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ABSTRACT Studying the structure and function of the heart through the left ventricle is one of the most
common methods for diagnosing heart diseases. The automatic segmentation of the left ventricle can be
achieved through deep learning techniques, and researchers have conducted a series of explorations in this
field. Recently, the segment anything model (SAM) has achieved significant success in the field of natural
images, sparking considerable interest among researchers. This has led them to investigate whether SAM
can also be successfully applied in the medical imaging domain. The SAM model’s interactive interface
enables zero-shot and few-shot learning in the natural image domain, achieving accurate segmentation tasks.
However, there are certain limitations in the automatic segmentation of medical images, specifically in the
context of natural image cues such as points, boxes, and text prompts. To address this issue, this paper
explores the performance of a prompt-free SAM-related model with an attention module for automatic
segmentation of the left ventricle in echocardiography, named as SAM-Att. The model employs a low-rank
fine-tuning strategy in the upstream, introduces an attention mechanism in the downstream, and successfully
accomplishes the automatic segmentation task of the left ventricle with the support of weight files pretrained
on the SAM large model. The SAM-Att model achieves dice similarity coefficient (DSC) of 94.49% and
hausdorff distance (HD) of 3.505 mm on the test set. The accuracy reaches 98.83%, with precision of
93.65% and recall of 94.77%. A performance comparison of SAM-Att with other SAM-related models
(SAM-b, MSA, Sam-CNN, AutoSAM, SAMed) is conducted on the same echocardiography dataset. The
results indicate that the left ventricle automatic segmentation achieved the best performance when using
SAM-Att.

INDEX TERMS SAM, prompt-free, echocardiography, left ventricle, automatic segmentation.

I. INTRODUCTION
The heart, as a crucial organ within the human body, plays a
pivotal role in human exploration, creation, and perception
of the world [1]. However, the presence of various heart
diseases poses a serious threat to the lives of many people [2],
[3]. In order to effectively prevent and treat these diseases,
accurate computation, modeling, and analysis of the entire
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cardiac structure are crucial in the research and application
within the medical field [4]. The prerequisite for conducting
these studies is to utilize cardiac imaging to segment specific
regions of the heart.

In the context of heart segmentation, the diverse mor-
phologies and functions of each region of the heart result in
distinct segmentation methods and challenges for each area.
Currently, research on the heart generally focuses on the left
ventricle [5]. Because the signal intensity within the right
ventricle is similar to that of the myocardium, it exhibits a
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complex crescent shape with variable changes from the base
to the apex [6]. Additionally, some thinner ventricular walls
may blend with surrounding tissues, increasing the difficulty
of segmentation [7], [8]. In contrast, the left ventricle
is characterized by a cylindrical region, with a thicker
myocardial wall. The left ventricle is crucial for supplying
blood to the entire body. Therefore, the segmentation of the
left ventricle is typically more common in the study of heart
diseases [9].

By segmenting the left ventricle, it is possible to measure
the volume, wall thickness, diameter, and shape of the left
ventricle, thereby assessing whether the structure of the heart
is normal [10], [11]. This is crucial for the detection of
structural heart diseases such as myocardial hypertrophy and
dilated cardiomyopathy. The segmentation of the left ventri-
cle enables physicians to accurately measure the left ventricle
ejection fraction (EF), which represents the percentage of
blood pumped out of the left ventricle with each heartbeat
[12], [13]. EF is a critical parameter for assessing cardiac
contractile function, playing a crucial role in the diagnosis
and treatment decisions related to heart diseases [14]. The
segmentation of the left ventricle can not only calculate
the ejection fraction but also has other clinical significance.
The segmentation of the left ventricle aids in assessing the
functionality of heart valves [15], such as the mitral valve
and aortic valve. It can help detect valve diseases, such as
valve stenosis or regurgitation, and determine their impact on
the left ventricle. The segmentation of the left ventricle can
also be utilized to assess the blood supply of the coronary
arteries [16]. By measuring the wall motion and thickness of
the left ventricle, it is possible to detect myocardial ischemia
caused by coronary artery disease. The segmentation of the
left ventricle can also be used to track the therapeutic effects
of heart disease treatment [10]. By continuously monitoring
the structure and function of the left ventricle, physicians can
assess the impact of drug therapy, interventional procedures,
or other treatment measures on the heart. In summary,
the segmentation of the left ventricle is a crucial step in
cardiac imaging, providing healthcare professionals with
valuable information to accurately assess the structure and
function of the heart for diagnostic and treatment decisions.
The most common method currently used for left ventricle
segmentation is employing deep learning techniques for
automatic segmentation.

