53]. The traditional
approach of LIME, which is designed primarily for tabular
data, may not fully capture the intricate patterns and
dynamics present in signal data [51]. This limitation becomes
evident from the outcomes depicted in Fig. 3 and Fig. 4.
Consequently, the explanations generated by LIME for signal
data might not be as intuitive or easy to comprehend,
especially for domain experts and medical practitioners who
rely on clear and concise insights to make critical decisions.

One of the central issues arises from the nature of signal
data, where feature names are represented as sequences of
numbers, in our case from 0 to 180. This is different from
tabular data, where each feature has a distinct label. As a
result, when LIME attempts to explain signal features, the
explanations can be ambiguous and unclear. This ambiguity
stems from the absence of distinct feature names, making it
challenging to translate LIME’s insights into coherent and
understandable information.

In the subsequent phases of our research, we will explore
the heatmaps technique to improve the understandability of
LIME explanations for signal data.

2) INVESTIGATING CREDIBILITY
The credibility of the explanations is of paramount impor-
tance in the integration of LIME with the Hybrid 1D
CNN-GRU model. To ensure the trustworthiness and relia-
bility of the insights provided by LIME, we investigate the
model-agnostic nature of LIME’s approach.

One of the primary concerns affecting the credibility of
LIME explanations is the data perturbation technique used
to generate local explanations. LIME employs perturbation
by sampling data points in the vicinity of the instance being
explained and fitting a linear model on these perturbed
samples. While this approach is effective for tabular data,
it may lead to unrealistic data points when dealing with
complex signal data, such as ECG signals.

In Fig. 6, several samples of the data points generated
by LIME are presented, providing visual evidence of the
potential discrepancies between the generated data points
and the actual signal. This is due to the distinctive temporal
association between attributes in time series data, which must
be considered to produce valid and substantial explanations.
Signal data exhibits intricate temporal dependencies and
unique characteristics, making it challenging to perturb
the data effectively without introducing unrealistic val-
ues. The perturbation process may produce data points
that do not align with the natural distribution of the
original signal, leading to explanations that might not
accurately reflect the model’s behavior around the specific
instance.

Another substantial limitation impacting the credibility
of LIME explanations stems from the fundamental linearity
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FIGURE 6. Guideline of LIME investigation. The main aim is to investigate
LIME explanation based on main interpretation properties.

assumption inherent in the methodology [30]. LIME operates
under the premise that the behavior of a machine learning
model can be approximated by a locally linear model.
However, this assumption might not hold true for intricate,
non-linear deep learning models.

Deep learning models possess the capability to capture
complex and non-linear relationships within data, enabling
them to comprehend intricate patterns and representations.
Nonetheless, attempting to approximate this non-linear
behavior using a linear model during the explanation process
can result in oversimplified and constrained interpretations.
Such interpretations may fail to encompass the intricate
complexity characterizing the decision-making process of
deep learning models.

To quantify the reliability of LIME’s surrogate model
approximation for a specific instance, the method provides a
score function. This score gauges how effectively the locally
interpretable model mirrors the behavior of the underlying
black-box model for that instance. It is instrumental in
assessing the dependability of a local interpretation for a
particular instance. A score approaching 1 indicates a faithful
approximation of the black-box model’s behavior in the
vicinity of that instance. Conversely, a significantly lower
score implies that the interpretable model might not be a
reliable approximation.

For example, in our provided instance, LIME yields a
score of 0.0008, which is remarkably close to 0. This
outcome strongly aligns with our hypothesis, underscoring
the limitations introduced by the linearity assumption in
scenarios involving non-linear deep learning models.

3) INVESTIGATING STABILITY
Stability is another critical aspect to consider in the inves-
tigation. Instability refers to the variation or inconsistency
in the explanations generated by LIME when the same
instance is perturbed or when small changes are made

to the data [54]. This inconsistency can undermine the
reliability and trustworthiness of the explanations, hindering
their effective utilization in decision-making processes.
We assess whether the explanations generated by LIME
exhibit consistency and stability across different runs or
perturbations.

The data perturbation approach is one of the main causes
of the instability in LIME. LIME creates a local dataset for
fitting the interpretable model by randomly perturbing the
original instance features. When the procedure is repeated,
this random disturbance, however, might produce different
samples, leading to several models and explanations for the
same instance [35]. The explanations thus become vulnerable
to the particular disturbances, making them untrustworthy
and challenging to comprehend consistently.

The linearity assumption and feature selection procedure
utilized in LIME are additional factors that contribute to
explanation instability. LIME applies a linear model to the
local dataset based on the assumption of linearity, choosing
a subset of features that are thought to be crucial for the
explanation. However, the feature selection process might
be unstable, and change based on random perturbations,
resulting in various sets of chosen features and explanations
for the same occurrence.

