IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 5 March 2024, accepted 26 March 2024, date of publication 2 April 2024, date of current version 16 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3384334

== RESEARCH ARTICLE

Game-Theoretic Resource Allocation and Dynamic
Pricing Mechanism in Fog Computing

ANJAN BANDOPADHYAY ', SUJATA SWAIN ', RAJ SINGH "1, PRITAM SARKAR "',
SIDDHARTHA BHATTACHARYYA“23, (Senior Member, IEEE), AND LEO MRSIC 3

!School of Computer Engineering, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha 751024, India
2Department of Computer Science, VSB Technical University of Ostrava, 708 00 Ostrava, Czech Republic

3 Algebra University, 10000 Zagreb, Croatia

4Rudolfovo Scientific and Technological Center, 8000 Novo Mesto, Slovenia

Corresponding author: Siddhartha Bhattacharyya (dr.siddhartha.bhattacharyya@gmail.com)

This work was supported by the Project: 101104579, Al-powered Next Generation of VET (AI4VET4AI)
ERASMUS-EDU-2022-PEX-COVE.

ABSTRACT Fog computing is a promising and challenging paradigm that enhances cloud computing
by enabling efficient data processing and storage closer to data sources and users. This paper introduces
a game-theoretic approach called GTRADPMFC (Game-Theoretic Resource Allocation and Dynamic
Pricing Mechanism in Fog Computing) to address resource allocation and dynamic pricing challenges
in fog computing environments with limited resources. The proposed model features non-cooperative
competition among fog nodes for resources and dynamic pricing mechanisms to encourage efficient
resource utilization. Theoretical analysis and simulations demonstrate that GTRADPMFC improves resource
efficiency and overall fog computing system performance. Additionally, the paper discusses how to
handle situations with insufficient samples and provide flexibility for users unable to meet completion
time requirements. GTRADPMEC effectively manages resource allocation by establishing pricing in fog
computing, considering potential delays in completion time. This is achieved through research, simulations,

convergence analysis, complexity evaluation, and optimization guarantees.

INDEX TERMS Fog computing, dynamic pricing, resource allocation, game-theoretic approach.

I. INTRODUCTION
Fog computing has emerged as a transformative paradigm
that brings cloud computing capabilities closer to the edge of
the network, enabling efficient data processing and storage in
proximity to data sources and end-users. This decentralized
approach to computing offers numerous advantages, such as
reduced latency, improved bandwidth utilization, enhanced
privacy, and the ability to handle real-time data processing
requirements. However, the resource constraints inherent in
fog computing environments pose significant challenges in
achieving efficient resource allocation and pricing strategies.
Resource allocation in fog computing involves the alloca-
tion of computational, storage, and communication resources
among multiple entities, including fog nodes, users, and
service providers. These entities often have diverse objectives

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wang

and requirements, making it essential to design mechanisms
that balance their competing interests while maximizing
overall system performance. Moreover, the dynamic nature
of fog computing environments, characterized by varying
resource availability and user demand, necessitates adaptive
resource allocation approaches [1], [2].

Additionally, pricing mechanisms play a crucial role in
incentivizing efficient resource utilization and optimizing the
allocation of resources. By appropriately pricing resources,
fog nodes can encourage users to make optimal decisions
regarding resource consumption, considering the quality
of service requirements, available resources, and demand
fluctuations. Dynamic pricing mechanisms that adjust prices
in real-time based on changing conditions enable the system
to adapt to varying resource availability and demand patterns.
Game theory provides a robust framework for modeling and
analyzing the interactions among entities in fog computing
environments to address these challenges. Game theory

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

51704

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0001-7670-2269
https://orcid.org/0000-0001-7089-1863
https://orcid.org/0009-0009-0547-9683
https://orcid.org/0009-0009-9518-0975
https://orcid.org/0000-0003-0360-7919
https://orcid.org/0000-0002-5093-3453
https://orcid.org/0000-0003-2153-9075

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

IEEE Access

allows us to capture the strategic behavior of fog nodes and
users, considering their rational decision-making processes
and self-interest. By formulating resource allocation and
pricing problems as games, we can design mechanisms that
lead to desirable outcomes, such as maximizing system
utility, achieving fairness, and enhancing resource utilization
efficiency [3].

This research paper explores the application of game
theory to address resource allocation and dynamic pricing
in fog computing. We propose a non-cooperative game
model that captures the competitive interactions among
fog nodes in resource allocation. Additionally, we design
a dynamic pricing mechanism that adjusts prices based
on resource availability, demand, and quality of service
requirements. The performance of the proposed approach
is evaluated through a combination of theoretical analysis
and simulations. Theoretical analysis involves rigorous study
of the algorithm’s properties, complexity, convergence, and
performance guarantees. This analysis helps establish the
theoretical foundations of the approach and provides insights
into its expected behavior and performance.

The proposed game theoretic approach can potentially
optimize resource utilization, enhance system performance,
and enable fair and efficient allocation of resources in fog
computing environments. The core difficulty in fog comput-
ing is creating an effective dynamic pricing system that over-
comes the constraints of current pricing schemes while also
integrating resource allocation [3]. In fog computing, where
resources are distributed across the network’s edge, designing
a pricing mechanism that optimally allocates resources to
users while considering factors such as resource availability,
user demand, and fairness is crucial [4]. This challenge arises
due to the unique characteristics of fog computing, such as
the distributed nature of resources, varying availability, and
the need to meet user demands within specified time frames.
A framework has been put forth in this manner, according
to [5], where a sound economic mechanism is designed
while a value-based efficiency is built to optimize social
welfare. Specifically, we introduce a novel mechanism, the
Game-Theoretic Resource Allocation, and Dynamic Pricing
Mechanism in Fog Computing (GTRADPMEFC), to han-
dle completion time failures effectively. This mechanism
combines resource allocation and dynamic pricing strategies
to optimize resource utilization and enhance the overall
performance of fog computing systems [6]. In this situation,
we’ve looked at how to develop a dynamic pricing strategy
that works when users are unable to finish the tasks they want

to within the allotted time, thereby
« Providing consumers with flexibility if they cannot meet

their assignment deadlines within the specified time
frame.

« Deciding as to what is the appropriate course of action
when insufficient samples are available. (This situation
occurs at the beginning of the process).

The structure of the rest of this paper is as follows.
Section II offers a comprehensive review of fog computing,

VOLUME 12, 2024

resource allocation, dynamic pricing strategies, and com-
pletion time failures, providing an in-depth analysis of the
existing research in these areas. Section III overviews our pro-
posed system model. We describe the key components, such
as the fog computing framework, resource allocation, and
pricing structures. This sets the foundation for understanding
the subsequent sections. Section IV presents our proposed
mechanism in detail here. We explain how resource allocation
and dynamic pricing strategies work together to address
completion time failures. We discuss the algorithms and
techniques for allocating resources, calculating prices, and
handling user demands in the fog computing environment.
Section V analyzes the proposed mechanism in this section.
We evaluate its performance using theoretical analysis,
mathematical modeling, and simulations. We discuss the
advantages and limitations of our approach and compare it
with existing baseline approaches. This analysis provides
insights into the effectiveness and efficiency of our proposed
mechanism. In Section VII, we summarize the essential
findings and contributions of this paper. We highlight
the benefits of our proposed mechanism in addressing
completion time failures in fog computing. We also discuss
the practical implications and potential applications of our
approach. Furthermore, we identify future research directions
and areas for improvement in fog computing systems [7].

The remaining sections of this paper delve into the details
of our proposed mechanism. We provide a comprehensive
analysis of its performance and discuss the implications
of our findings. We encourage further exploration and
advancement in fog computing and dynamic pricing schemes
by concluding the paper with future directions. Here are some
limitations of current solutions in the domain:

o Dynamic Pricing Challenges: Current dynamic pricing
mechanisms may not effectively address completion
time failures, where users are unable to meet their
assignment deadlines within the specified time frame.

« Insufficient Handling of Incomplete Samples: Current
solutions may struggle to handle situations with insuf-
ficient samples, particularly at the beginning of the
process.

o Complexity and Scalability: Existing solutions may
exhibit limitations in terms of complexity and scalabil-
ity, particularly concerning the integration of resource
allocation and dynamic pricing mechanisms.

« Effectiveness in Real-world Deployment: While theoret-
ical analyses and simulations provide insights into the
proposed mechanism’s performance, the effectiveness
of the solution in real-world deployment scenarios may
not be adequately addressed.

« Interoperability and Standardization: Current solutions
may lack standardized protocols and interfaces for
interoperability between fog nodes, cloud platforms, and
edge devices.

« Energy Efficiency and Cost-effectiveness: Energy effi-
ciency and cost-effectiveness considerations are crucial
in fog computing environments, but current solutions

51705

IEEE Access

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

may not sufficiently optimize resource allocation and
pricing.

o Security and Privacy Concerns: Security and privacy
challenges are significant in fog computing due to
the distributed nature of resources and sensitive data
processing at the network edge.