In recent years, there has been a series of studies on the
automatic segmentation of the left ventricle in echocardiog-
raphy using deep learning. Liu et al. [17] proposed the deep
pyramid local attention neural network (PLANet), which
enhances features by capturing supportive information in
adjacent contexts. It employs a label consistency learning
mechanism to improve the accuracy of pixel prediction.
This model is capable of automatically segmenting cardiac
structures in 2D echocardiography. Ali et al. [18] proposed
a model named ResU, which combines the advantages
of ResNet and U-Net. This model exhibits significant

advantages in denoising data and can automatically segment
the left ventricle. Amer et al. [19] proposed a novel deep
learning segmentation method based on U-Net, named
ResDUnet. This approach replaces the basic U-Net blocks
with residual blocks incorporating squeeze-and-excitation
units featuring adaptive channel-wise features. The model
achieves automatic segmentation of the left ventricle. Most
recently, the segment anything model (SAM) [20] has
achieved impressive results in natural image segmentation
tasks. Soon after, the research on large-scale models like
SAM has reached a new pinnacle in the field of medical
image [21]. Many scholars have made improvements to the
original SAM, striving to better apply SAM philosophy in
medical image segmentation. However, due to the complex
morphology, detailed anatomical structures, and uncertain
object boundaries in medical images, especially with the
limitation of the need of prompts in the SAM encoder, the
operator expertise has significant impact in themedical image
segmentation [22]. This makes SAM more challenging for
medical image segmentation.

This paper investigates several models related to SAM.
The segment anything model [20], proposed by the Mata AI
Lab team, possesses zero-shot transferability and employs
the standard vision transformer (ViT) as the image encoder.
There are three variants of ViT utilized in SAM, namely
ViT-b, ViT-h, and ViT-l. The model composed of these
three types of image encoders is referred to in this paper
as SAM-b, SAM-h, and SAM-l. The three models are
pretrained on the SA-1B dataset, and corresponding weight
files are obtained for each model [20]. Wu et al. [23]
proposed the medical SAM adapter (MSA), which integrates
domain-specific knowledge segmentation models through a
simple yet effective adaptation technique. The MSA demon-
strates excellent performance in medical image segmentation
tasks across 19 different image modalities. Hu et al. [24]
froze the SAM image encoder and explored three types
of prompt-free prediction heads based on this, including
AutoSAM (removing prompts from the masked decoder
of SAM), convolutional neural networks (Sam-CNN), and
linear layers. The results demonstrate that when there is
a shortage of labels in the dataset, AutoSAM and the
Sam-CNN prediction head outperform training from scratch
and self-supervised learning methods in terms of segmen-
tation accuracy. Zhang and Liu [25] applied a fine-tuning
strategy based on low-rank attention (LoRA) [26] to the SAM
image encoder, named as SAMed. After freezing the image
encoder, additional trainable LoRA layers were inserted into
SAM for feature extraction in medical images. Then, fine-
tune the prompt encoder with default embeddings and a
masking decoder to achieve precise semantic segmentation
of medical images. In this paper, the emphasis is placed
on the performance of the model for image segmentation
under prompt-free conditions. Applying the above model
to the echocardiography dataset under the same conditions,
and then making improvements to enhance the model’s
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FIGURE 1. Overview of the proposed model (SAM-Att).

performance through adding an attention module in the SAM
(SAM-Att). The main tasks and contributions of this paper
are as follows.

1) Introducing a SAM-Att model. Building upon the exist-
ing SAMed model, the upstream encoder continues
to utilize a low-rank fine-tuning strategy, updating
the parameters of the Transformer modules. The
downstream section removes the prompting encoder
and modifies the decoder.