Additionally, the local linear model might not be able
to faithfully replicate the behavior of the complicated deep
learning model if the linearity requirement is violated.
As the linear model tries to reflect the complex non-linear
relationships within the data, this restriction may make the
explanations more unstable. An examination of the variations
in LIME explanation outputs for the same instance over many
runs is shown in Fig 7.

FIGURE 7. LIME explanation outputs across different runs for the same
instance. The x axis represents the feature weight while the y axis
represents the feature name.

This visual representation emphasizes the instability of
LIME explanations, which may be ascribed to the use
of locally linear surrogate models with feature selection
and the data perturbation approach. For the purpose of
fostering confidence and allowing efficient decision-making
based on the insights from machine learning models,
it is essential to improve the stability and consistency of
explanations.
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4) INVESTIGATING LOCAL FIDELITY
The lack of local fidelity in the explanations provided while
using the Local Interpretable Model-Agnostic Explanation
(LIME) approach on Electrocardiography (ECG) signals is
one of the major difficulties encountered.

Local fidelity is the degree to which the explanations faith-
fully represent the behavior of the underlying deep learning
model close to the particular instance being described [55].
The lack of local fidelity might make explanations harder
to understand and less reliable, which can be problematic in
the context of ECG data, where temporal dependencies and
distinctive features are essential for classifying arrhythmias.

The data perturbation approach used in LIME includes
creating perturbed samples in the vicinity of the original
ECG instance to build a local dataset for the interpretable
model. Simply adjusting the data points in the case of ECG
signals, though, would not be sufficient to fully represent
the temporal relationships and distinctive features contained
in the signal. ECG signals are time-series data, where each
data point corresponds to a specific time interval, and the
sequence of data points represents the electrical activity of
the heart over time. Perturbing the data independently may
disrupt the temporal relationships and lead to explanations
that do not accurately reflect the local behavior of the deep
learning model for arrhythmia classification.

Furthermore, this disruption in the natural correlation
between features can lead to the generation of data points
that deviate significantly from the original signal. From the
analysis of Fig. 8 it is evident that the LIME technique
produces generated data points that differ significantly from
the original signal.

FIGURE 8. The local fidelity of LIME perturbed dataset

These generated data points are represented by the green
colour in the figure. The noticeable dissimilarity between the
generated data points and the original signal indicates that
LIME may not accurately capture the intricate details and
nuances of the original signal.

The substantial variance observed between the generated
and original data highlights the potential limitation of
LIME in capturing intricate patterns within the signal.

As such, it becomes evident that overcoming the challenge
of local fidelity requires tailored techniques that consider the
temporal dynamics and uniqueness of ECG data, ensuring
that explanations remain faithful to the underlying model’s
behavior.

IV. METHODOLOGY OF ENHANCING LIME APPROACH
In this phase, we focus on the methodology of enhancing
LIME approach to address specific challenges related to
explanation understandability, credibility, stability, scalabil-
ity, and local fidelity when applied to high-dimensional data,
particularly ECG signal data. By identifying these challenges
and their underlying reasons, we propose innovative solutions
to augment the interpretability and reliability of the explana-
tions provided by LIME.

The primary objective is to generate meaningful expla-
nations that consider the temporal dependencies between
features in order to enhance the credibility and interpretability
of the results. To tackle these challenges, several mod-
ifications have been proposed for the LIME framework.
Fig. 9 shows the LIME problems, reasons, and the proposed
solutions.

FIGURE 9. Roadmap of LIME problems, reasons, and possible solutions.

A. ENHANCING EXPLANATION UNDERSTANDABILITY
THROUGH HEATMAPS
Explanation understandability is a critical aspect of the
interpretability of machine learning models, particularly in
the context of complex models such as deep learning.
Heatmaps provide a visually comprehensible representation
of how various characteristics or components contribute to
a model’s prediction, which makes it easier to understand
complicated model behaviors.

Heatmaps are visual depictions that make use of color
gradients to show the relative weight or effect of different
elements in a particular input instance [56]. In the case
of ECG-based cardiac arrhythmia classification, Heatmaps
can be used to show the relevance of various time points
within an ECG signal in relation to the model’s prediction.
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By generating heatmaps, LIME enhances its interpretability
by presenting a clear and intuitive visual representation of the
ECG signal’s contribution to the model’s decision.

