
Received 11 February 2024, accepted 24 March 2024, date of publication 2 April 2024, date of current version 10 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3384233

QoS-Aware Inference Acceleration Using
Adaptive Depth Neural Networks
WOOCHUL KANG , (Member, IEEE)
Department of Embedded Systems Engineering, Incheon National University, Yeonsu-gu 22012, South Korea

e-mail: wchkang@inu.ac.kr

This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education under
Grant NRF-2022R1F1A1074211; and in part by Incheon National University Research Grant, in 2021.

ABSTRACT While deep neural networks (DNNs) have brought revolutions to many intelligent services
and systems, the deployment of high-performing models for real-world applications faces challenges
posed by resource constraints and diverse operating environments. While existing methods such as model
compression combined with inference accelerators have enhanced the efficiency of deep neural networks,
they are not dynamically adaptable to dynamically changing resource conditions since they provide static
accuracy-efficiency trade-offs. Further, since they are not aware of performance requirements, such as
desired inference latency, they are not able to provide robust and effective performance under unpredictable
workloads. This paper introduces a holistic solution to address this challenge, consisting of two key
components: adaptive depth neural networks and the Quality of Service (QoS)-aware inference accelerator.
The adaptive depth neural networks exhibit the ability to scale computation instantly with minimal impact on
accuracy, utilizing a novel architectural pattern and training algorithm. Complementing this, the QoS-aware
inference accelerator employs a feedback control loop, adapting network depth dynamically to meet desired
inference latency. Experimental results demonstrate that the proposed adaptive depth networks outperform
non-adaptive counterparts, achieving up to 38% dynamic acceleration via depth adaption, with a marginal
accuracy loss of 1.5%. Furthermore, the QoS-aware inference accelerator successfully controls network
depth at runtime, ensuring robust performance in unpredictable environments.

INDEX TERMS Deep learning, inference acceleration, deep neural networks, feedback control, real-time,
energy efficiency, quality-of-service, QoS.

I. INTRODUCTION
In the past decade, tremendous progress has been made
in deep learning towards providing robust and accurate
inference capability for many real-world applications, such
as robotics and self-driving cars. Since many real-world
applications have resource constraints, several methods have
been proposed to scale-down deep learning models, such
as model compression [1], [2], knowledge distillation [3],
[4], or compact architectures [5], [6], to name a few.
However, in recent years, adaptive, real-time data-driven
applications of deep neural networks have emerged, which
need to perform time-sensitive tasks with efficiency under
dynamically changing resource conditions. For example,

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

when a self-driving car operates in densely populated urban
areas, it requires more computation for object detection [7],
[8] than when driving in rural areas. Despite varying
workloads, the inference tasks need to be completed within
a certain time bound for safety. While aforementioned meth-
ods for efficient deep neural networks have demonstrated
significant gains in efficiency, their accuracy-efficiency is
fixed during the development, and, hence, once deployed,
further adaptation to dynamically varying environments and
resource conditions is impossible. In an ideal situation,
we would be able to train a single neural network and
scale the network instantly at runtime with marginal loss of
inference accuracy. Further, the runtime environment of the
neural networks is aware of the time bound of the inference
tasks and should be able to exploit the adaptability of the
neural networks to meet the target inference latency and

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 49329

https://orcid.org/0000-0002-4757-8999
https://orcid.org/0000-0003-4868-5726


W. Kang: QoS-Aware Inference Acceleration Using Adaptive Depth Neural Networks

energy consumption under varying workloads and resource
conditions.

In this paper, we present a holistic approach to providing
predictable inference performance for deep learning appli-
cations. Our approach consists of two major components as
shown in Figure 1. The first component is adaptive depth
neural networks that can scale the computation of the net-
works instantly with marginal impact on inference accuracy.
Another component is the QoS-aware inference accelerator
that provide systematic trade-offs between accuracy and
efficiency by adapting the depth of the networks. This work
addresses challenges with these two components in providing
predictable inference performance.