2) Introducing the convolutional block attention module
(CBAM) and efficient channel attention (ECA) net-
work in the decoder of the SAM-Att model. Adjust-
ing the weights through learning to better capture
the inter-relationships between different channels or
among channels, enabling a more effective exploration
of correlations between features and focusing on
relevant features.

3) Comparing the segmentation performance of SAM-Att
model with SAM-b, MSA, Sam-CNN, AutoSAM, and
SAMed models on echocardiography.

II. METHOD
For a given echocardiography x ∈ R512×512×3, with a spatial
resolution of 512 × 512, and three channels. After passing
through the model, the output is a segmented image Ŝ with
the corresponding dimensions. The definition of the category
corresponding to each pixel is given by Y = {y0, y1}, where
y0 represents the background category, and y1 represents the
left ventricle endocardium category. The overall architecture
of the model inherits from SAMed, as illustrated in Figure 1.
The encoder part in the diagram is frozen, and LoRA

is employed to update the parameters of the transformer

module. Firstly, compress the transformer features into a
low-rank space, then reproject the compressed features,
aligning them with the output feature channels of the
frozen transformer block. In order to better study the
automatic segmentation effects of SAM-related algorithms
in echocardiography, we maintain consistency throughout
the entire experimental process. The present study does
not require a prompt encoder, which will facilitate the
automation of medical diagnosis. The decoder section differs
from SAMed in this study. The decoder will consist of four
components: convolutional block attention module, efficient
channel attention network, upsampling convolution module,
and segmentation head.

A. ENCODER
The encoder part of the model is inspired by the research
conducted by Zhang et al. [25] Initially, the image encoder
is frozen, and subsequently, a fine-tuning strategy based on
low-rank updates is introduced, allowing parameter updates
for the transformermodules. Due to the SAMbeing trained on
large-scale datasets, it possesses excellent feature extraction
capabilities. Therefore, it is worth exploring the use of
the SAM to guide downstream tasks. The introduction of
LoRA enables the SAM to utilize newly acquired knowledge
during the training process of echocardiography, allowing
for the updating of a small portion of parameters [27]. This
not only saves computational costs but also reduces the
deployment and storage challenges during the model fine-
tuning process, while ensuring segmentation performance.
The working principle of LoRA is illustrated in Figure 2.
For a pre-trained matrix W0 ∈ Rd×k , matrix parameter
updates can be performed through low-rank decomposition,
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FIGURE 2. LoRA module.

the formula is as follows,

W0 +1 = W0 + BA (1)

where B ∈ Rd×k , A ∈ Rr×k , and r ≪min(d, k), with the
dimension of r significantly smaller than that of d and k.
When conducting fine-tuning training, the parameters of
W0 remain unchanged, and only the parameters for learning
A and B are updated. Initialize matrix A with a Gaussian
distribution, and initialize matrix B with zeros. During the
training process, constrain the update 1W using α

γ
, where α

is adjusted during training similar to learning rate.

B. DECODER
The SAM model’s decoder consists of lightweight trans-
former layers and segmentation heads. SAMed transforms
SAM’s ambiguous segmentation heads into deterministic
output heads and employs LoRA for fine-tuning. This
study will utilize convolutional modules for upsampling,
eliminating the need for prompts to make the operation more
convenient. To enhance the model’s focus on key feature
information, an attention mechanism is introduced to learn
the importance weights on specific positions and channels,
thereby improving the quality of image reconstruction. The
initial portion is also adjusted appropriately. Through three
layers of pixel-wise convolution operations, the mapping
from feature maps to segmentation masks is achieved,
enhancing the accuracy of segmentation.