The generation of heatmaps involves assigning color inten-
sities to specific regions of the ECG signal, corresponding
to the level of importance of each feature. This can be
mathematically represented as follows [57]:

Heatmap (X) =

N∑
i=1

wi.Xi (1)

where Heatmap (X) represents the heatmap generated for the
ECG signal X , N is the total number of features or segments
within the ECG signal, wi denotes the weight assigned to the
ith feature, representing its importance, Xi corresponds to the
ith feature or segment of the ECG signal.

B. ENHANCING EXPLANATION LINEARITY THROUGH
RANDOM FOREST
Explanation credibility is a fundamental requirement for
the interpretability of machine learning models, ensuring
that the provided explanations accurately reflect the model’s
behavior. LIME approach, while valuable, can be limited by
its inherent linearity assumption. To address this limitation
and enhance explanation credibility, the integration of a non-
linear model, such as the Random Forest algorithm, presents
a promising solution.

LIME generates explanations by fitting a linear model
to locally perturbed data points. While this approach is
effective in approximating the model’s behavior, it may
not accurately capture the intricate non-linear relationships
present in complex datasets. This linearity assumption can
lead to explanations that are overly simplified and do not
faithfully represent the true interactions among features [27].
Random Forest is a versatile ensemble learning algorithm

known for its ability to capture complex non-linear relation-
ships within data. By integrating Random Forest into the
LIME approach, the limitation of linearity assumption can
be mitigated. Random Forest can offer more accurate and
comprehensive explanations bymodeling the intricate feature
interactions present in the data, making it a suitable candidate
for enhancing explanation credibility [58].

The integration of Random Forest into LIME involves
replacing the linear explainer with a Random Forest-based
explainer. The Random Forest explainer generates explana-
tions by utilizing the ensemble of decision trees to capture
non-linear interactions among features. Mathematically, this
can be expressed as follows:

ExplanationRF (X) =

N∑
i=1

RFi (Xi) (2)

where ExplanationRF (X) denotes the explanation provided
by the Random Forest explainer for the input instance X ,
N represents the number of decision trees in the Random
Forest ensemble, RFi (Xi) represents the contribution of the

ith decision tree to the explanation for the ith feature or
segment Xi of the input.
When applied to the hybrid 1D CNN-GRU model for

cardiac arrhythmia classification, the integration of Random
Forest with LIME can lead to more faithful explanations.
Clinicians and researchers can gain a deeper understanding
of the model’s decision-making process by observing the
non-linear interactions among various segments of the ECG
signal. This enhanced explanation credibility contributes to
better informed medical decision-making and more robust
model validation.

C. ENHANCING DATA PERTURBATION THROUGH
SIG-LIME
Data perturbation is a crucial step in LIME approach, as it
involves generating local instances for explanation. However,
traditional perturbation methods can pose challenges in terms
of explanation stability and local fidelity. To address these
challenges and enhance the robustness of explanations, novel
data perturbation technique (Sig-LIME) is proposed.
Sig-LIME stands as an innovative extension of LIME

framework, tailored for signals like ECG signals, where the
interpretability of machine learning model predictions is of
paramount importance. In the context of signal data, such as
ECG, Sig-LIME enriches the data generation and explanation
processes of LIME, unraveling deeper insights into model
predictions.
At its core, Sig-LIME addresses the limitations of existing

methods by striving to generate signal-level explanations
that not only pinpoint relevant signal segments but also
preserve the temporal intricacies within the data. This
becomes especially crucial when understanding models’
decisions based on signals, like ECG records, where patterns
evolve over time. The overarching goal of Sig-LIME can be
summarized in two dimensions: first, identifying the salient
signal segments that contribute to predictions, and second,
upholding the temporal coherence of the signal during the
explanation process.
Signal segmentation forms the foundation of Sig-LIME’s

approach, partitioning the signal into discrete segments, each
open to independent manipulation. The synergy between
Gaussian noise and Signal-to-Noise Ratio (SNR) then comes
into play, orchestrating the generation of novel heartbeats.
This fusion of concepts from the realm of signal processing
is instrumental, as Gaussian noise and SNR are time-honored
tools in signal analysis, hailing their significance in diverse
fields such as audio analysis and communication engineering.

1) GAUSSIAN NOISE
Gaussian noise refers to a type of random variation that is
often added to signals to simulate real-world noise. It is
characterized by its probability distribution, which follows
the Gaussian or normal distribution. This distribution is
described by its mean (µ) and standard deviation (σ ), where
the values of µ and σ determine the characteristics of
the noise added to the signal. Gaussian noise effectively
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models various sources of uncertainty or interference that can
affect signals, such as electronic noise, sensor inaccuracies,
and environmental disturbances [59]. Mathematically, the
probability density function (PDF) of Gaussian noise is given
by:

f (x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (3)

where x represents the noise value, µ is the mean (average)
value of the noise, σ is the standard deviation, controlling the
spread or dispersion of the noise values.