While several adaptive neural networks have been pro-
posed that adapt widths [9], [10] [11], depths [12], [13] [14],
resolution [15], [16], tokens [17], [18], or any combination
of them, their performance loss with the model scaling
is not negligible and they usually require significantly
longer training time than non-adaptive counterpart net-
works. Further, while adaptive networks can reduce the
amount of computation in theory, many of them show only
marginal acceleration and energy savings on actual devices.
In Section III, we introduce an architectural pattern and
training algorithm for adaptive depth networks that address
these challenges of prior adaptive networks. Our depth
adaptation networks exploit the property of residual skip
connections [19] to minimize the loss of inference accuracy,
and, hence, can be applied to most modern residual networks,
including both convolution networks and transformers.While
our adaptive depth networks support many sub-networks of
different depths, the training time is significantly shorter than
previous adaptive networks.

In Section IV, we introduce an inference accelerator that
exploits the proposed adaptive depth neural networks to meet
the desired inference latency. Due to the complexity of neural
networks and their runtime environments, it is a challenging
task, if not impossible, to determine the proper network depth
tomeet the desired inference latency. To address this problem,
the proposed QoS-aware inference accelerator exploits a
feedback control loop, where the depth of the networks
is adapted by constantly comparing the actual inference
latency to the target inference latency. The network depth
is determined to counteract the deviation from the desired
inference latency. We build a system model that describes
the relationship between the network depth and the latency
of inference tasks, and apply formal control theory to design
a controller for inference tasks.

To demonstrate the viability of our approach, representa-
tive deep neural networks, both from convolutional neural
networks and vision transformers, are extended according to
the proposed architectural pattern and trained for dynamic
depth adaptation. Our experiment results in Section V-B show
that our adaptive depths networks match or outperform non-
adaptive counterpart networks and achieve actual inference
acceleration through runtime adaptation of network depths.
For example, the FLOPs of our adaptive depth ResNet-50

FIGURE 1. QoS management architecture for adaptive, real-time
data-driven deep learning applications. The QoS-aware inference
accelerator constantly monitors the actual inference latency and adapts
the depth of the neural network dynamically to support the target
inference latency.

can be adapted dynamically by up to 38% with a marginal
loss of up to 1.5%. We have implemented a prototype
of the QoS-aware inference accelerator to further show
that these adaptive depth networks can provide robust
performance under unpredictable and varying environments.
Our experiment results in SectionV-C show that our inference
accelerator can control the network depth dynamically at
runtime and closely support the target inference latency
despite unpredictable workloads.

II. OVERVIEW OF QOS-AWARE INFERENCE
A. SERVICE MODEL
This work targets soft real-time applications that need to
perform deep learning inferences for continually incoming
sensor data, e.g, video streams, sensor readings, etc., in a
predictable manner. These applications may have varying
workloads due to changes in the physical environment.
Under such dynamic environments, these applications are
supposed to support predictable inference performance in a
resource-efficient manner.

Providing predictable target performance, or Quality-
of-Service (QoS), for deep learning applications requires
holistic support both from neural networks and inference
accelerators. Figure 1 illustrates the proposed QoS-aware
inference architecture where two major components are
(1) adaptive depth neural networks and (2) the QoS-aware
inference accelerator. An application requests theQoS-aware
inference accelerator to execute an inference task with a
desired performance goals, such as target inference latency.
The QoS-aware inference accelerator executes the task
with a neural network M that is specifically designed and
trained to support various accuracy-efficiency trade-offs in
a single network with minimal loss of inference accuracy.
The QoS-aware inference accelerator constantly monitors the
inference task and adjusts the depth of M by 1depth to
counteract the deviation of monitored performance from the
desired QoS level.

To support the QoS goals, the inference accelerator might
exploit another system-level resource manages, such as
DVFS (dynamic voltage frequency scaling) governors, along
with the adaptive depth networks. In this work, however,
we focus on achieving QoS goals by adapting network depths
alone, and reserve this issue as a future work.

49330 VOLUME 12, 2024



W. Kang: QoS-Aware Inference Acceleration Using Adaptive Depth Neural Networks

B. PERFORMANCE METRIC
In this work, we consider inference latency as a primary per-
formance metric for QoS-aware inferences, since inference
latency can be converted easily to different performance met-
rics. For instance, in real-time augmented reality wearables,
the target frame rate, e.g, 25 frames/sec, can be obtained by
setting the target inference latency to 40 milliseconds.

One difficulty with the inference latency is that it has
high variance across different neural networks and underlying
hardware/software environments. Therefore, we need more
normalized performance metrics that can be used across
various networks and runtime environments. We might
consider deadline miss ratio that is often used to measure the
percentage of requests that miss their target deadlines over a
specified time period. However, many deep learning applica-
tions of edge devices do not make many inference requests,
and, hence, deadline miss ratio does not provide statistically
stable interpretation of the timeliness of inferences.