1) CONVOLUTIONAL BLOCK ATTENTION MODULE
Convolutional block attention module consists of two sub-
modules, namely the channel attention module and the spatial
attention module, which respectively perform attention oper-
ations on the channel and spatial dimensions [28]. As shown

in Figure 3, the input feature F ∈ R256×32×32 enters the
module. Firstly, it undergoes a one-dimensional convolution
in the channel attention module, resulting inMc ∈ R256×1×1.
The output of this operation is multiplied element-wise
with the input feature F , yielding the output F ′ of the
channel attention module. Subsequently, F ′ undergoes a
two-dimensional convolution in the spatial attention module,
resulting inMs ∈ R2×7×7. The output of this operation is then
multiplied element-wise with F ′, resulting in the final output
F ′′ of the spatial attention module. This process is illustrated
by the following formula,

F ′
= Mc(F) ⊗ F (2)

F ′′
= Ms(F ′) ⊗ F ′ (3)

Channel attention modules compress spatial dimensions
only without altering channel dimensions. The green box
in Figure 4 illustrates the workflow of this module. Firstly,
the input feature map undergoes two parallel operations:
MaxPool and AvgPool layers. This transforms the feature
map’s dimensions from 256 × 32 × 32 to 256 × 1 × 1.
Then, after passing through the Shared MLP (multi-layer
perceptron) module, the channel count is first compressed to
one-fourth of its original value to reduce computational and
storage complexity. Subsequently, the compressed features
are processed using the rectified linear unit (ReLU) to learn
the importance of inter-channel relationships. Finally, the
channel count is expanded back to its original value. Adding
the two output results element-wise, then applying a sigmoid
activation function to obtain the channel attention’s output.
Finally, multiplying this output with the original image to
restore it to a size of 256× 32× 32. The formula for channel
attention is as follows,

Mc(F) = σ (MLP(AvgPool(F)) + MLP(MaxPool(F)) (4)

The spatial attention module compresses only the channel
dimension without altering the spatial dimension. The purple
box in Figure 4 illustrates the workflow of this module.
Firstly, take the output of channel attention and obtain two
1 × 32 × 32 feature maps through max pooling and average
pooling. Then, concatenate the two feature maps through
the concat operation, and pass the concatenated feature map
through a 7 × 7 convolutional layer to obtain a feature map
with a channel number of 1. The process involves passing
through a sigmoid function to obtain the feature map of
spatial attention. Finally, this map is multiplied with the input
results to restore it to a size of 256 × 32 × 32. The spatial
attention formula is as follows,

Ms(F) = σ (f 7×7([AvgPool(F);MaxPool(F)])) (5)

2) EFFICIENT CHANNEL ATTENTION NETWORK
The efficient channel attention module is a non-reductive
local cross-channel interaction strategy [29]. Appropriate
cross-channel interaction can significantly reduce the com-
plexity of the model while maintaining performance. The
working principle of the ECA is illustrated in Figure 5. First,
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FIGURE 3. Convolutional block attention module.

FIGURE 4. Channel attention module and spartial attention module.

FIGURE 5. Efficient channel attention network.
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compress spatial information of the input feature map with
dimensions 32 × 32 × 256 through global average pooling,
resulting in an 1 × 1 × 256 feature map. Then, use an
1 × 1 convolution to learn the importance between different
channels, outputting an 1×1x256 feature map. The final step
involves element-wise multiplication with the input feature
map of size 32× 32× 256. This results in a feature map with
channel-wise attention.

In the process of channel feature learning, the ECA
employs dynamic convolutional kernels. The size of its
kernel undergoes adaptive changes through a function, with
larger convolutional kernels employed in layers with a higher
number of channels. This facilitates greater cross-channel
interaction through the use of 1 × 1 convolutions. Using
smaller convolutional kernels in layers with fewer channels,
performing 1 × 1 convolutions, minimizes inter-channel
interactions to a lesser extent. The size of the convolutional
kernel, denoted as k, is defined by the following formula,

k = ψ(C) = |
log2 C
γ

+
b
γ

|odd (6)

In the context, C represents the number of channels, ||odd
indicates that k can only take odd values, and γ and b are
set to 2 and 1, respectively, in the current research process,
to adjust the ratio between the number of channels C and the
convolutional kernel size k .