2) SIGNAL-TO-NOISE RATIO (SNR)
Signal-to-Noise Ratio (SNR) is a quantitative measure used
to assess the relative strength of a signal against the presence
of noise. It quantifies the clarity of the signal by comparing
its magnitude to the magnitude of the noise. SNR is defined
as the ratio of the power of the signal and is often expressed
in decibels.

The SNR is typically calculated by taking the logarithm
(base 10) of the ratio between the power of the signal (Psignal)
and the power of the noise (Pnoise), as expressed in the
following equation [60].

SNR = 10 log10 (Psignal/Pnoise) (4)

A higher SNR indicates a stronger signal presence relative
to noise, signifying better signal quality and increased
accuracy in analysis or processing.

In the context of the Sig-LIME technique, Gaussian noise
and SNR play a critical role in generating new heartbeats
for data perturbation. By introducing controlled Gaussian
noise with specific SNR values, Sig-LIME ensures that
the perturbed samples maintain the essential features of
the original signal while introducing realistic variability. The
SNR value governs the trade-off between signal strength
and noise level, allowing for the creation of diverse yet
meaningful perturbed samples that accurately represent the
original signal’s local structure.

In the initial phase of the Sig-LIME data perturbation
the segmentation of the input signal (S) is conducted. This
process involves dividing S into a series of overlapping
windows W = {w0,w1,w2, . . . ,wn}. Each window wi is
defined as a contiguous subsequence of S, with a fixed
length L. The overlap between successivewindows is denoted
as O.

Mathematically, each window wi is represented as:

wi = S[i : i+ L] (5)

where i increments by O in each step, starting from 0.
The segmentation concludes upon reaching the end of S is
reached, ensuring each segment is of length L.
The subsequent step involves the generation of signal

noise. This step is critical in creating synthetic variants of
the original signal segments, enabling a robust analysis of
the signal’s response to various noise conditions. Initially, the
function retrieves the signal segments W obtained from S.

For each segment wi, the algorithm computes the quantity of
perturbed samples P, which is a function of the total sample
size and the number of segments. Mathematically, this is
expressed as in formula 6.

P =
L

len(W )
(6)

The core of the noise generation phase is designed to
introduce Gaussian noise into each segment based on a
defined Signal-to-Noise Ratio (SNR). For a given SNR value,
the corresponding noise power Pn is computed using the
following.

Pn =
signal Power

10(SNR/10) (7)

where Signal Power is the sum of the squared values of
the signal segment. This formulation ensures that the noise
introduced is proportional to the signal’s power, adhering to
the desired SNR level. The resulting noise-infused segments
are compiled into an array Ps.
The next critical step is the Data Generation process.

This phase focuses on synthesizing a comprehensive dataset
from the noise-augmented segments Ps, facilitating the
evaluation and explanation of the signal processing model’s
behaviour. Firstly, we create an array of zeros (NewData) with
dimensions of the number of sample size (Z ) and the Signal
length len(S).

The NewData array functions as a foundational matrix
where the noise-enhanced segments from Ps are systemati-
cally incorporated. This integration is performed through an
iterative process, wherein each individual segment from Ps is
methodically embedded into the NewData array. The precise
allocation of these segments within NewData is controlled by
specific row indices rstart and rend , and column indices cstart
and cend . The mathematical formulation of this embedding
process is expressed as:

NewData [rstart : rend , cstart : cend ] = Ps[i] (8)

Fig. 10 presents an overarching view of the Sig-LIME
methodology, underscoring its commitment to producing
explanations that not only maintain credibility but also
respect the temporal dependencies ingrained within signal
data.

FIGURE 10. Sig-LIME procedure to generate explanations.

Sig-LIME’s ingenuity shines through in its intricate
procedure, harmonizing signal segmentation and noise
manipulation to generate meaningful explanations. This
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Algorithm 1 Pseudocode for Sig-LIME Algorithm
Input: DLModel (model), Signal (S),
SampleSize (Z), SengmetLenght (L),
Overlap(O)
Output: Explanation
Start Algorithm (Sig-LIME)
Phase 1: Split ECG Signal into segments

1 Function SegmentSignal(S, L, O):
2 Initialize W as empty list for

Segments
3 FOR start FROM 0 TO (length(S) - L)

STEP O:
4 end = Min(start + L, length(S))
5 IF end = length(S) THEN
6 EXIT LOOP
7 wi = S[start:end]
8 APPEND wi to W
9 RETURN W