Therefore, we use tardiness as a primary metric to monitor
the timeliness of inference requests:

tardiness =
measured inference latency
desired inference latency

(1)

Unlike deadline miss ratio, tardiness enables stable inter-
pretation even if only a small number of inference requests
are made. If tardiness is greater than 1, it informs that the
inferences take longer than their desired latency. Conversely,
if the tardiness is less than 1, inferences complete earlier than
their desired latency, which presents potential opportunity to
save resources such as computation and energy.

III. ADAPTIVE DEPTH NETWORKS
In this section, we present an architectural pattern and
training method that minimizes the degradation of inference
accuracy of the original network while supporting instant
depth adaptation at inference time.

A. NETWORK ARCHITECTURE
In modern networks, such as Resnets [19] and transform-
ers [20], a residual block with a skip connection is a
commonly found architectural pattern. Previous works [21]
have shown that these residual blocks not only learn
hierarchical features like traditional compositional networks,
such as VGG networks [22], but also refine input features
without changing their feature level. These prior results imply
that if, by a chance, some residual blocks were trained to only
perform feature refinement while preserving the level of input
features, then skipping those blocks may not significantly
affect network performance at test time. However, in residual
networks with typical training methods, every residual block
learns new level features and refine learned features, and,
hence, randomly skipping residual blocks during inference
results in significant performance degradation.

Therefore, we can hypothesize that if we intentionally
train some residual blocks to focus more on refining the
features while preserving the feature level, skipping those

residual blocks may not affect the network performance
significantly at test time. To this end, we first propose
an architectural pattern for adaptive depth networks that
divides every residual stage into two consecutive sub-paths,
a mandatory sub-path and a skippable sub-path.
Figure 2 illustrates a residual stage with 2 sub-paths. In the

s-th residual stage with L residual blocks, the first sub-
path applies the first half blocks to produce the intermediate
feature hsL/2+1, or h

s
base:

hs1 + F1(hs1) + . . . + FL/2(hsL/2)︸ ︷︷ ︸
Fsbase

= hsL/2+1 = hsbase (2)

This first sub-path is mandatory for every sub-network.
In contrast, the second sub-path can be skipped, to save
computation cost, since it is supposed to only refine input
features without changing the level of features. The second
sub-path is applied to hsL/2+1, or h

s
base, and generates more

refined features hssuper :

hsL/2+1 + FL/2+1(hsL/2+1) + . . . + FL(hsL)︸ ︷︷ ︸
Fsskippable

= hssuper (3)

This relation between hsbase and h
s
super can be summarized as

follows:

hssuper = hsbase + Fsskippable(h
s
base) (4)

This architectural pattern is repeated for every residual stage,
and, hence, for an adaptive depth network with Nr residual
stages, 2Nr sub-networks of different depths can be chosen
on the fly by selectively skipping Fsskippable(h

s
base), where s =

1, . . . ,Nr .
For an actual implementation of adaptive depth networkM,

we extend the forward pass of M as shown in Algorithm 1.
The model M accepts an additional argument skip that
indicates the residual stages in which their second sub-paths
are skipped. For example, the smallest sub-network, or base-
net, of M with 4 residual stages can be selected instantly by
passing skip = [T ,T ,T ,T ] along with input x to M.

B. TRAINING OF ADAPTIVE DEPTH NETWORKS
In order to minimize the performance impact on skipping
sub-paths, we train hsbase and hssuper to have similar feature
distributions for input X:

P(hssuper ) ≈ P(hsbase) for x ∈ X, s = 1, . . . ,Nr (5)

If two feature representations hsbase and hssuper have similar
distributions for the same input, skipping Fsskippable(h

s
base)

in Equation 4 incurs little internal covariate shift [23]
to the following layers. During training, the property in
Equation 5 can be enforced by minimizing Kullback-Leibler
(KL) divergence between hssuper and hsbase over training
input X :

Ns∑
s=1

DKL
x∈X

(hssuper∥h
s
base) (6)

VOLUME 12, 2024 49331



W. Kang: QoS-Aware Inference Acceleration Using Adaptive Depth Neural Networks

FIGURE 2. A residual stage with two consecutive sub-paths. While the first mandatory sub-path is trained
to learn hierarchical features without any constraint, the second sub-path is trained to be skippable by
being optimized to preserve the distribution of input features hs

base. Since hs
base and hs

super have similar
distributions, skipping the skippable sub-path incurs marginal impact to the next layers. In the mandatory
sub-path, we exploit another set of batch normalization (BN) operators when the second sub-path is
skipped. Adaptive depth networks are built by repeating this architectural pattern throughout the network.