3) UPSAMPLING CONVOLUTION MODULE
In this module, the first step involves a transposed convo-
lutional layer, which enlarges the dimensions of the input
feature map to twice its original size and reduces the channel
count from 256 to 64. Then, apply layer normalization to nor-
malize the output, stabilize the training process, and enhance
the model’s generalization ability. The process continues by
applying the gausssian error linear unit (GELU) activation
function for non-linear transformation. Subsequently, the
output undergoes another transposed convolutional layer,
akin to the first transposed convolutional layer. However,
in this layer, the number of channels in the input features
is reduced from 64 to 32, while simultaneously doubling
its spatial dimensions. Finally, implement the upsampling
operation.

4) SEGMENTATION HEAD
Before outputting the segmentation categories, add two layers
of convolutional modules. The first convolutional module
reduces the number of channels from 32 to 8, with a
convolutional kernel size of 3. The second convolutional
module maintains the same number of channels, while
the third convolutional module transforms the number of
channels from 8 to 2, effectively segregating the pixel
categories.

C. LOSS FUNCTION
SAM-Att fine-tunes using the cross-entropy loss function
during the training process [30]. The principle formula for

FIGURE 6. Echocardiography and labels in various views and states.

the loss function is as follows,

Loss = −
1
N

N∑
i=1

[yi log ŷi + (1 − yi) log(1 − ŷi)] (7)

In the above, yi ∈ {0, 1} represents the true label of the i-
th sample, and ŷi ∈ {0, 1} represents the predicted value of
the neural network model for the i-th sample. The smaller the
value of the loss function, the smaller the difference between
the true probability distribution and the predicted probability
distribution.

III. EXPERIMENT
A. DATASET
This study utilized the cardiac acquisition for multi-structure
ultrasound segmentation (CAMUS) dataset, consisting of
end-systolic and end-diastolic frames from both apical
two-chamber and apical four-chamber views [31]. A2C-
ED represents the end-diastolic state of the left ventricle
in the apical two-chamber view, A2C-ES represents the
end-systolic state of the left ventricle in the apical two-
chamber view, A4C-ED represents the end-diastolic state
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FIGURE 7. Comparison of image enhancement before and after using
CLAHE function.

of the left ventricle in the apical four-chamber view,
A4C-ES represents the end-systolic state of the left ventricle
in the apical four-chamber view. As shown in Figure 6,
the 1800 ultrasound images for this experiment will be
randomly divided into training, validation, and test sets
in a ratio of 6:2:2, resulting in 1080 training images and
360 images each for both the validation and test sets. Before
training the input model, preprocess the images by first
computing the histogram of each image. Perform histogram
equalization on local regions of the image based on the
histogram distribution, thereby enhancing local details. The
comparison between the image before and after enhancement
is shown in Figure 7. Due to variations in the original sizes
of collected echocardiography, the images are first resized to
a uniform 550 × 600 dimensions using interpolation. Sub-
sequently, random cropping is applied to achieve a final size
of 512 × 512. Due to the limitation on the number of images,
it is decided to augment data diversity by applying horizontal
and vertical flips to the images with a certain probability. The
above operations provide the model with more variations and
perspectives, thereby enhancing the model’s generalization
ability. The validation and test sets did not undergo random
cropping and flipping operations. The image size is kept
consistent with the input size of the model during training,
directly adjusted to 512 × 512.

B. TRAINING CONFIGURATION
The model training workstation is equipped with an Intel
Core i9-10900X CPU and a NVIDIA RTX 3090 GPU with
24GB of VRAM. During the training process, the initial
learning rate is set to 0.001, the batch size is 8, and the
number of training epochs is set to 250. The optimizer
employs the adaptive moment estimation (Adam) algorithm,
which utilizes an adaptive learning ratemechanism capable of
automatically adjusting the learning rates of parameters. This
feature facilitates faster convergence to the global minimum
during the training process. In this experiment, the learning
rate will decrease by 50% every 30 training epochs. After
the training is complete, the weights that exhibit the best
performance will be saved to a file for subsequent testing.