10 End;//Function
Phase 2, Generate noise based on each

segment
11 Function GenerateNoise(S, L, SNR):
12 Initialize Ps as empty list for

PerturbedSegments
13 W = SegmentSignal(S, L, O)
14 P = L / length(W)
15 FOR each i in W:
16 FOR each j in SNR:
17 noise =

GenerateNoiseFor Segment (i, j, (P/10,
length(i)))

18 Append noise to Ps
19 Return Ps
20 End;// Function

Phase 3, Generate Perturbed Dataset
21 Function DataGenerator(Z, S):
22 Ps = GenerateNoise(S, L)
23 NF = Number of features in S
24 NData = Zero Matrix of size (Z, NF)
25 RStart, REnd, CStart, CEnd = 0
26 FOR each perturbed segment i in Ps:
27 REnd = RStart + length(Ps[i])
28 CEnd = CStart + Number of

features in Ps[i]
29 NewData[RStart:REnd, CStart:CEnd]

+ = Ps[i]
30 Update RStart, CStart, REnd, CEnd
31 Reset parameters if needed
32 NData + = S
33 Return NData
34 End;// Function

Phase 4, Generate explanations
35 Initialize NewData, Labels, Neighborhood,

Importance
36 NewData = DataGenerator(Z, S)
37 Labels = model.predict(NewData)
38 Neighborhood = Calculate pairwise

distances between S and NewData
39 RFModel = RandomForestClassifier()
40 RFModel.fit(NewData, Labels,

Neighborhood)
41 Importance = RFModel.feature_importances
42 PlotHeatmap(Importance, Signal S)
43 End;//Algorithm

technique ensures that only specific segments of the signal
undergo transformation, leaving the rest untouched, thus
upholding the temporal relationships inherent in the signal.

The proposed Sig-LIME algorithm is outlined in
Algorithm 1, presented as pseudocode.

V. RESULTS
The Sig-LIME approach is an improvement to the data
generation and explanation methods used by LIME that is
designed exclusively for producing signal-level explanations
for models that accept signals as input, such as ECG signals.

Signal segmentation and noise production are the two
crucial elements of the data generating method used by Sig-
LIME. By breaking the ECG signal up into smaller chunks,
signal segmentation enables independent manipulation of
each segment.

Following signal segmentation, Sig-LIME uses the Signal
Noise Ratio (SNR) and Gaussian random noise generating
algorithms. These methods insert controlled noise into each
segment of the signal. The other feature values in the
segment, which preserve the temporal connections between
features, are significant. This strategy helps the extraction
of important insights from challenging ECG datasets, which
leads to enhanced decision-making processes. Fig. 11 shows
examples of the data generated by Sig-LIME.

FIGURE 11. Samples of the data generated by Sig-LIME

As a result, Sig-LIME achieves a substantial enhancement
in the neighborhood of the original data, contributing to more
accurate and credible explanations. The visual representation
in Fig. 12 vividly depicts the synthetic data generated by Sig-
LIME, offering a transparent illustration of the improved data
generation process in action. This enhancement underscores
the efficacy of Sig-LIME in preserving the key features
of the original signal while introducing controlled noise,
thereby augmenting the quality of explanations provided by
the model.

FIGURE 12. Synthetic dataset generated by Sig-LIME
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Heatmaps and a random forest model are used in Sig-
LIME. Together, these elements produce insightful justifi-
cations for the predictions produced by models that use
ECG data as input. Fig 13 illustrates the results of the
Sig-LIME explanation approach by using heatmaps to present
the importance of features in a visual manner. It is clear
that the heatmaps emphasize the characteristics closest to
the QRS complex the most. This finding validates the
argument that the QRS complex is essential to the model’s
predictions and establishes the validity of the Sig-LIME
technique for gathering significant signal-level data. These
results demonstrate the efficiency of Sig-LIME in producing
explanations that stress the QRS complex and offer insightful
information about the model’s decision-making process.

FIGURE 13. Sig-LIME explanation outcome.

Fig 14 presents a wide range of samples that the inquiry
examined and the significant findings that came from
in-depth research and analysis.

The use of heatmaps improves the explanation’s readability
and visual representation, allowing for a deeper comprehen-
sion of the variables impacting the model’s predictions.

A. COMPARISON WITH BASELINE LIME
As previously discussed, LIME faces challenges in terms
of explanation understandability, credibility, instability, and
local fidelity due to its random feature perturbation data
generation technique and the linear assumption. To address
these limitations, the proposed method, namely Sig-LIME,
introduced more realistic and informative explanations.

1) COMPARISON IN TERMS OF UNDERSTANDABILITY
One of the fundamental objectives of enhancing the inter-
pretability of explanations is to ensure their understandability
across diverse audiences. In this context, we delve into a com-
prehensive comparison between the proposed method and the
baseline LIME approach in terms of the understandability of
the generated explanations.