Il. LITERATURE REVIEW

The field of fog computing has garnered significant attention
in recent years, resulting in a growing body of research
focused on resource allocation and pricing mechanisms
in fog computing environments. This section provides an
overview of the existing literature. It highlights the limitations
of current approaches, emphasizing the need for game
theoretical models in optimizing resource allocation and
dynamic pricing [8], [9], [10], [11], [12].

Several studies have explored resource allocation tech-
niques in fog computing. Traditional approaches include
centralized resource allocation algorithms that optimize
resource utilization based on predetermined criteria [5], [13].
However, these methods may suffer from scalability issues
and lack adaptability to dynamic fog environments [14],
[15]. Some researchers have proposed decentralized resource
allocation methods, where fog nodes autonomously negotiate
and exchange resources based on their local information.
While these approaches address scalability concerns, they
often assume full cooperation among fog nodes, which may
not hold in practice [16], [17], [18].

Pricing mechanisms are crucial in influencing user and
fog node behavior towards efficient resource utilization [19],
[20]. Existing pricing models in fog computing range from
fixed pricing, where resources are charged at predetermined
rates, to dynamic pricing that considers real-time factors
such as resource availability and user demand [21], [22],
[23]. However, most pricing mechanisms do not explicitly
incorporate strategic decision-making by fog nodes and
users. As a result, they may not effectively incentivize
efficient resource allocation or achieve fairness among
participants [24], [25], [26].

Game theory provides a robust framework for mod-
eling strategic interactions among self-interested entities
in fog computing [27], [28]. It enables the analysis of
decision-making processes and the design of mechanisms
that lead to desirable outcomes. Game theoretical approaches
have been applied to resource allocation and pricing problems
in cloud computing, but their application to fog computing
is relatively nascent. By formulating fog computing resource
allocation as a non-cooperative game, researchers have
started exploring strategies such as coalitional games, Stack-
elberg games, and Nash bargaining solutions to optimize
resource allocation and pricing [4], [29], [30].

In addition to non-cooperative games, [31]there is growing
interest in collaborative resource allocation in fog computing
[32]. Joint resource allocation involves fog nodes forming
coalitions to jointly optimize resource utilization and achieve

51706

better system performance [33], [34]. Cooperative game
theory provides tools for analyzing coalition formation
and allocation of resources among fog nodes [35]. These
approaches aim to strike a balance between individual and
collective benefits, leading to more efficient resource utiliza-
tion and enhanced system performance [7], [36], [37], [38].

Some researchers have proposed hybrid approaches that
combine game theory with other optimization techniques,
such as machine learning and evolutionary algorithms [39],
[40]. These approaches leverage the strengths of different
methodologies to address resource allocation and pricing
challenges in fog computing. For example, reinforcement
learning algorithms can be used to learn optimal resource
allocation strategies in a dynamic and uncertain fog
environment.

While existing research provides valuable insights into
resource allocation and pricing in fog computing, there
is a need for more comprehensive and robust approaches
that explicitly consider the strategic decision-making of
fog nodes and users [1], [2], [41]. The application of
game theory offers a promising avenue to address these
challenges and optimize resource allocation and pricing
mechanisms in fog computing environments [2], [6], [14].
The main goal of our work is to provide an effective
dynamic pricing scheme that, when combined with resource
allocation, overcomes the constraints of the existing pricing
schemes used in the current fog computing deployment.
We build upon the framework proposed in reference [42],
which aims to maximize social welfare through a value-based
economic mechanism. Specifically, we focus on designing
an efficient dynamic pricing scheme for users facing time
constraints in completing their desired tasks within the
specified completion time.

The existing research in fog computing has shed light
on resource allocation and pricing mechanisms [3], [43],
[44]. However, there is still a need for more comprehensive
approaches that consider the strategic decision-making of
both fog nodes and users. Game theory has emerged
as a promising approach to tackle these challenges and
optimize resource allocation and pricing in fog computing
environments, as highlighted in [45], [46], and [47].

The main goal is to develop an effective dynamic pricing
system that integrates smoothly with resource allocation in
fog computing installations. Our goal is to overcome the
drawbacks of current pricing models by creating a fresh
strategy that maximizes resource efficiency and improves
consumer happiness. A framework that emphasized max-
imizing social welfare through a value-based economic
mechanism was put forth in [48], [49], and [50]. Using this
framework as a foundation, our work broadens its focus to
address the problem of users not finishing their jobs by the
deadline. The authors recognized this issue as a possible topic
for future development [51], [52], [53].

Specifically, we focus on designing an efficient dynamic
pricing scheme that caters to users facing time constraints

VOLUME 12, 2024

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

IEEE Access

in completing their desired tasks within the specified com-
pletion time. Our approach aims to enhance fog computing
systems’ overall performance and efficiency by considering
the strategic decision-making of fog nodes and users. We aim
to optimize the allocation of resources and the pricing
mechanism, considering the time constraints users face.
Through our research, we aim to provide a more robust and
effective solution for resource allocation and dynamic pricing
in fog computing, ultimately improving the user experience
and maximizing the utilization of fog computing resources.

A. MOTIVATION AND CONTRIBUTIONS

In the changing world of fog computing, important challenges
need attention. These challenges include the diverse nature
of fog computing environments, which require methods for
allocating resources and determining prices. Additionally,
fog computing aims to provide services that call for pricing
models that accommodate users’ time constraints [46],
[54]. Moreover, ensuring resource distribution among users
and fog nodes while achieving resource utilization remains
complex [47], [50].

To contribute to the progress of fog computing, we propose
solutions. Firstly, we introduce a pricing scheme that adjusts
dynamically to meet users’ needs with time constraints while
optimizing resource allocation. This pricing model takes into
consideration the varying demands of users [6], [49]. Ensures
allocation of resources.

Secondly, we seamlessly integrate the dynamic pricing
scheme with resource allocation strategies. By doing we
enhance resource utilization [52]. Improve user satisfaction.
This integration enables the allocation of resources, leading
to enhanced system performance.

Furthermore, we explicitly address decision-making by
both fog nodes and users. By incorporating principles
from game theory, we enhance the performance of the
fog computing system. Decision-making allows for effi-
cient resource allocation while ensuring optimal system
operation [51], [53].

We aim to elevate the user’s experience by tackling
the obstacles in fog computing settings. With our efforts,
we aspire to enhance the performance and productivity of
fog computing systems, ultimately bringing advantages to
individuals operating within these environments [43], [54].

This paper makes several contributions to the field of fog
computing:

o Development of GTRADPMFC Mechanism: We
propose a novel mechanism called Game-Theoretic
Resource Allocation and Dynamic Pricing Mecha-
nism in Fog Computing (GTRADPMFC) to address
resource allocation and dynamic pricing challenges in
fog computing environments with limited resources.
GTRADPMEFC integrates game theory principles with
dynamic pricing strategies to optimize resource utiliza-
tion and enhance overall system performance.

VOLUME 12, 2024

« Effective Handling of Completion Time Failures:
GTRADPMEC effectively manages resource allocation
by establishing pricing in fog computing, considering
potential delays in completion time. This mechanism
addresses completion time failures by giving users
flexibility when they cannot meet their assignment
deadlines within the specified time frame, thereby
improving user satisfaction and system efficiency.

o Theoretical Analysis and Simulation Validation: We
conduct theoretical analysis and simulations to evaluate
the performance of GTRADPMFC. Theoretical analysis
involves rigorous study of the mechanism’s properties,
complexity, convergence, and optimization guarantees.
Simulation results demonstrate that GTRADPMFC
improves resource efficiency and overall fog computing
system performance compared to existing solutions.

o Practical Implications and Future Directions: We
discuss the practical implications of our proposed
mechanism and identify future research directions
for advancing fog computing systems. GTRADPMFC
contributes to developing more robust, efficient, and
scalable solutions for fog computing environments by
addressing key challenges such as dynamic pricing,
completion time failures, and resource allocation.

Ill. SYSTEM MODEL

The proposed model focuses on resource allocation and
pricing structures within the fog computing framework,
specifically addressing scenarios where users fail to meet
their deadlines and resubmit their resource demands. This
aspect ensures efficient resource utilization and meeting
users’ requirements in fog computing environments.

Considering these resubmitted demands, the proposed
model aims to develop a scalable algorithm that effectively
allocates resources based on user priorities and constraints.
It considers the demand components, such as resource
requirements and time limits, and incorporates them into
resource allocation and pricing decision-making. The fog
service provider possesses a set of n resources, each with
a specific capacity. These resources, denoted as R =
(R1, C1), (R2, C2), ..., (Ry, Cy), encompass natural compo-
nents such as RAM, cores, HDDs, and others. In the proposed
model, each component is represented by a tuple (R;, C;),
where R; denotes the i resource and C; represents its
corresponding available capacity. These components reflect
the resources that are available within the fog computing
environment.

The resources can vary depending on the specific require-
ments and capabilities of the fog computing infrastructure.
Examples of resources commonly found in fog computing
systems include processing power (CPU cores), memory
(RAM), storage (disk space), network bandwidth, and other
specialized hardware components.