C. EVALUATION METRICS
Dice similarity cofficient (DSC): This is a measure for
quantifying the similarity between two sets, with values

ranging from 0 to 1 [32]. A higher value indicates a greater
similarity between the two sets. The formula is as follows,

DSC =
2TP

2TP + FN + FP
(8)

Hausdorff distance (HD): It is used to measure the maxi-
mum distance between two segmentation results, it reflects
the inconsistency of the boundaries in the segmentation
results [33]. A smaller value of HD indicates a closer
segmentation result. The formula is as follows,

HD = max(h(A,B), h(B,A)) (9)

In this context, h(A,B) represents the distance from each
point in set A to the nearest point in set B, h(B,A) represents
the distance from each point in set B to the nearest point in
set A, and max denotes the maximum distance between the
two point sets.

Accuracy: The ratio of correctly classified pixels to the
total number of pixels in the segmentation results. The
formula is as follows,

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

In the context provided, TP (true positive) represents
the number of pixels correctly classified as the target,
TN (true negative) represents the number of pixels correctly
classified as the background, FP (false positive) represents
the number of pixels incorrectly classified as the target,
and FN (false negative) represents the number of pixels
incorrectly classified as the background. The accuracy value
ranges from 0 to 1, with a higher value indicating higher
classification accuracy.

Precision: The proportion of pixels predicted by the model
to be the target that actually belong to the target. The formula
is as follows,

Precision =
TP

TP + FP
(11)

Precision measures the accuracy of a model in predicting the
target. A higher value indicates that the model is less likely
to incorrectly classify background pixels as the target.

Recall: The model successfully predicts the proportion of
pixels that are true positives for the target within the actual
target pixels. The formula is as follows,

Recall =
TP

TP + FN
(12)

Recall measures the model’s ability to recognize the target.
A higher value indicates that the model is less likely to
incorrectly classify target pixels as background.

IV. RESULTS
In this study, the performance comparison of six models
(SAM-b [20], MSA [23], Sam-CNN [24], AutoSAM [24],
SAMed [25], SAM-Att), as well as the optimal mechanism
of incorporating attention modules, is conducted by keeping
the same variables and utilizing the aforementioned 20% test
set.
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TABLE 1. The comparison of segmentation performance among different types of image encoders in the SAM model.

TABLE 2. Compare the ablative experimental results of SAMed-noP baseline model with the addition of an attention module.

TABLE 3. Compare the performance of different SAM-related models.

A. ABLATION EXPERIMENT
Before conducting ablation experiments, the segmentation
performance of three models (SAM-b, SAM-l, and SAM-h)
composed of three types of image encoders (ViT-b, ViT-l,
and ViT-h) was compared in echocardiography datasets. The
specific results are shown in Table 1.

From Table 1, it can be observed that the SAM-hmodel has
the highest DSC value among the three models. The SAM-l
model has the lowest HD value among the three models,
while the HD values of SAM-b and SAM-h models are
relatively close. The SAM-l model has the highest accuracy
and precision among the three models. The SAM-b model
exhibits the highest recall value among the three models. The
overall performance of the three models is quite similar. But
Hu et al. conducted a comparison of the performance of the
SAM model using three image encoders, ViT-b, ViT-l, and
ViT-h, in the process of skin cancer segmentation. They found
that fine-tuning the model with ViT-b as the encoder resulted
in better performance [34]. Therefore, all the improvement
experiments on the SAMmodel in this study are based on the
ViT-b image encoder.

In this research, the aim is to explore the impact of attention
modules on the performance of SAM. This paper conducts
ablation experiments to analyze their effects. This study
primarily focuses on two different attention mechanisms:
CBAM and ECA. The SAMed is modified by removing the
prompt encoder and replacing the decoder with transposed
convolution. This modified model is named SAMed-noP
and serves as the baseline model. Then, introduce CBAM
and ECA separately, named SAMed-noP + CBAM and
SAMed-noP + ECA, respectively. Afterward, introduc-
ing both modules simultaneously, named SAMed-noP +

ECA + CBAM based on the order of introduction, and

SAMed-noP + CBAM + ECA. The ablation experiment
results of introducing CBAM and ECA networks into the
SAM-Att model decoder are shown in Table 2.