Algorithm 1A Forward Pass of Adaptive Depth NetworkM.
Nr Denotes the Number of Residual Stages of M

1: Input h0 = x: input data to M
2: Input skip: boolean values for skipping sub-paths
3: for s-th residual stage Rs of M do ▷ (s = 1, . . . ,Nr )
4: hs1 = hs−1

5: for l-th block Bl of Rs do ▷ (l = 1, . . . ,L)
6: if skip[s] == True and l > L

2 then
7: break ▷ skip the last half blocks
8: else
9: hsl+1 = Bl(hsl ) ▷ Execute l-th block of Rs
10: end if
11: end for
12: if skip[s] == True then
13: hs = hsL/2+1 ▷ hsbase
14: else
15: hs = hsL+1 ▷ hssuper
16: end if
17: end for

KL divergence measures how two probability distributions
are different for the same random variable.

In Algorithm 2, our training method, called skip-aware
self-distillation, enforces the property in Equation 5 by
including the Equation 6 as a regularization term in the
loss function. In our algorithm, two parameter-sharing sub-
networks, or super-net and base-net, are used to train M.
Super-net and base-net, respectively, are the largest and the
smallest sub-networks of M. For example, base-net can be
selected from M by skipping skippable sub-path of every
residual stage in Algorithm 1. In contrast, super-net executes
every residual stage without skipping any sub-paths.

In Algorithm 2, each iteration with a batch has two steps.
In the first step (lines 3 - 5), forward/backward passes of
the super-net are performed to get gradients for training the
super-net. In the second step (lines 6 - 8), the gradients for the
base-net is obtained using the self-distillation from the super-
net. During this self-distillation step, the term in Equation 6
is included in the loss function lossbase to enforce explicitly
the property in Equation 5.

In [24], we provide more detailed ablation analysis and
formal rationale for why this skip-aware self-distillation

Algorithm 2Training Adaptive Depth NetworkMWith skip-
aware self distillation
1: for i = 1 to niters do
2: Sample a mini-batch of data x and label y
3: ŷsuper = M(x, skip = [F,F,F,F]) ▷ super-net
4: losssuper = criterion(y, ŷsuper )
5: losssuper .backward()
6: ŷbase = M(x, skip = [T ,T ,T ,T ]) ▷ base-net
7: lossbase = Equation (6) + DKL(ŷsuper∥ŷbase)
8: lossbase.backward()
9: Update parameters of M
10: end for

reduces prediction errors while minimizing the impact of
skipping sub-paths.

C. EFFECTS OF SCALING NETWORK DEPTH
Scaling the depth of a neural network has an impact on
many aspects of inference performance, including accuracy,
latency, energy consumption, etc. In this section, we show the
effect of scaling the depth of a network using ResNet50-ADN
as an example. ResNet50-ADN is a variant of ResNet50
extended according to the architectural pattern in Figure 2 and
is trained using Algorithm 2. The details of training setting
and more results are discussed in Section V.

Figure 3-(a) shows the validation accuracy on ImageNet
of ResNet50-ADN that is trained according to Algorithm 2.
The depth of ResNet50-ADN is controlled by varying the
number of residual stages in which their second sub-paths
are skipped. In ResNet50-ADN, FLOPs can be varied from
4.12GFLOPs to 2.58GFLOPs by adapting the depth from the
super-net to the base-net. The result shows that the accuracy
of our ResNet50-ADN degrades gracefully as the depth is
scaled down. While only the super-net and the base-net
are trained explicitly in Algorithm 2, all sub-networks of
ResNet50-ADN outperform individually trained ResNets of
equivalent depths.