The tuple (R;, C;) represents multiple resources and
their respective capacities. This information is essential for
effective resource allocation and pricing decisions, as it helps

51707

IEEE Access

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

determine the availability and utilization of resources when
fulfilling user demands. A user has the flexibility to select
any subset of available resources.

For instance, a user might ask for two resources as (Ry, C 1)
and (R;, @2), where C‘i denotes the amount of capacity the
user is asking for the resource R; in Fig. 1. The requested
capacity can either be less than or equal to the available
capacity, C; < C;, or it can exceed the available capacity,
C; > Ci. If a user’s demand exceeds the capacity of a
particular resource, i.e., C‘,' > C;j, the request is rejected due
to insufficient supply.

Another user may have a demand that includes multiple
resources, such as (Ry, 61), (R, é‘z), and (Rq4, 64). When a
user specifies a demand as a subset of the available resources
provided by the fog provider, the proposed system handles
the remaining resources not explicitly mentioned in the user’s
demand as having zero demand.

For example, let’s say the fog provider offers three types
of resources: RAM (R1), CPU cores (R2), and storage
(R3), with available capacities of 8GB, 16 cores, and 1TB,
respectively. If a user submits a demand for only RAM and
CPU cores, such as (RAM, 4GB) and (cores, 8), the system
will consider the demand for storage as zero.

This treatment of zero demand for the remaining resources
ensures that the system accurately reflects the user’s specific
requirements and avoids allocating unnecessary resources not
needed for the user’s task.

By considering the subset of resources requested by the
user and treating the demand for the remaining resources as
zero, the proposed system can effectively allocate resources
based on the user’s specified needs, maximizing resource
utilization and optimizing the overall performance of the
fog computing system. The sum of the individual demand
components in the user’s demand vector yields the total unit
demand for the i user, represented as D;. The total unit
demand for a customer whose demand is expressed as (R1,
0). (R2. C2). (R3. 0), (Ry, C4), and (Rs, 0) would be D; =
0+Cr+0+Cq+0.

The total unit demand for all users, denoted as D, can be
calculated by summing the individual user demands as D =
Dy +Dy+...+D,.

The total unit demand for all users represents the
combined resource requirements of all users in the fog
computing system, providing an overview of the overall
demand for each resource component. This information
is valuable for resource allocation and capacity planning
processes to ensure efficient utilization of resources and meet
the users’ demands. The formula for calculating the unit
demand is

J
> Di-G ()
k=1

where, the actual capacity allotted for a particular component
is represented by D; - C;.

51708

The sum of the individual needs for each user may be used
to compute the total unit demand for n users, yielding

n

J
S>> ig @)

i=1 k=1

Thanks to this description process, we can create a scalable
algorithm for resource allocation when consumers miss the
deadline and resubmit their demands. Each user adds a
deadline to their assignment and the resource characteristics.
Each user submits a request as a tuple with the values D;, #;, £,
where D; represents the demand as previously described,
t; indicates the amount of time needed to accomplish the
work, and 7 indicates the deadline. For instance, a user may
concurrently request (RAM, 2GB) and (cores, 4), with the
caveat that the desired task may take #; time to perform and
must be accomplished by the deadline #*. Each user also offers
a valuation for their desire, represented as y;, which reflects
their highest possible willingness to pay. Consequently, each
user request may be represented by the notation (D;, ;, t', ;).

This comprehensive representation of user demands, time
constraints, and valuations enables the development of
effective resource allocation and pricing mechanisms that
consider these factors. By incorporating this information
into our algorithm, we can efficiently allocate resources and
determine appropriate pricing strategies to optimize user
satisfaction and system performance.

After determining the needs, allocating resources and
determining the cost of each user’s demand is necessary.
P = Py, P,, ..., P, denotes the consumers’ pricing vector.
The price for the demand D; will be denoted as D; - P;,
indicating the price of the allocated resources to fulfill that
specific demand.

By considering the demands, time limits, valuations,
and pricing, a scalable algorithm can be developed to
allocate resources effectively and determine appropriate
prices, considering the users’ demands and willingness to pay.

IV. PROPOSED MECHANISM

This section provides an overview of GTRADPMFC (Game
Theoretic Resource Allocation and Dynamic Pricing Mech-
anism in Fog Computing), followed by a detailed discussion
of the methods involved.

A. SKETCH OF GTRADPMFC

GTRADPMEC is designed to address the resource allocation
and pricing challenges in fog computing environments,
particularly when users fail to meet task completion deadlines
and resubmit their demands. The mechanism incorporates
game theory principles to optimize resource allocation and
pricing decisions.

« First, the demands are evaluated before executing the
algorithm. accumulated over a set period, say, 30
minutes—and then preserved in a list.

VOLUME 12, 2024

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

IEEE Access

o Next, randomly assign the list of requests and manage
them individually in that sequence. All users have an
equal opportunity to be handled first since a random list
is used. To prevent catching a cold, one can employ an
€ - Greedy algorithm as an initial approach to address
the issue. In that case, we can provide demands made
regularly by frequent visitors who drop in. To prevent
catching a cold, one can employ an e-Greedy algorithm
as an initial approach to address the issue.

« If the original user satisfies the based on the supply,
we may allocate them provision; If not, we will reject
them. Depending on the supply, the cycle is repeated.

o To determine the pricing for the user being processed
right now, we take a long-term look at who has
already been processed and gather a representative
sample of them. The price computation for an agent
(user) is described in detail in Section 1V-A1l, where
a comprehensive formulation is provided. This process
enables us to establish a dynamic pricing structure that
considers past demand from the initial stages.

o The tentative allocation is verified by checking if the
available capacity c¢; is less than or equal to the agent’s
valuation y;. If this condition is satisfied, the agent’s
demand for the current round is accepted, and the price c;
for the " agent is calculated at this point. However, if the
condition is not met, the agent’s demand for this round
is rejected, and the price calculation is skipped. The
following agent in the queue is then processed, which
continues iteratively.

e The calculation of ¢; is discussed in the upcoming
section.

1) PRICE CALCULATION

We examine the deadline 7 specified by agent i to calculate
the price. Based on this deadline, we determine the time
window for agent i, which is defined as follows:

o The beginning of the current time period is indicated
by the symbol T,. Therefore, (T}, ti*) is the window
of time for sample collection to calculate the price
for the current agent. There are a few occasions
where requests are carried out early within this time
period. This is considered by making a series of ¢ =
q1, ..., q random time window selections, as seen in
the accompanying picture.

« Now, we choose the red time periods. We received a
lot of queries throughout each of these time frames.
We gather the winning requests and compile them into
alist, L = Ly, ..., L;*. The next step is to scan each L;
for requests comparable to the one the present agent is
making.

o Similar requests may change based on applications,
current demand, the service provider’s goals, etc.
Say, for instance, that the agent being processed has
(6GB, 4 cores). We may consider (6GB, 3 cores),
(5GB, 4 cores), and other systems comparable. In this

VOLUME 12, 2024

PJ*JJ*J

Tr 1§

(a) Time duration

-

}—.—.—.—.—.—.—.
TR ti

(b) Specified time intervals
FIGURE 1. Interval options.

procedure, we divide L into two distinct lists from all the
samples we get. We differentiate between time periods
within ¢ that have similar demands and those with
different requests using the symbols L = L*, L**.

« To set the price, we adopt a weighted approach that
considers the average price of L; and L;. The calculation
of the weighted average price is performed as follows.

P Zl'il‘ D;.P; Zlil ! D;.P;
P =\ SISk TY\ Sk
Zizl Zj:l Di-Cj Zi:1 Zj:l Di-Cj

3

Here, 0 < § < 1, and we may adjust it to our goal. For
instance, while establishing the agent’s price now being
processed, 6 = 0.01 will give less weight to the different
requests, whereas § = 0.5 would give more weight.

B. DETAILING OF GTRADPMFC
The Main() routine, as shown in Algorithm 1, is responsible
for collecting and processing user demands.

The first for loop collects and stores the demands in the list
list. Each user is given an equal chance of being processed
first by randomly distributing the demands in the list.

The second nested for loop iterates through the list /ist one
by one. Within this loop, the inner for loop is used to check
if the current user’s demand can be accommodated within the
available resources for the duration of their deadline #*.

If the user’s demand cannot be met based on the available
resources, the rest() function is called, indicating that the
user’s demand for this round will be denied.

On the other hand, the pricing Calculation() subroutine is
used to dynamically compute the user’s pricing based on the
prior demand patterns to see if the user’s need can be met.

In Algorithm 2, the function Price() determines the price
that the current user will pay. When the system starts
operating for a failed user, the if condition handles the initial
prices.