FIGURE 14. Diverse arrhythmia types explored through Sig-LIME
explanation.

The inclusion of the heatmap visualization technique
stands out as a pivotal factor contributing to the improved
understandability of explanations. This technique facilitates
the overlay of feature weights onto the ECG signal, providing
a more intuitive representation of their significance. The
intensity of the red color reflects the relative importance
of features, where darker hues signify greater importance.
This visual representation offers a compelling comparison of
explanation outcomes among LIME and Sig-LIME.

While LIME employs a conventional approach that com-
bines textual and visual elements for conveying explanations,
its effectiveness diminishes when dealing with intricate
signal data. To overcome this challenge, the integration
of heatmap techniques within Sig-LIME is paramount.
Heatmaps emerge as powerful tools for visually representing
feature contributions within signals, which in turn augments
the comprehensibility of the explanations. By emphasizing
critical areas, like the QRS complex, heatmaps provide
insights into influential features, enhancing the interpretation
process.

Fig. 15 effectively illustrates the contrasting explanation
outcomes of LIME in comparison to the proposed Sig-LIME
method.

The latter consistently highlight regions proximate to the
QRS complex, aligning with the recognized significance
of this region in arrhythmia analysis. In contrast, LIME’s
tendency to emphasize random areas without a specific focus
becomes evident. Furthermore, the heatmap sidebar within
the same figure signifies the heightened confidence exhibited
by Sig-LIME in their chosen features when compared
to LIME. This confidence is visibly pronounced through
significantly higher importance scores assigned to specific
features in Sig-LIME in comparison to LIME.
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FIGURE 15. Comparison of the explanation outcomes of LIME with the
proposed Sig-LIME.

Through the integration of heatmaps, the proposed meth-
ods distinctly elevate the interpretability and clarity of the
explanations. This enhanced understandability empowers
researchers, practitioners, and domain experts to gain a
deeper understanding of the intricate relationships within
ECG signals, facilitating informed decision-making and
contributing to the advancement of cardiac arrhythmia
classification practices.

2) COMPARISON IN TERMS OF CREDIBILITY
The evaluation of credibility emerges as a pivotal dimension
when contrasting the proposed Sig-LIME method with the
established LIME technique. LIME’s lack of credibility,
primarily stemming from its perturbation technique and
reliance on linearity assumptions, triggers a comprehensive
assessment of these methods’ ability to generate explanations
that inspire trust and reliance.

The veracity of LIME’s explanations is notably under-
mined by its random feature perturbation technique and
adherence to linear assumptions. This inherent limitation
has spurred skepticism regarding the credibility of LIME’s
explanations.

To substantiate these concerns, Fig. 16 unfolds as a visual
testament, depicting samples that underscore the lack of
credibility stemming from LIME’s perturbation technique.
This figure also affords a comparative analysis of data
generated by LIME, and Sig-LIME, further accentuating the
credibility concerns surrounding LIME.

Sig-LIME undertake ingenious strategies to tackle the
credibility challenge, harnessing the inherent nature of ECG
signals to produce realistic explanations. Sig-LIME partitions
heartbeats into segments and leverages Gaussian noise and
Signal-to-Noise Ratio (SNR) to generate data points that
capture the underlying signal characteristics.

The credibility quandary posed by LIME’s linear model
is further examined, considering the high dimensionality and
intricacy of ECG signals. In response, the incorporation of
Random Forest (RF) models within Sig-LIME emerges as

FIGURE 16. Comparison of data Generation between LIME, and Sig-LIME.

a potent solution. RF’s aptitude for handling both linear
and non-linear relationships, without the need for excessive
hyperparameter tuning, imparts enhanced credibility to the
explanations provided by these methods.

Intriguingly, Fig. 17 materializes as a critical point of
comparison, contrasting the feature weights derived from
LIME with those generated by Sig-LIME. This visual
representation encapsulates LIME’s tendency to choose
random areas with wavering confidence, juxtaposed with the
proposed methods’ consistent focus on the QRS complex
region. This alignment with the known importance of the
QRS complex in arrhythmia analysis reiterates the credibility
of the explanations offered by Sig-LIME.

FIGURE 17. Comparison of the feature weights generated by LIME and
the proposed Sig-LIME.

3) COMPARISON IN TERMS OF STABILITY
The examination of stability constitutes another vital dimen-
sion in our comparative analysis of LIME, and Sig-LIME.
Stability pertains to the degree of consistency exhibited by
the explanations across various perturbations or multiple
runs of the explanation process. This assessment is visually
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represented in Fig. 18, offering insights into the stability
characteristics of the respective methods.