The result in Figure 3-(b) with a Nvidia Jetson Orin
Nano device demonstrates that the inference latency and
energy consumption of ResNet50-ADN is scaled linearly as
the network depth is scaled. This linear relation between
the network depth and latency (and energy) is essential
for inference accelerators to provide actual acceleration for

49332 VOLUME 12, 2024



W. Kang: QoS-Aware Inference Acceleration Using Adaptive Depth Neural Networks

FIGURE 3. The effect of scaling the depth of ResNet50-ADN. The boolean
values in the x-axis represent the sub-networks of ResNet50-ADN in
which the sub-paths are skipped in the corresponding residual stages.

real-time deep learning applications. In the following section,
we discuss our inference accelerator exploiting this property
of adaptive depth networks to support predictable inference.

IV. QOS-AWARE INFERENCE ACCELERATOR
Inference accelerators for neural networks are responsible
for efficiently executing trained models on target devices.
In this section, we introduce an inference accelerator that
supports the desired performance, or QoS, by exploiting the
adaptability of our adaptive depth neural networks. We apply
classic feedback control approach as an underpinning theory
to support the desired performance under dynamically
changing environments.

A. MODELING OF INFERENCE LATENCY
For systematic control of network depths, we need a
mathematical model that captures the dynamics of inference
tasks. We use system identification [25] for the modeling
of deep learning inference tasks. System identification is a
black box modeling approach in which detailed knowledge
of the target system is not required, but only the statistical
relationship between the control inputs (e.g., network depth)
and the system output (e.g., inference latency) is captured
through experiments [25].

As discussed in Section II-B, we use the tardiness as a
primary performance metric to quantify the timeliness of
inference tasks. The tardiness of an inference task can be
modeled using linear difference equations as follows:

tardiness(k)

=

n∑
i=1

αitardiness(k − i) +

m∑
j=1

βjdepth(k − j) (7)

FIGURE 4. Comparison of predicted and measured tardiness for
ResNet50-ADN. The longer sampling time reduces the variability of actual
tardiness.

In Equation 7, tardiness(k) and depth(k) represent the
tardiness of the inference task and the depth of the neural
network, respectively, in the kth sampling time. This system
model in the time domain shows that the tardiness of an
inference task in time k is determined by the tardiness
in previous n cycles and the network depths in previous
m cycles. In general, more powerful models are obtained
by having higher values for n and m since more past
histories are considered for the modeling. However, a higher
order model requires more complex controller design and
runtime overheads. Throughout experiments with various
neural networks, we found that the first-order model, or n =

m = 1, is sufficient:

tardiness(k) = αtardiness(k − 1) + βdepth(k − 1) (8)

In the system identification, the parameters α and β in
Equation 8 are estimated by collecting data through experi-
ments. For example, during the experiment, the tardiness of
inference tasks is monitored in regular intervals while varying
the network depth. Due to the stochastic nature of the target
system, the sampling time needs to be determined carefully.
For example, the latency of inference can be affected by
other unpredictable factors such as resource contention from
other tasks. While longer sampling interval can smooth such
stochastic behavior, it means that the system reacts more
slowly to the change of network depths.

TABLE 1. Model parameters and the model accuracy in R2.

Table 1 shows the model parameters that we obtained
from ResNet50-ADN using 2 different sampling intervals.
In Table 1, we also need to note that the system exhibits
larger β than α. This implies that the inference tardiness is
more affected by the depth of the network than past inference
tardiness.

The accuracy of the models in Table 1 can be measured
using R2:

R2 = 1 −
variance(tardiness− ˆtardiness)

variance(tardiness)
, (9)

where ˆtardiness is the prediction from the system model in
Equation 8. In general, a model is considered to be valid

VOLUME 12, 2024 49333



W. Kang: QoS-Aware Inference Acceleration Using Adaptive Depth Neural Networks

if R2 ≥ 0.8. The results show that the system model is
more accurate when the tardiness is measured by averaging
10 inferences. Figure 4 also shows that the actual tardiness
has high variability when the tardiness is measured on every
inference.

B. FEEDBACK CONTROL OF INFERENCE LATENCY
Feedback control works by constantly monitoring actual
behavior of a system and providing corrective action to drive
the system to do the desired behavior [26]. Due to this
self-correcting nature of the feedback control, only a simple
statistical model such as Equation 8 is suffice and no further
detailed knowledge is required for the complex interaction
between the neural networks and the runtime environment.
We apply the procedure for designing feedback controllers in
classical control theory to our feedback control of inference
tardiness.