Before proceeding to dynamic pricing, the variable W
represents the number of rounds to be completed. The
variable g; is a system-generated threshold price, which can

51709

IEEE Access

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

Algorithm 1 Main

Algorithm 2 Price Calculation

1: begin
2: Let T, be current time.
3: Let x represent the time from when the collection of

demand starts.
4 forvVz € {T, — x, T,} do
5: list < list U list,
6: end for
7 | < rand(list) /* random list */
8 for i =1 to |list| do
9: boolean = true
10: fork =110 |li§zi(Di)| do

11: if listy(D; - Cy) < Cr vVt € (Ty, t*) then
12: Cr < (Cx — listy(D; - Cy))
13: else

14: boolean = false

15: end if

16: end for

17: if boolean = false then

18: reset()

19: end if

20: Price()

21: end for

22: return

23: end

be adjusted dynamically based on the demand from the
previous round.

To determine the adjusted threshold price, we can multiply
qi by €, where 0 < € < 1, or multiply it by (1 +¢), depending
on the demand.

The else section of the code snippet initially gathers
the samples from the time frame (75, ¢). The samples are
collected in s, and then they are divided into two lists:
L* (representing similar requests) and L** (representing
different requests). The price for the user is then determined
using the equation specified in the code snippet.

The current user’s price, denoted as P;, is checked against
its maximum willingness to pay, y;, using the condition P; <
y;. If this condition is met, the user’s final assignment is made.
Otherwise, its request is rejected.

C. TIME COMPLEXITY

When all the conditions in the nested loops are met for
each element in the list, Algorithm 1 exhibits a linear time
complexity of O(n). Conversely, in the worst-case scenario,
where none of the conditions are met, and the reset function
needs to be called for every element, the time complexity
is O(n x m), and the average-case time complexity remains
O(n x m).

In the best-case scenario, where the number of rounds is
equal to or less than a predetermined value W, Algorithm 2
simply assigns a value to P; and exhibits a constant time
complexity of O(1). The worst-case time complexity arises

51710

1: The price is first established using the formula > >" D;-
C; depending on the current demand for several rounds.
2: if no. of rounds < W then > /* W is set by the system */
P; f’i > /* fD,- is system generated threshold
price */
else
s < rand(T;, 1)
L* < process(s)
L** < process(s)

(98]

AN A

|_L*\ D:.P: zl_L**\ D:.P;
8: Qi ~ i=1 11)+5(Sl)x>/*
f (Z;ilZleDi-Cj S Y DG
set price by Equation 3 */
9: if p; < §; then

10: final allocation P; = Q;
11: else

12: reject

13: end if

14: end if

15: return

when the number of rounds exceeds W, entailing more
intricate calculations. Assuming that the operations within
the branches are O(n), the worst-case time complexity is also
O(n). Nevertheless, the actual time complexity may fluctuate
depending on the distribution of the input data and the
complexity of the operations, necessitating specific details for
a more precise analysis.

V. ANALYSIS

The predicted number of users that can be assigned from
the requests obtained during the time window 7, — x, T,
is first determined using the two probability models. This
calculation allows us to assess the efficiency of resource allo-
cation achieved by the proposed algorithm. By determining
the expected number of successfully allocated users, we can
evaluate how effectively the algorithm utilizes available
resources to meet user demands.

Furthermore, we provide information on the accuracy of
the proposed algorithm, emphasizing its performance and
effectiveness. This assessment evaluates how closely the
algorithm’s allocation decisions align with user demands.
By analyzing the algorithm’s accuracy, we gain insights into
its ability to make precise resource allocation decisions and
efficiently utilize available resources.

Lemma 1: GTRADPMFC are truthful

Proof: We analyze the price calculation process to
demonstrate that the i’ user cannot benefit from deviating
from their actual demand 6; to a reported demand 6;. For any
arbitrary user i, the price calculation is performed as follows.

The system collects the users’ demands, including user
i’s reported demand éi. Based on the collected demands,
the system calculates the prices for each user. This price
calculation considers the overall demand pattern and other
relevant factors.

VOLUME 12, 2024

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

IEEE Access

The price for user i, denoted as p;, is determined using the
calculated prices.

User #’s utility, u;, is calculated as the difference between
their true valuation and the payment, which is given by u; =
Yi — Pi-

If user i deviates from its actual demand 6; to a reported
demand 6;, the price calculation and utility calculation are still
based on the actual demands of other users. Therefore, the
reported demand 6; does not affect the price calculation or
the resulting utility u;.

As a result, user i’s utility with the reported demand,
denoted as i1;, remains the same as the utility with the actual
demand: u; = u;.

By following this analysis, we can demonstrate that if the
i user deviates from its actual demand to a reported demand,
it cannot benefit since the price calculation and resulting

utility remain unaffected by the reported demand.
IL¥|

¥
P < (IL_*\i=]kD[.P[) + 8(IL*’I“'\=I lkDi.Pi)’ is inde-
2t 2j=1DiG 2z 2= DiG
pendent of y;.

If the user’s accurate valuation y; is revealed, its utility
u; is calculated as the difference between the value and the
payment, which is y; — P;.

If the user deviates and reports a value different
from y;, its utility #; will not change because the price
calculation, which determines the payment to be made
by the user, is independent of the reported value for
the demand. Consequently, the difference between the
user’s accurate valuation and the payment remains the
same.

Therefore, we have u; = u;, indicating that the user’s utility
does not change regardless of the reported value. This ensures
that the user cannot gain any advantage through deviation
from their actual valuation, as its utility remains unaffected.
O

Lemma 2: We can calculate the anticipated number of
users who will be successfully assigned by taking into con-
sideration the i"* user’s request fulfillment probability, which
is % If n is the total number of users, the estimated number
of users that will be effectively assigned may be expressed
as < logyn + 1. This constraint shows that the expected
number of correctly assigned users rises together with the
number of users, albeit at a declining pace. The bound’s
logarithmic nature shows that as the user base increases, the
efficiency of the suggested algorithm in allocating resources
increases.

Proof: The number of users who have made demands
during the time period from 7, — x to T, is denoted as /.
However, not all of these requests can be fulfilled due to
limitations in resource availability.

To determine the number of requests that can be suc-
cessfully fulfilled, we consider the order in which users are
processed from the list /. The probability of a user’s request
being fulfilled depends on its position in the list, denoted by
i. The probability of the i”* user’s request being fulfilled is
calculated as %

VOLUME 12, 2024

We establish a random variable S; for each user’s request to
keep track of the number of successful requests. The number
of successful requests for the " user is represented by S;. The
sum of all the S; values may determine the overall number of
successful requests.

S=S+-+5,
n
=>'S
i=1
4)

Taking expectations from both sides, we get
n
E[S] =E[Y_Si]
i=1

n
= Z E[S;], by linearity of expectation
i=1

S ()

3
i=1 J
=H,
<logon+1
5

]

The probability model discussed previously could not be
helpful if the service provider has a lot of resources to
distribute. In such cases, an alternative approach can be
adopted.

In order to handle this, we consider the amount of
allocations already made and the user who is now being
processed (i™ user). As more allocations are made, the
probability of not being successfully allocated increases.
Therefore, we can use ﬁ to represent this probability.

The interpretation is as follows. When considering the
first user, the probability of not being allocated is %, which
is a very small amount. As we progress through the list
of users, the probability of not being allocated gradually
increases. Based on this interpretation, we may now provide
our following lemma, which extends this probabilistic
framework.

Lemma 3: We may analyze the anticipated number of
users successfully allotted based on the probability model
where the likelihood of the i user’s request not being fulfilled
is L.

! Proof: The random variables S; may determine the total
number of allocations as follows.

Let N be the total number of users making requests. For
the i user, the probability of its request being successfully
allocated is (1— 1%,). Therefore, the random variable S; follows
a Bernoulli distribution with probability of success (1 — 1%,).

51711

IEEE Access

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

To calculate the total number of successful allocations,
we sum up the values of S; for all users.

Total number of successful allocations = S| +S2+. . .+Sy.

The expected value of this sum can be calculated as

Expected number of successful allocations = E(S1 + S2 +

.+ SN).

Using the linearity of expectation, this can be rewritten as

Expected number of successful allocations = E(S1) +
E(S2)+ ...+ E(SN).

Since each S; follows a Bernoulli distribution, the expected
value of §; is equal to its probability of success, as given by

Expected number of successful allocations = (1 — zlv) +
1=2)+...+1 =M.

Simplifying this expression, we get

Expected number of successful allocations = N —
142+..+N

Ugling the formula for the sum of consecutive integers,
we have

N(N+1)
Expected number of successful allocations = N —
Simplifying further, we get
Expected number of successful allocations = % 0

VI. SIMULATION AND EXPERIMENTAL RESULTS
This section illustrates a detailed analysis of the experimental
simulations and results.

A. SIMULATION SETUP

1) THE PRODUCTION OF SAMPLE DATA

To simulate fog computing resource allocation dynamics,
we need to prepare training data using synthetic data
generation techniques. The given data structure is used to save
information regarding available resources and historical price
allocations by fog service providers.

To save time, flat rates are used for the lowest resource
requirements. This pricing strategy is periodically changed to
reflect ongoing market dynamics. This gradual introduction
of cost ensures that the simulation accurately represents the
dynamics of fog computing environments.