FIGURE 18. Comparison of stability between LIME explanation outcomes
and Sig-LIME.

Turning our attention to LIME, it becomes evident that
the generated explanations lack stability. The model tends
to highlight disparate regions within the cardiac signal upon
each execution or data alteration. This variability arises due
to LIME’s perturbation approach, introducing inconsistencies
in the explanations.

In contrast, Sig-LIME manifest superior stability. The
method consistently emphasizes the vicinity of the QRS
complex in its explanations, regardless of the number of
executions or data manipulations. This stability is a result of
the distinctive strategies employed by Sig-LIME.

To quantitatively evaluate the stability of the explanations,
we employed an analysis of variance (ANOVA) frame-
work. Our experimental design involved running LIME,
and Sig-LIME multiple times (specifically, three runs)
and recording the feature weights obtained in each run.
Subsequently, ANOVA was applied to ascertain the degree
of similarity between these runs for each method.

The results yielded unequivocal evidence of a marked
improvement in stability attributed to our proposed method-
ologies. In the case of LIME, an f-statistic of 0.76 was
observed, accompanied by a corresponding p-value of
0.4689.

On the other hand, Sig-LIME displayed an f-statistic of
0.0, indicating a complete absence of variation between runs.
Moreover, Sig-LIME yielded p-values of 1, which is the
highest possible p-value and indicates a strong statistical
agreement between the runs.

This outcome demonstrates an exceptionally high level of
stability in the explanations produced by Sig-LIME. In other
words, the feature weights in these techniques remained
virtually identical across all iterations, providing strong
evidence of their stability.

LIME’s instability is predominantly attributed to its
uniform perturbation technique involving Gaussian noise
addition. This simplistic perturbation method may result
in explanations that disrupt the inherent data structure and
coherence.

In contrast, Sig-LIME mitigates this instability by seg-
menting the signal and introducing Gaussian noise based on
the Signal-to-Noise Ratio (SNR). This approach preserves
the temporal interdependencies within the signal, thereby
yielding explanations that are notably more reliable and
consistent.

Furthermore, the assumption of linear relationships
between features contributes to LIME’s instability. This
assumption often proves untenable for complex real-world
data, resulting in inconsistent feature selection and, conse-
quently, explanations.

4) COMPARISON IN TERMS OF LOCAL FIDELITY
The concept of local fidelity takes center stage as we delve
into a comparative analysis of LIME and Sig-LIME, focusing
on their capacity to faithfully represent the behavior of the
model near a specific instance. This analysis becomes espe-
cially pertinent in the context of ECG signals, where temporal
dependencies and unique characteristics are paramount for
accurate arrhythmia classification. The presence of local
fidelity serves as a cornerstone for the generation of reliable
explanations.

Fig. 19 compares the local fidelity of Sig-LIME and LIME
on a synthetic dataset. Local fidelity is measured by the
average Euclidean distance between the predictions of the
LIME model and the original model. As the figure shows,
Sig-LIME has a lower average Euclidean distance than LIME
with 0.49 for Sig-LIME compared to 17.24 for LIME. This
means that Sig-LIME is better at generating data that is more
similar to the original data, on average. Sig-LIME shines as
it makes substantial strides in enhancing the local fidelity of
the generated explanations.

FIGURE 19. Average Euclidean Distance of the data generated by LIME
and Sig-LIME to the original data point.

In this pursuit, Sig-LIME shine as they make substantial
strides in enhancing the local fidelity of the generated
explanations. This remarkable progress is elegantly portrayed
in Fig. 20, where each data point’s color signifies its

52654 VOLUME 12, 2024



T. A. A. Abdullah et al.: Sig-Lime: A Signal-Based Enhancement of Lime Explanation Technique

FIGURE 20. Comparison of the local fidelity between LIME, and Sig-LIME

proximity to the original ECG heartbeat data point (depicted
as a blue dot). The spectrum of colors, ranging from light
to dark, symbolizes the degree of dissimilarity between the
generated data points and the original instance.

Notably, within LIME’s framework, the green-colored
data points reveal a noticeable deviation from the original
instance. This departure underscores a limitation in local
fidelity, where LIME’s generated explanations might not
entirely capture the essence of the model’s decision-making
process, raising concerns about their reliability.

In stark contrast, Sig-LIME emerges as a beacon of
high local fidelity. The data points it generates closely
echo the characteristics of the original data point. This
feat is achieved through Sig-LIME’s innovative approach
of integrating Gaussian noise and Signal-to-Noise Ratio
(SNR) into data point generation. By skillfully injecting
controlled noise and signal variance, Sig-LIME ensures that
the generated data points encapsulate the intrinsic temporal
dependencies found within ECG signals.