Figure 5 shows the proposed feedback control loop for the
QoS-aware inference accelerator, in which the latency of an
inference task is compared to the target latency constantly.
If the actual inference latency differs from the target latency,
or the tardiness is not close to 1, the depth of the network is
adapted to counteract the deviation.

FIGURE 5. Feedback control loop to support target QoS (latency) using
dynamic adaptation of network depth.

The input to the controller is the tardiness error, e(k) =

1.0 − tardiness(k), and the output of the controller is
the network depth, depth(k). The designing of a feedback
controller requires formal control theory to ensure that the
controller has desired properties, such as settling time (ks)
and maximum overshoot(Mp), when tracking the desired
tardiness. We choose to exploit a PI (Proportional Integral)
controller that is known to be robust against noisy behavior
that is typical in computing systems [27]. The PI controller
has the following form:

depth(k) = depth(k − 1) + (KP + KI )e(k) − KPe(k − 1),

(10)

where KP and KI are gains, respectively, for the proportional
and the integral parts of the controller.

For convenient analysis, the control theory provides a way
to express signals and systems in the z-domain. The system
model in Equation 8 is described as a transfer function G(z)
as follows:

G(z) =
β

z− α
(11)

And the transfer function K (z) for the PI control law in
Equation 10 is described as follows:

K (z) =
depth(z)
e(z)

= KP +
KI z
z− 1

(12)

Finally, the closed loop transfer function F(z), representing
the overall system in Figure 5, is constructed by combining
the system model and the controller as follows:

F(z) =
K (z)G(z)

1 + K (z)G(z)
(13)

With the closed loop transfer function F(z), the controller
gains KP and KI can be obtained via several methods, such
as Root Locus and pole placement, to support the desired
controller properties.

TABLE 2. Different controller gains (KP and KI ) have trade-offs between
the responsiveness (small Ks) and stability (small Mp).

Table 2 shows the controller gains and their properties,
obtained through the pole placement technique. Note that
there exists a trade-off between the settling time and the
maximum overshoot. For example, while short settling time,
e.g, ks=5, guarantees faster response to tardy (or hasty)
inference tasks, its high overshoot, e.g., Mp = 15%, may
result in high variance in inference latency.

C. NETWORK DEPTHS AS CONTROL INPUTS
During the design of the feedback controller, we assume
that depth(k) can be any continuous values. However, in our
adaptive depth networks, the network depth has mini-
mum/maximum bounds and only a few discrete steps, e.g.,
5 depths in ResNet50-ADN, are available. This problem can
be addressed by exploiting PWM (pulse width modulation)
technique used in power control. For example, an arbitrary
depth of a network can be achieved by switching between
two sub-networks of different depths at a certain ratio. For
example, if n and N − n inferences out of total N inferences
are performed by the base-net and the super-net, respectively,
then, it has the effect of doing inferences with the network of
following depth:

depth =

N∑
i=1

Fsuper × (N − n) + Fbase × n
Fsuper × N

(14)

where Fsuper and Fbase denote the FLOPs of the super-net and
the base-net, respectively. This effective network depth is a
continuous value that is less than or equal to 1.

V. EVALUATION
The objectives of the evaluation are 1) to investigate the
effectiveness and generality of the proposed adaptive depth
networks, and (2) to test if the proposed QoS-aware inference
accelerator can support the desired performance goals under
dynamic environments by exploiting the adaptive depth
networks.

49334 VOLUME 12, 2024



W. Kang: QoS-Aware Inference Acceleration Using Adaptive Depth Neural Networks

A. TRAINING AND TESTING SETTINGS
We choose 3 representative residual networks as base models
and extend them to adaptive depth networks according to the
proposed architectural pattern in Section III-A: ResNet is a
CNN model and ViT and Switn-T are vision transformers.
For depth adaptation, every residual stage of these models is
divided evenly into two sub-paths and the second sub-path is
trained to be skippable. Since ViT-b has 12 encoder blocks
without explicit residual stages, we divide them into 4 stages,
each with 3 encoder blocks, and split each stage into 2 sub-
paths with 2 and 1 encoder blocks, respectively. With this
setting of skippable sub-paths, our adaptive depth networks
can support 24 parameter-sharing sub-networks in a single
network. These adaptive depth networks are denoted with
the suffix ’-ADN’ and their sub-networks are denoted by a
list of boolean values indicating residual stages in which the
second the sub-path is skipped. For example, the base-net
of ResNet50-ADN is denoted by ResNet50-ADN(TTTT) or
ResNet50-ADN(base-net).