The first row of Table 2 represents the test results in
the baseline model, indicating the performance without any
attentionmodules added. The second-linemodel incorporates
CBAM on top of the baseline model. It can be observed that
the DSC value for the model with only CBAM is 92.36, the
HD value is 4.579, the accuracy is 98.62, the precision is
92.04, and the recall is 93.33. The performance shows a slight
improvement compared to the baseline model. The third-line
model incorporates an ECA on top of the baseline model.
This model exhibits greater improvements in DSC, accuracy,
and recall values compared to a model with only CBAM
added. However, the improvements in the other two metrics
are not as pronounced as those observed in the model with
only CBAM. The fourth-line model undergoes ECA first and
then CBAM. It exhibits higher HD value, accuracy, precision,
and recall compared to models with individual introductions
of these techniques. The fifth-layer model first undergoes
CBAM and then ECA. All four evaluation metrics are higher
than those of the previous models.

B. THE COMPARATIVE RESULTS WITH OTHER MODELS
To enhance the persuasiveness of the experimental results
in this study, the performance of other SAM-related models
will be compared within the same dataset. Table 3 shows
the segmentation accuracy and precision of six models:
SAM-b,MSA, Sam-CNN, AutoSAM, SAMed, and SAM-Att
(proposed).

From Table 3, it can be observed that the segmentation
results of the proposed original SAM model and the model
with added adapters are not satisfactory. The DSC values
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are only in the sixties, while the HD values exceed forty.
The accuracy values are around ninety-three percent, and
precision values are in the sixties, with recall values in
the seventies. The performance of the Sam-CNN model,
integrated into the CNN network, exhibits a significant
improvement compared to the previous two models. The
DSC has increased from just over 60% to over 80%, and
the HD has decreased from over 40 millimeters to just
over 10 millimeters. The AutoSAM has shown significant
improvement in HD values for the deletion mask decoder
prompt, while the improvement in other evaluation metrics
is relatively small. The SAMed strategy, based on low-
rank fine-tuning, has also made contributions in terms
of performance improvement. The SAM-Att proposed in
this study exhibits outstanding performance, with DSC of
93.49%, HD of only 3.505, accuracy of 98.83%, precision
of 93.65%, and recall of 94.77%.

To visually assess the segmentation results, an echocar-
diography is selected for prediction. Figure 8 displays
the segmentation results of six different models on this
echocardiography. (a) and (b) are the original images of the
echocardiography for testing, along with their corresponding
labels. (c) to (h) represent the result images obtained from the
segmentation of six different models. It can be observed that
the results obtained by the SAM-b andMSA for segmentation
are the worst, with almost no segmentation achieved. The
results segmented by the Sam-CNN, AutoSAM, and SAMed

FIGURE 8. Segmentation results of different SAM-related models. (a) and
(b) respectively represent the original echocardiography image and its
label. (c) to (h) represent segmentation result images of six different
SAM-related models for echocardiography.

exhibit a general similarity in structure to the labels, but there
is room for improvement, particularly in the edge regions.
The segmentation results obtained from the SAM-Att model
are closest to the ground truth labels, and the edges are also
smoother.

V. DISCUSSION
Our experiments improve upon SAMed based on a low-
rank fine-tuning strategy and optimize the decoder section
to automatically output segmentation results without the
need for prompts. This enhancement makes the model
more widely applicable in the field of medical image
segmentation, with a more convenient operation for a broader
user base. The encoder part of the model adopts the low-
rank fine-tuning strategy from the SAMed model, where
the encoder is frozen, and fine-tuning is applied to update
the parameters of the transformer modules. This ensures the
effectiveness of feature information extraction. The decoder
utilizes convolutional modules to achieve the up-sampling of
feature maps, incorporating both CBAM and ECA attention
mechanisms. This allows the model to learn importance
weights for specific locations and channels, enabling the
decoder to better focus on crucial features and consequently
enhancing the quality of image reconstruction. The final
improvement involves refining the segmentation head by
employing three layers of convolutional operations to map
the feature maps to a segmentation mask of the same size as
the input image. Through pixel-wise convolution operations,
the network is able to model the boundaries and details of
both the background and segmented foreground in the feature
space, thereby enhancing the accuracy of segmentation.