The enhancement in local fidelity offered by Sig-LIME
underscores their efficacy in delivering explanations that
authentically mirror the model’s behavior within the intricate
landscape of ECG signals. This advancement doesn’t merely
bolster the trustworthiness of the explanations; it also aligns
themwith the nuanced patterns that define cardiac arrhythmia
classification.

VI. DISCUSSION
The development of Sig-LIME marks a significant advance-
ment in the interpretability of machine learning models,
especially in the context of signal data such as ECG
signals. This enhanced version of the Local Interpretable
Model-agnostic Explanations (LIME) algorithm effectively
addresses the intricate challenges inherent in interpreting
complex models. Its application is especially crucial in the
medical domain, where the interpretation of ECG recordings
and similar signal data is paramount.

A key strength of Sig-LIME lies in its ability to sig-
nificantly improve the interpretability of machine learning

models. This advancement is vital in contexts where the
accuracy and trustworthiness of model predictions are
critical. Sig-LIME’s capacity to offer clearer, more intuitive
explanations of model decisions facilitates a deeper, more
comprehensive understanding of complex models. This
feature is invaluable in high-stakes applications like medical
diagnostics, where precise and reliable interpretations can
have profound implications.

The algorithm’s unique approach to maintaining temporal
relationships in signal data is particularly beneficial for
time-series analysis. This preservation ensures not only the
accuracy of the interpretations but also their contextual
relevance. Such an approach is essential for maintaining the
integrity of time-sensitive data analyses.

In terms of stability, Sig-LIME represents a substantial
enhancement over the conventional LIME model. The
increased stability in its explanations contributes significantly
to the algorithm’s credibility and the consistency of its
interpretative outcomes. Additionally, Sig-LIME advances
the local fidelity of explanations, effectively tackling a
common challenge in machine learning interpretability.
The integration of novel data generation techniques and
the application of heatmaps and random forest models in
Sig-LIME enable a more detailed and accessible under-
standing of model behaviors in signal data processing.
These attributes, when juxtaposed with the baseline LIME
algorithm, underscore Sig-LIME’s superiority in providing
nuanced and comprehensive interpretations.

While Sig-LIME introduces a groundbreaking methodol-
ogy for augmenting interpretability in signal-based machine
learning models, it is imperative to acknowledge certain
inherent limitations. One notable demerit lies in the sensitiv-
ity of Sig-LIME to the choice of parameters, particularly in
the signal perturbation phase. The effectiveness of Sig-LIME
can be influenced by the choice of parameters such as
signal-to-noise ratio (SNR) and segment size. Challenges
in accurately determining these parameters may expose the
algorithm to suboptimal configurations, potentially impact-
ing the fidelity of explanations produced.

While this study marks a significant stride forward,
addressing the algorithm’s sensitivity becomes a crucial
focus for future research. Subsequent investigations could
involve meticulous evaluations of Sig-LIME across diverse
signal data types beyond ECG signals. Additionally, future
work will focus on enhancing the algorithm’s robustness
by exploring automated parameter tuning mechanisms such
as HSCATSO [61] and incorporating adaptive strategies to
mitigate its sensitivity across varying signal characteristics.

VII. CONCLUSION
This study has tackled the challenges of interpreting signal
data, specifically ECG signals, using the LIME technique.
We systematically investigated the limitations of LIME,
including its perturbation technique and linear assumptions,
and introduced Sig-LIME as a solution. Through a thor-
ough comparison, we highlighted Sig-LIME’s significant
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improvements over LIME. Our analysis revealed that Sig-
LIME, with its innovative use of Gaussian noise and Signal-
to-Noise Ratio (SNR), addressed credibility, stability, and
local fidelity issues. The integration of heatmap visualization
enhanced the understandability of explanations by overlaying
feature weights on ECG signals, emphasizing critical regions
like the QRS complex. Furthermore, by adopting Random
Forest instead of ridge regression, Sig-LIME captured
non-linear relationships in complex ECG data, elevating
the credibility of explanations. While marking a significant
advancement, this study recognizes avenues for future
research. Further refinements in the Sig-LIME methodology
could involve evaluating its performance across various
signal data types beyond ECG signals. Additionally, the study
acknowledges the limitation of Sig-LIME’s sensitivity to
parameter choices, and future work will focus on addressing
this challenge through automated parameter tuning mecha-
nisms and adaptive strategies, ensuring robust performance
across diverse signal characteristics. Furthermore, exploring
the integration of Sig-LIME into existing clinical workflows
and assessing its impact on decision-making processes will
provide valuable insights into its real-world applicability.
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