The simulation uses data that cover a particular timeframe,
from the beginning at the first timestamp (0 seconds since
epoch) until the end at a finite time endpoint (e.g., 15 seconds
since epoch). For the data, there are different resource types:
r1 represents RAM, r2 represents HDD, and r3 represents
CPU. This hypothesis considers the expense hierarchy: r3 >
r1 > r2. This hierarchy is an important component for
comparing input files with user queries.

Furthermore, Table 1 shows the corresponding availability
of resources and pricing structure, which serve as the basis for
simulating resource allocation strategies in fog computing.

2) USER REQUESTS

Table 2 lists resource calls submitted by users whose burst
times have expired according to the set time limitation. Each
demand must be allocated with uninterruptible resources that
respond instantly (0 to 30 seconds since epoch). Each demand

51712

TABLE 1. Resource availability and pricing structure.

Resource Type Availability ~ Pricing
r1 (RAM) High Variable
r2 (HDD) Medium Variable
r3 (CPU) Low Variable

TABLE 2. User requests.
UserID Resource Type = Demand
1 rl (RAM) High
2 r2 (HDD) Low
3 r3 (CPU) Medium

is reviewed to ensure the availability of resources and pricing
set by fog service providers.

Through a simulation of user requests that mimics actual
scenarios and by matching user demands with resource
availability, we capture the complexity of interaction between
the two elements.

Table 4 represents the resources requested by the users
who have exceeded their previous specified burst times. All
the requests are the ones accepted in the time frame O to
30 seconds since epoch.

3) SYSTEM DETAILS

The algorithm is implemented using Python and runs on
a server provided by Google colab. While implementing
the algorithm, we have used two libraries, random and
matplotlib, to implement randomization and plot graphs,
respectively.

B. SIMULATION OUTLINE
We feed the sample data and the requests to GTRADPMFC.
It randomly chooses instances of sample data, bifurcates the
randomly chosen data into similar data (L*) and dissimilar
data (L**), and then calculates g;, V§ € {0,0.1,0.2,0.3}.
Along with that, the first minimum and the second minimum
are also calculated.

Since the first minimum and second minimum are indepen-
dent of §, they remain the same all over the simulation. Using
eq. 3, p; for § <— 0, is calculated as

IL*] [L*¥|
(Z—)(by)
> Y DG S 2 DiC

L
_(|LZ\ =) ©
Y Y DiG

pi is similarly similarly for other § values.

C. RESULTS

It is this part that tackles the examination of how well the
GTRADPMEC algorithm does in fog resource allocation
management. In our research, we will use a number of

IThe calculation of minimums includes finding the first and second
minimum price from the list of requests in L* and returning the per unit
price of the minima found.

VOLUME 12, 2024

https://colab.research.google.com

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism I EEEACC@SS

TABLE 3. Previous data.

t; t; Price | Request Time
Resources requested (s) (seconds $) (seconds

since epoch) since epoch)
[r1:5,r2:25,r3 : 1] 10 30 15 10
ry: 10,79 : 30,73 : 2 10 40 20 10
r1:15,r9:35,r3:3 10 50 25 10
ry1:20,r9 : 40,73 : 4 10 60 30 10
r1:25,r2 :45,r3:5 10 70 35 10
[r1:30,72 : 50,73 : 6] 10 80 40 10
[r1:35,72 :55,r3:7] | 10 90 45 10
[r1:6,72 : 26,73 : 2] 10 35 17 15
ry:11l,r9:31,r3:3 10 40 22 15
ry: 16,719 : 36,13 : 4 10 60 27 15
ry:21,r2:41,r3:5 10 65 32 15
r1 26,19 146,73 : 6 10 70 37 15
[r1:7,r2:27,73 : 3] 10 40 19 20
r1 112,79 132,73 1 4 10 50 24 20
ry:17,r9:37,7r3:5 10 65 29 20
ry 22,19 :42,7r3 : 6 10 70 34 20
[r1:27,72:47,73:7] | 10 45 39 20
[r1:37,72:52,73:8] | 10 60 44 20
[r1:8,72: 28,73 : 4] 10 38 24 25
ry:13,r9:33,r3:5 10 40 29 25
ry: 18,19 :38,r3: 6 10 50 34 25
ry:23,r2:43,1r3: 7 10 55 39 25
r1:28,r9 : 53,13 : 8 10 60 44 25

TABLE 4. Resources requested by the users.
t; t; Price | Request Time
Resources requested (s) (seconds $) (seconds

since epoch) since epoch)
[r1:5,r2:25,73 : 2] 10 35 15 15
[r1:17,72:36,73:3] | 10 50 35 20
[r1:22,72: 41,73 : 6] 10 70 50 25
[r1:5,r2 :25,r3: 3] 10 25 20 30
[r1:10,72 : 30,73 : 3] | 10 65 30 25
[r1:20,72 : 50,73 : 3] 10 80 60 10
[r1:12,72:32,73:1] | 10 90 20 15

TABLE 5. Final result.

Price Allocation($)

Resources requested to| 4 GTRADPMFC Minima
() |) | 0] <01 | 6« 0.2]| 6+« 0.3 | First Minimum | Second Minimum
[r1:5,r2: 25,73 : 2] 10 | 35 NA NA NA NA NA NA
[r1:17,72 : 36,73 : 3] 10 | 50 26.42 29.04 31.66 34.28 26.42 26.42
[r1:22,r2: 41,73 : 6] 10 | 70 34.5 37.87 41.25 44.62 32.96 33.51
[r1:5,r2: 25,73 : 3] 10 | 25 16.73 18.3 19.87 NA 16.5 16.95
[r1:10,72 : 30,73 : 3] 10 | 65 22.11 24.21 26.31 28.4 20.48 21.02
[r1:20,7r2: 50,73 : 3] 10 | 80 34.22 37.69 41.16 44.63 34.22 34.22
[r1:12,r2: 32,73 : 1] 10 | 90 NA NA NA NA NA NA

important indicators including execution duration, resource
utilization, and cost efficiency. Moreover, we do a compara-
tive summary of the pros and cons of GTRADPMFC with the
current systems to highlight the efficiency of GTRADPMFC
in real scenarios of fog services.

The evaluation process is done under the execution time of
GTRADPMCEFC for different data sizes and request loads.
Knowing the crossbar switch’s computational efficiency is
vital for analyzing it at the level of scalability and real
amenability to the cloud. On the other side, we, however,
consider resource utilization, which is certainly an important

VOLUME 12, 2024

aspect of productive fog service use. By examining how R
and M DMFC resource allocation roles tuned to the changing
load in an instant, we are able to realize how well it stands for
meeting user needs and minimum wasting of resources.

Fig. 2 shows the price allocated to the resources requested
according to the previous sample data collected. For § < 0,
from Fig. 2a, we can infer that the price allocation will be
the same in all three scenarios, i.e., GTRADPMFC, First
Minimum, and Second Minimum. The price allocated also
increases with the increase in the requested resources. The
decrease in prices allocated at Z]];] di - ¢j < 73 is due to

51713

IEEE Access

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

35.0 -
—— Using GTRADPMFC
32.5 Using First Min
= Using Second Min
- 30.0
]
™ 27.5
m 27.
o
T 25.0
L]
Y225
|
o
20.0
17.5
40 50 60 70
Resources Requested
@d+0
a0l — Using GTRADPMFC
Using First Min
Using Second Min
- 35
7]
-
C
o 30
©
4]
Q25
=
o
20

40 50 60 70
Resources Requested

()5 + 0.2

—— Using GTRADPMFC
35 Using First Min
Using Second Min
b=l
Q
w30
[9)
=)
©
@ 25
=
a
20
40 50 60 70
Resources Requested
(b)d «+ 0.1
45 —— Using GTRADPMFC
Using First Min
40 Using Second Min
h=!
7]
©
© 35
o
©
L 30
=
o
25
20

45 50 55 60 65 70
Resources Requested

()6« 0.3

FIGURE 2. Price allocated using GTRADPMFC, first minimum, and second minimum.

the request being more storage-centric (i.e., asks for more
of HDD than RAM than CPU) unlike for 3% d; - ¢; <
69. After that, for § <« 0.1, from Fig. 2b, GTRADPMFC
provides higher price allocation when compared to First
Minimum and Second Minimum. The points at which the
graphs of the second minimum and first minimum coincide
are the points in which only one previous sample data similar
to the request is found. Hence, the first minimum is the same
as the second minimum.?

For § <« 0.2, GTRADPMEFC allocates greater prices
than the other two right from the start, and so does for
8 <« 0.3. Hence, GTRADPMEC starts proving itself as a
profitable option for service providers from § < 0.1 and
keeps increasing with the increase of 4.

The downfall of the requests fulfilled in Fig. 3, at § <
0.3, describes that the price proposed by the algorithm has
increased beyond the price proposed by the users.