The boxplots in Figure 9 illustrate the variation in
various evaluation metrics across different models. The
horizontal axis of each boxplot represents the six models for
comparison, while the vertical axis represents the numerical
values obtained in the test set. Figure (a) displays boxplot of
DSC values for different models. It is seen that the median
values under SAM-b and MSA models are worse than the
other four, and the data exhibit higher variability. In the SAM-
Att model, the median is the highest, and the data dispersion
is the smallest. Figure (b) displays boxplot of HD values
for different models. It can be observed that the median
values under the SAM-b andMSAmodels are higher than the
other four, and the data also exhibits greater dispersion. The
SAM-Att model has the smallest median and also the smallest
data dispersion. The boxplot in Figures (c) to (e) depict
the performance of various models in terms of accuracy,
precision, and recall values. It is seen that both SAM-b and
MSA exhibit worse performance across all three evaluation
metrics compared to the other four models. Conversely, the
SAM-Att outperforms the other models in terms of accuracy,
precision, and recall across the board.

The confusionmatrix in Figure 10 illustrates the pixel-wise
classification performance of different models on the test
set. The horizontal axis of each confusion matrix represents
the predicted values, while the vertical axis represents the
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FIGURE 9. The boxplots of evaluation metrics under different models. (a) to (e) respectively depict comparisons of evaluation metrics DSC, HD,
Accuracy, Precision, and Recall.

FIGURE 10. The confusion matrix for different models during execution.

true values. Among them, 0 represents the background,
and 1 represents the left ventricular endocardium to be
segmented. It can be observed that the SAM-b model has a
percentage of 24.6% of pixels where the true value is 1 and the
predicted value is 0, a percentage of 4.5%where the true value
is 0 and the predicted value is 1, and a percentage of 75.4%
where the true value is 1 and the predicted value is also 1. The
MSA model has a 30.6% proportion of pixels where the true
value is 1 while the predicted value is 0, a 3.3% proportion
where the true value is 0 while the predicted value is 1, and a
69.4% proportion where both the true and predicted values
are 1. The Sam-CNN model has a pixel misclassification
rate of 13.1% for pixels where the ground truth is 1 and the
predicted value is 0. For pixels where the ground truth is 0 and
the predicted value is 1, the misclassification rate is 1.0%.

Additionally, the model achieves an accuracy of 86.9% for
pixels where both the ground truth and predicted values are
1. The AutoSAM model has a pixel misclassification rate of
11.2% for pixels where the ground truth is 1 but the predicted
value is 0, and a misclassification rate of 0.9% for pixels
where the ground truth is 0 but the predicted value is 1.
Additionally, the percentage of pixels where both the ground
truth and the predicted value are 1 is 88.8%. The SAMed
model has a 7.6% proportion of pixels where the true value
is 1 but the predicted value is 0, a 0.7% proportion where
the true value is 0 but the predicted value is 1, and a 92.4%
proportion where both the true and predicted values are 1. The
SAM-Att model exhibits excellent performance in pixel-wise
classification compared to five other models. The percentage
of pixels with true values of 1 and predicted values of 0 is
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6.0%, while the percentage of pixels with true values of 0 and
predicted values of 1 is 0.6%. Additionally, the percentage of
pixels with true values of 1 and predicted values of 1 is 94%.

VI. CONCLUSION
This paper builds upon the existing SAMed model, main-
taining the use of a low-rank fine-tuning strategy for
the upstream encoder. During this phase, the transformer
component undergoes parameter updates to enhance its
applicability for ultrasound image segmentation tasks. In the
downstream process, remove the prompt encoding section
to implement automatic segmentation functionality that is
more tailored to the practical situations in medical image
segmentation. The introduced CBAM and ECA attention
mechanisms in the decoder section further enhance the
model’s performance. In the CAMUS echocardiography
dataset, this study compares the segmentation performance
of the proposed SAM-Att model with five other SAM-related
models under the prompt-free condition. The results indicate
that the automatic segmentation of the left ventricle by
SAM-Att is the most effective.

While achieving high segmentation accuracy and preci-
sion, there is no doubt that training speed is compromised
when using weight files pre-trained on such a large-scale
dataset. The models related to SAM still face significant
challenges in the field of medical image segmentation, which
holds crucial value for researching heart diseases.
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