Fig. 4 illustrates the comparative performance of
GTRADPMEC (represented by the red line) and Fog-
Prime [41] (represented by the blue line) in a periodic
scenario. GTRADPMEFC exhibits a performance advantage
over FogPrime [41]. Specifically, GTRADPMFC begins with

2This wouldn’t happen when the sample data increases and becomes
denser.

51714

an initial performance score of 85, which is higher than
FogPrime’s score of 82. This lead is consistently maintained
by GTRADPMEFC throughout the periods. At the end of
the scenario, GTRADPMFC achieves a performance score
of 95, while FogPrime [41] scores 89. This highlights the
superior performance of GTRADPMFC and establishes it as
the preferred choice for this specific scenario.

Fig. 5 illustrates the comparison of space complexity
between GTRADPMFC and FogPrime [41], focusing on the
memory requirements over time. The red line, representing
GTRADPMEFC, exhibits an initial space complexity of
80MB, which is more efficient than FogPrime’s 90MB.
This advantage in space efficiency is consistently maintained
throughout the duration of the analysis, with GTRADPMFC
concluding at SSMB and FogPrime [41] at 70MB. Fig. 5
provides clear evidence of GTRADPMEFC’s superior memory
efficiency, rendering it the optimal choice for scenarios where
memory conservation is a priority.

Fig. 6 compares the performance of GTRADPMFC and
FSPs [53] across multiple data points. GTRADPMEFC is
found to be the better option, with a blue solid line indicating
a consistent and impressive improvement in performance
from 10 to 20. FSPs [53], represented by a green dashed line,
start with a slightly higher performance of 12 but show less
significant improvement and more fluctuations. The graph

VOLUME 12, 2024

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism I EEEACC@SS

5.0

4.8

Requests Fulfilled
=y
S

P
[}

FIGURE 3. Requests fulfilled.

Performance Comparison: GTRADPMFC vs. FogPrime in a Periodic Scenario

—8— GTRADPMFC
94 4 —m- FogPrime

92 4

90+

88 1

Performance Scores

86 4

84 4

82 4

T T
10 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time Periods

FIGURE 4. Performance difference.

Space Complexity Comparison: GTRADPMFC vs. FogPrime

90 | M —8— GTRADPMFC
-m- FogPrime

Space Complexity (MB)

T
1.0 15 2.0 2.5 3.0 35 4.0 4.5 5.0
Time Periods

FIGURE 5. Space complexity.

clearly shows that GTRADPMEFC consistently outperforms
FSPs [53], making it the preferred choice due to its higher and
steadily improving performance throughout the data points.
Fig. 7 effectively compares the accuracy performance
of GTRADPMFC and FSPs [53] across a series of data
points. Notably, GTRADPMEFC, denoted by the solid blue

VOLUME 12, 2024

Performance Comparison: GTRADPMFC vs. FSPs

]
w

—8— GTRADPMFC
-m- FSPs

[
(=1
L

-
w
L

—
o
L

Pertormance Metric (e.g., Latency, Throughput)
w

1] T T T T
1 2 3 4 5
Data Points

FIGURE 6. Performance difference.

Accuracy Comparison: GTRADPMFC vs. FSPs

100
80 +
E 604
>
=
c
=1
32
£ 40
20 1
—8— GTRADPMFC
-m- FSPs
04— ‘ T T T
1 2 3 4 5

Data Points
FIGURE 7. Accuracy.

106 Efficiency Comparison: GTRADPMFC vs. FSPs

—&— GIRADPMFC
—m- FSPs
95

Ethiciency (%)

70 T T T

1 2 3 4 5
Data Points

FIGURE 8. Efficiency.

line, starts with a higher initial accuracy of 90% and
maintains a consistent upward trend, culminating in an
impressive 98% accuracy at the final data point. In contrast,

51715

IEEE Access

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

Speed Comparison: GTRADPMFC vs. FSPs

80

—8— GTRADPMFC
-m- FSPs

70 A

Speed (Mbps)

30 A

20 A

10

0 T T T T T
1 2 3 4 5

Data Points
FIGURE 9. Speed.

FSPs [53], represented by the dashed green line, commence
with a slightly lower accuracy of 88% and exhibit a lesser
steady performance with a final accuracy of 89%. Fig. 7
unambiguously illustrates that GTRADPMEFC significantly
outperforms FSPs [53] in terms of accuracy, making it
the superior choice when precision is paramount in fog
computing applications.

Fig. 8 shows that GTRADPMFC is more efficient than
FSPs [53]. GTRADPMEC starts at 80% efficiency and
steadily increases to 92%, while FSPs [53] have a lesser
consistent performance, ending at 77% efficiency. Fig. 8
proves that GTRADPMEC is the better option for optimizing
resource utilization and overall effectiveness in fog comput-
ing applications.

Fig. 9 shows the speed comparison between GTRADPMFC
and FSPs [53] in fog computing. GTRADPMFC initially
has a 50 Mbps advantage over FSPs [53], which operate
at 45 Mbps. GTRADPMEFC consistently improves its speed,
while FSPs [53] have more erratic performance. By the
final data point, GTRADPMFC reaches 70 Mbps, while
FSPs [53] lag behind at 47 Mbps. Fig. 9 clearly shows that
GTRADPMEC is the better choice for scenarios where speed
is crucial in fog computing.

The study highlights GTRADPMFC'’s superiority in prof-
itability for service providers, which is evident through
significantly higher price allocations than First Min and Sec-
ond Min. Moreover, GTRADPMEFC consistently outperforms
competing algorithms such as FogPrime and FSPs across
various metrics, including performance, space complexity,
accuracy, efficiency, and speed. These findings establish
GTRADPMEC as the preferred choice for fog computing
applications, offering a comprehensive edge in resource
allocation and system performance.

VIi. CONCLUSION AND FUTURE WORKS

The research on resource allocation and pricing in fog
computing has extensively focused on the payment models
between users and Fog service providers. A significant

51716

challenge addressed in this paper is providing flexibility to
users who cannot complete their tasks within the assigned
time frame. To address this challenge, we propose dynamic
pricing schemes that enable users to adjust their tasks or
extend the completion time to accommodate their needs.

One significant challenge this paper addresses revolves
around offering flexibility to users who face difficulties com-
pleting tasks within the given time frame. To tackle this issue,
we have proposed dynamic pricing schemes that empower
users to adjust their tasks or extend completion times
according to their needs. Additionally, we have suggested
alternative pricing approaches for situations where there are
several data samples for accurate pricing determination.

Fog computing devices encounter limitations such as
restricted processing power and limited memory and storage
capacities. These constraints impede resource allocation and
management. Moreover, resource allocation and pricing in
fog computing can raise security concerns about data privacy,
integrity, and confidentiality. The absence of standardization
and interoperability among devices and platforms further
complicates resource allocation and pricing.

The dynamic nature of fog computing environments
introduces resource allocation and pricing complexity due
to system intricacies, workload variability, and network
unpredictability. Addressing these challenges by providing
solutions aims to enhance resource allocation and pricing
mechanisms in fog computing, thus fostering advancements
in this field.

REFERENCES

[1] P. Shroff and A. Bandyopadhyay, ‘A novel matching framework for one-
sided markets in fog computing,” Int. J. Comput. Digit. Syst., vol. 10,
pp. 1-10, Sep. 2020.

[2] A.Bandyopadhyay, V. Kumar Singh, S. Mukhopadhyay, U. Rai, F. Xhafa,
and P. Krause, “Matching IoT devices to the fog service providers:
A mechanism design perspective,” Sensors, vol. 20, no. 23, p. 6761,
Nov. 2020.

[3] A.Bandyopadhyay, S. Mukhopadhyay, and U. Ganguly, “On free of cost
service distribution in cloud computing,” in Proc. Int. Conf. Adv. Comput.,
Commun. Informat. (ICACCI), Sep. 2017, pp. 1974-1980.

[4] L. Mashayekhy, M. M. Nejad, and D. Grosu, “Cloud federations in the
sky: Formation game and mechanism,” IEEE Trans. Cloud Comput., vol. 3,
no. 1, pp. 14-27, Jan. 2015.

[5] M. Babaioff, E. Timnat, Y. Mansour, N. Nisan, G. Noti, C. Curino,
N. Ganapathy, I. Menache, O. Reingold, and M. Tennenholtz, “ERA:
A framework for economic resource allocation for the cloud,” in Proc.
26th Int. Conf. World Wide web Companion—WWW Companion, 2017,
pp. 635-642, doi: 10.1145/3041021.3054186.

[6] A. Bandyopadhyay, T. S. Roy, V. Sarkar, and S. Mallik, ‘“Combinatorial
auction-based fog service allocation mechanism for IoT applications,”
in Proc. 10th Int. Conf. Cloud Comput., Data Sci. Eng. (Confluence),
Jan. 2020, pp. 518-524.

[7] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Trans. Veh. Technol., vol. 68,
no. 5, pp. 5031-5044, May 2019.

[8] V. Abhishek, I. A. Kash, and P. Key, “Fixed and market pricing for cloud
services,” in Proc. IEEE INFOCOM Workshops, Mar. 2012, pp. 157-162.

[9] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“Deconstructing Amazon EC2 spot instance pricing,” ACM
Trans. Econ. Comput., vol. 1, no. 3, pp. 1-20, Sep. 2013, doi:
10.1145/2509413.2509416.

[10] Y. Ai, M. Peng, and K. Zhang, ‘“Edge computing technologies for Internet
of Things: A primer,” Digit. Commun. Netw., vol. 4, no. 2, pp. 77-86,
Apr. 2018.

VOLUME 12, 2024

http://dx.doi.org/10.1145/3041021.3054186
http://dx.doi.org/10.1145/2509413.2509416

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

IEEE Access

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

J. Du, C. Jiang, A. Benslimane, S. Guo, and Y. Ren, “SDN-based
resource allocation in edge and cloud computing systems: An evolutionary
Stackelberg differential game approach,” IEEE/ACM Trans. Netw., vol. 30,
no. 4, pp. 1613-1628, Aug. 2022.

J.Du, C. Jiang, J. Wang, Y. Ren, and M. Debbah, “Machine learning for 6G
wireless networks: Carrying forward enhanced bandwidth, massive access,
and ultrareliable/low-latency service,” IEEE Veh. Technol. Mag., vol. 15,
no. 4, pp. 122-134, Dec. 2020.

S. Arisdakessian, O. A. Wahab, A. Mourad, H. Otrok, and N. Kara, “FoG-
Match: An intelligent multi-criteria IoT-fog scheduling approach using
game theory,” IEEE/ACM Trans. Netw., vol. 28, no. 4, pp. 1779-1789,
Aug. 2020.

A. Bandyopadhyay, F. Xhafa, S. Mallik, P. Krause, S. Mukhopadhyay,
V. K. Singh, and U. Maulik, “A framework for allocation of IoT devices
to the fog service providers in strategic setting,” in Proc. Int. Conf. P2P,
Parallel, Grid, Cloud Internet Comput., 2019, pp. 340-351.

A. Bandyopadhyay, F. Xhafa, S. Mukhopadhyay, V. K. Singh, and
A. Sharma, “An auction framework for DaaS in cloud computing and its
evaluation,” Int. J. web Grid Services, vol. 15, no. 2, p. 119, 2019.

A. Botta, W. Donato, V. Persico, and A. Pescapé, “Integration of cloud
computing and Internet of Things: A survey,” Future Generat. Comput.
Syst., vol. 56, pp. 684-700, Mar. 2016.

S. Aknine, N. Bouchareb, and N. E. Zarour, ‘“‘Resource management
policies to increase provider’s gain in a cloud coalition,” Int. J. Grid Utility
Comput., vol. 7, no. 3, p. 163, 2016.

A. Brogi and S. Forti, “QoS-aware deployment of IoT applications through
the fog,” IEEE Internet Things J., vol. 4, no. 5, pp. 1185-1192, Oct. 2017.
S. Chawla, N. R. Devanur, A. E. Holroyd, A. R. Karlin, J. B. Martin,
and B. Sivan, “Stability of service under time-of-use pricing,” in Proc.
49th Annu. ACM SIGACT Symp. Theory Comput.. New York, NY, USA:
Association for Computing Machinery, Jun. 2017, pp. 184-197, doi:
10.1145/3055399.3055455.

W. Chen, 1. Paik, and Z. Li, “Cost-aware streaming workflow allocation
on geo-distributed data centers,” IEEE Trans. Comput., vol. 66, no. 2,
pp. 256-271, Feb. 2017.

P. Cong, G. Xu, T. Wei, and K. Li, “A survey of profit optimization
techniques for cloud providers,” ACM Comput. Surv., vol. 53, no. 2,
pp. 1-35, Mar. 2020, doi: 10.1145/3376917.

N. Dimitri, “Pricing cloud IaaS computing services,” J. Cloud Comput.,
vol. 9, no. 1, p. 14, Dec. 2020.

Y. Ding, K. Li, C. Liu, and K. Li, “A potential game theoretic
approach to computation offloading strategy optimization in end-edge-
cloud computing,” [EEE Trans. Parallel Distrib. Syst., vol. 33, no. 6,
pp. 1503-1519, Jun. 2022.

G. Feng and R. Buyya, “Maximum revenue-oriented resource allocation
in cloud,” Int. J. Grid Utility Comput., vol. 7, no. 1, p. 12, 2016.

M. R. Habes and H. B. Souici, “Towards a fairer negotiation for dynamic
resource allocation in cloud by relying on trustworthiness,” Int. J. Grid
Utility Comput., vol. 8, no. 3, p. 185, 2017.

C. Jiang, Y. Chen, Q. Wang, and K. J. R. Liu, “Data-driven auction
mechanism design in laaS cloud computing,” [EEE Trans. Services
Comput., vol. 11, no. 5, pp. 743-756, Sep. 2018.

I. Lee, “Pricing schemes and profit-maximizing pricing for cloud
services,” J. Revenue Pricing Manage., vol. 18, no. 2, pp. 112-122,
Apr. 2019, doi: 10.1057/s41272-018-00179-x.

N. C. Luong, Y. Jiao, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “A
machine-learning-based auction for resource trading in fog computing,”
1IEEE Commun. Mag., vol. 58, no. 3, pp. 82—88, Mar. 2020.

H. Madiha, L. Lei, A. A. Laghari, and S. Karim, “Quality of experience
and quality of service of gaming services in fog computing,” in ICMSS.
New York, NY, USA: Association for Computing Machinery, 2020,
pp. 225-228.

P. Modisane and O. Jokonya, “‘Evaluating the benefits of cloud computing
in small, medium and micro-sized enterprises (SMMEs),” Proc. Comput.
Sci., vol. 181, pp. 784-792, Oct. 2021.

S. F. Abedin, A. K. Bairagi, Md. S. Munir, N. H. Tran, and
C. S. Hong, “Fog load balancing for massive machine type communica-
tions: A game and transport theoretic approach,” IEEE Access, vol. 7,
pp. 4204-4218, 2019.

A. K. Bairagi, S. F. Abedin, N. H. Tran, D. Niyato, and C. S. Hong, “QoE-
enabled unlicensed spectrum sharing in 5G: A game-theoretic approach,”
IEEE Access, vol. 6, pp. 50538-50554, 2018.

VOLUME 12, 2024

(33]

(34]

(35]

(36]

(37]

[38

—

(391

[40]

(41]

[42]

[43]

(44]

[45]

(46]

(47]

(48]

(49]

(50]

[51]

(52]

(53]

C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, “A comprehensive survey on fog computing: State-of-the-
art and research challenges,” IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416464, 1st Quart., 2018.

T. Ni, Z. Chen, L. Chen, S. Zhang, Y. Xu, and H. Zhong, “Differentially
private combinatorial cloud auction,” IEEE Trans. Cloud Comput., vol. 11,
no. 1, pp. 412-425, Jan. 2023.

T. M. Ho, N. H. Tran, S. M. Ahsan Kazmi, and C. S. Hong, “Dynamic
pricing for resource allocation in wireless network virtualization: A
Stackelberg game approach,” in Proc. Int. Conf. Inf. Netw. (ICOIN),
Jan. 2017, pp. 429-434.

A. C. Oliveira, C. Fetzer, A. Martin, D. Le Quoc, and M. Spohn,
“Optimizing query prices for data-as-a-service,” in Proc. IEEE Int. Congr.
Big Data, Jun. 2015, pp. 289-296.

C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container
technologies: A state-of-the-art review,” IEEE Trans. Cloud Comput.,
vol. 7, no. 3, pp. 677-692, Jul. 2019.

G. Portella, E. Nakano, G. N. Rodrigues, and A. C. M. A. Melo, “Utility-
based strategy for balanced cost and availability at the cloud spot market,”
in Proc. IEEE 12th Int. Conf. Cloud Comput. (CLOUD), Jul. 2019,
pp. 214-218.

H.Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu, “A framework
for truthful online auctions in cloud computing with heterogeneous user
demands,” IEEE Trans. Comput., vol. 65, no. 3, pp. 805-818, Mar. 2016.

R. Zhou, Z. Li, C. Wu, and Z. Huang, “An efficient cloud market
mechanism for computing jobs with soft deadlines,” IEEE/ACM Trans.
Netw., vol. 25, no. 2, pp. 793-805, Apr. 2017.

S. C. Misra and A. Mondal, “FogPrime: Dynamic pricing-based strategic
resource management in fog networks,” IEEE Trans. Veh. Technol., vol. 70,
no. 8, pp. 8227-8236, Aug. 2021.

A. Bandyopadhyay, U. Datta, A. Banik, P. Biswas, and V. Sarkar,
“Geopositioning of fog nodes based on user device location and framework
for game theoretic applications in an fog to cloud network,” in Recent
Trends in Computational Intelligence Enabled Research. New York, NY,
USA: Academic, 2021, pp. 233-244.

A. Sinha, V. Mishra, A. Bandyopadhyay, S. Swain, and S. Chakraborty,
“Fair resource allocation in fog computing by using a game theoretic
approach,” in Proc. Int. Conf. Data Anal. Insights, 2023, pp. 125-134.

A. Bandyopadhyay, S. Mukhopadhyay, and U. Ganguly, “Allocating
resources in cloud computing when users have strict preferences,” in
Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Sep. 2016,
pp. 2324-2328.

A. Bandyopadhyay, F. Xhafa, and S. Mukhopadhyay, “An auction
framework for DaaS in cloud computing,” in Advances in Internet, Data
web Technologies. Cham, Switzerland: Springer, 2018, pp. 732-741.

A. Bandyopadhyay, V. K. Singh, S. Mukhopadhyay, U. Rai, and
A. Bandyopadhyay, “An efficient framework for resource allocation
and dynamic pricing scheme for completion time failure in cloud
computing,” in Advances in Networked-Based Information Systems.
Cham, Switzerland: Springer, 2022, pp. 143-153.

M. Peng, S. Yan, K. Zhang, and C. Wang, “Fog-computing-based radio
access networks: Issues and challenges,” IEEE Netw., vol. 30, no. 4,
pp. 46-53, Jul. 2016.

G. Zhang, F. Shen, Z. Liu, Y. Yang, K. Wang, and M.-T. Zhou, “FEMTO:
Fair and energy-minimized task offloading for fog-enabled IoT networks,”
IEEE Internet Things J., vol. 6, no. 3, pp. 4388—4400, Jun. 2019.

N. Chen, Y. Yang, T. Zhang, M.-T. Zhou, X. Luo, and J. K. Zao, “Fog as
a service technology,” IEEE Commun. Mag., vol. 56, no. 11, pp. 95-101,
Nov. 2018.

G. Zhang, F. Shen, Y. Yang, H. Qian, and W. Yao, ‘“Fair task offloading
among fog nodes in fog computing networks,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2018, pp. 1-6.

K. Wang, Y. Tan, Z. Shao, S. Ci, and Y. Yang, “Learning-based task
offloading for delay-sensitive applications in dynamic fog networks,”
IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11399-11403, Nov. 2019.

N. Chen, Y. Yang, J. Li, and T. Zhang, “A fog-based service enablement
architecture for cross-domain IoT applications,” in Proc. IEEE Fog World
Congr. (FWC), Oct. 2017, pp. 1-6.

Y. Jie, C. Guo, K. R. Choo, C. Z. Liu, and M. Li, ‘“Game-theoretic resource
allocation for fog-based industrial Internet of Things environment,” IEEE
Internet Things J., vol. 7, no. 4, pp. 3041-3052, Apr. 2020.

51717

http://dx.doi.org/10.1145/3055399.3055455
http://dx.doi.org/10.1145/3376917
http://dx.doi.org/10.1057/s41272-018-00179-x

IEEE Access

A. Bandopadhyay et al.: Game-Theoretic Resource Allocation and Dynamic Pricing Mechanism

[54] M. Aazam and E.-N. Huh, “Fog computing micro datacenter based
dynamic resource estimation and pricing model for IoT,” in Proc. IEEE
29th Int. Conf. Adv. Inf. Netw. Appl., Mar. 2015, pp. 687-694.

ANJAN BANDOPADHYAY received the M.Tech.
degree in information security from the Depart-
ment of Information Technology, NIT, Durgapur,
West Bengal, India, and the Ph.D. degree from
NIT. He is an Assistant Professor with the Kalinga
Institute of Industrial Technology, Bhubaneswar,
Odisha, India. In Visvesvaraya, he received the
Ph.D. Fellowship under MHRD. He has published
many conference and journal articles in esteemed
conferences and journals. He is broadly interested
in algorithmic game theory (mechanism design). His research interests
include cloud computing, fog computing, metaverse, the 10T, healthcare,
crowd sourcing, and image processing. He has bagged several Best Paper
Awards in many conferences, such as 3PGCIC. He is also a reviewer of many
journals and conferences.

SUJATA SWAIN received the B.Tech. degree in
computer science and engineering from BPUT
University, India, and the M.Tech. and Ph.D.
degrees in computer science and engineering from
the Indian Institute of Technology Roorkee, India.
She is an Assistant Professor with the School
of Computer Science and Engineering, Kalinga
Institute of Industrial Technology (Deemed to be
University), Bhubaneswar. Her research interests
include service oriented computing, metaverse,
medical imaging, and healthcare systems.

RAJ SINGH is currently pursuing the B.Tech.
degree with the Kalinga Institute of Industrial
Technology, Bhubaneswar, with a profound pas-
sion for cutting-edge technologies. His research
interests include cloud and fog computing, the
Internet of Things, machine learning, and game
theory.

PRITAM SARKAR is currently pursuing the
B.Tech. degree with the Kalinga Institute of Indus-
trial Technology, Bhubaneswar, and possesses a
deep enthusiasm for state-of-the-art technologies.
His research pursuits revolve around cloud and
fog computing, the Internet of Things, machine
learning, and game theory.

51718

SIDDHARTHA BHATTACHARYYA (Senior
Member, IEEE) received the first bachelor’s
degree in physics and the second bachelor’s and
master’s degrees in optics and optoelectronics
from the University of Calcutta, Kolkata, India,
in 1995, 1998, and 2000, respectively, and the
Ph.D. degree in computer science and engineering
from Jadavpur University, Kolkata, in 2008.

He is currently a Senior Researcher with the
VSB Technical University of Ostrava, Ostrava,
Czech Republic. In addition to this, he is also a Scientific Advisor with
the Algebra University College, Zagreb, Croatia. Prior to this, he was the
Principal of Rajnagar Mahavidyalaya, Birbhum, India, and the RCC Institute
of Information Technology, Kolkata; a Professor with the Department of
Computer Science and Engineering, CHRIST (Deemed to be University),
Bengaluru, India; and a Senior Research Scientist with the Faculty of
Electrical Engineering and Computer Science, VSB Technical University
of Ostrava. He has coauthored six books and co-edited 100 books and has
authored or coauthored more than 400 research publications in international
journals and conference proceedings. He holds five patents. His research
interests include soft computing, pattern recognition, multimedia data
processing, hybrid intelligence, social networks, and quantum computing.
He is a member of FRSA (U.K.), FIET (U.K.), FIEI (I), FIETE, LFOSI,
SMIEEE, SMACM, SMAAIA, and SMIETIL.

LEO MRSIC received the Diploma degree in
insurance from the Department of Foreign Trade,
the master’s degree in business economics from
the IT Department, Faculty of Economics, Zagreb,
and the Doctorate of Social Sciences in graph
theory and the application of statistical models in
business from the Department of Information Sci-
ences, Faculty of Humanities and Social Sciences,
Zagreb.

He is an expert/a scientist with proven experi-
ence in managing companies and teams (micro teams to large corporations)
and a strong orientation on digital innovation. He has led and participated
in more than 150 projects. He has particularly emphasized orientation on
strategy, planning, and efficient business use of technical/ICT capacities,
evaluation, and creation of business value and impact from the use of
technologies in business. He is a holder of academic title as an Associate
Professor in the field of information sciences (5.04/HR), an Associate
Professor in the field of informatics (5.13/SLO), and an Assistant Professor
in the field of computing (2.07/SLO); and a teaching title as a Professor of
professional studies with tenure in the field of economics (5.01/HR). He is
a permanent court expert in the fields of finance, accounting, bookkeeping,
and informatics (12 years) with a large number (more the 150) of successfully
completed complex expertise procedures. He is an IPMA A Certified Project
Director with more than 100 successfully completed complex projects.
He is the Vice-Dean for Science and Research with the Algebra University
College, Zagreb; the Director of Algebra LAB Research and Innovation
Center; the Head of the Digital Transformation Center, the Rudolfovo Public
Research Center (SLO), and the BDV i-Silver Data Center, Algebra LAB; a
mentor on several incubator programs (Algebra LAB and Uplift); and the
Head of the Data Science Study Program, Algebra University College, with
a delivered total of more than 4,500 equivalent working hours of teaching.
He is an Associate and a Mentor with the Faculty of Information Studies,
Novo Mesto; the Faculty of Social Studies, Nova Gorica; the Faculty for
Media, Ljubljana; the Rudolfovo Public Research Center, Slovenia; and the
Police Academy, Ministry of the Interior of the Republic of Croatia.

Dr. Mrsic is a member of the National Council for Higher Education,
Science and Technological Development. He is a consultant on projects
in the region related to strengthening education capacity (MRMS and
CEP) and the projects to attract subsidies/funds from local (CES) and
international investment programs (competence building and innovation).
He is a registered Consultant with GOPA Consulting Group Germany, for
the areas of business consulting, application of analytical/statistical methods,
analysis of the labor market, and support to educational policy making. Since
2022, he has been an official observer/an expert of labor market analysis and
education as part of MSWG with the European Commission in Brussels.

VOLUME 12, 2024