For the training of our adaptive depth networks, we use
ILSVRC 2012 ImageNet dataset that has 1000 classes.
The dataset has 1.28M training images and 50K validation
images. For a fair comparison, we follow training settings
in the original papers. Specifically, we adhere to the
hyperparameter configurations recommended in the PyTorch
reference training scripts [28], which offer comprehensive
details on learning rates, batch sizes, training schedules, and
other hyperparameters for various network architectures.

For testing of trained models on actual devices, we
use Nvidia Jetson Orin Nano [29] that is an ARM-based
embedded board with 1024 CUDA cores and 32 Tensor cores.
For the real-time measurement of energy consumption, we
use Yokogawa WT310 power meter that is connected to the
device through the USBTMC communication interface.

B. PERFORMANCE OF ADAPTIVE DEPTH NETWORKS
1) IMAGENET CLASSIFICATION PERFORMANCE
The results in Table 3 shows the performance on the
ImageNet classification task. It shows that our adaptive
depth networks outperform counterpart non-adaptive base-
line networks, both in CNNs and vision transformers. For
example, the super-nets of our adaptive depth networks,
or ResNet50-ADN (FFFF), Vit-b/16-ADN (FFFF), and
Swin-T-ADN (FFFF), all achieve 1.2%, 0.2%, and 0.3%
higher inference accuracy, respectively, than non-adaptive
baselines. This result might seem strange at first since our
networks support mulitple sub-networks in a single network.
We conjecture that this performance improvement results
from the regularization effect of our training method that has
similar effect of stochastic depths [32]. For more detailed
ablation analysis, readers are referred to [24].

Table 3 also shows that, in both of our adaptive depth CNNs
and vision transformers, inference accuracy does not degrade
significantly as the depth of the networks gets shallow. For
instance, the base-nets of our adaptive depth networks have
only 1.45%, 2.2%, and 3.1% lower inference accuracy in

TABLE 3. Performance of adaptive depth networks. Accuracy is measured
on ImageNet validation dataset. Accuracy of baseline networks are from
the original papers. Latency and energy are measured in Jetson Orin Nano
with the batch size of 1.

TABLE 4. Performance of sub-networks of slimmable ResNet50 [9]. While
the FLOPs of slimmable ResNet50 can be scaled by up to 93% (from
4.12 GFLOPs to 0.29 GFLOPs), inference latency is accelerated only by up
to 9% (from 24.5ms to 22.5ms).

ResNet50-ADN, ViT-b/16-ADN, and Switn-T-ADN, respec-
tively. This marginal degradation of inference accuracy is
important to exploit the inference acceleration through the
adaption of network depth. In Figures 3-(a) and 6, the
sub-networks of our adaptive depth networks are compared
to counterpart individual networks with the same network
depths, or FLOPs.

2) PERFORMANCE ON DEVICES
In the 3rd and 4th columns of Table 3, we show inference
latency and energy consumption in Nvidia Jetson Orin Nano.
The result shows that our adaptive depth networks have actual
inference acceleration and energy saving by scaling down
network depths. For instance, scaling down the depth from
the Swin-T-ADN (FFFF) to Swin-T-ADN (TTTT) results
in about 35% acceleration and energy saving. For practical
purposes, actual inference acceleration and energy saving
is more important than theoretical reduction of FLOPs.
Figures 3-(b) and 7 demonstrate that both the inference
latency and energy consumption of our adaptive depth
networks are proportional to network depths. In contrast,
in many previous adaptive networks, theoretical scaling of
FLOPs is not translated to actual inference acceleration.

VOLUME 12, 2024 49335



W. Kang: QoS-Aware Inference Acceleration Using Adaptive Depth Neural Networks

FIGURE 6. Validation accuracy of vision transformers on ImageNet. Each
point corresponds to a sub-network with different depths.

FIGURE 7. Inference energy and latency of sub-networks of our
ViT-b/16-ADN and Swin-T-ADN. Measured on Nvidia Jetson Orin Nano
with the batch size of 1.

For instance, Table 4 shows the performance of slimmable
ResNet50 [9], a representative width adaptation network.
It shows that adapting network width has marginal effect
on actual inference acceleration. For example, while FLOPs
of slimmable ResNet50 decreases by up to 93% from
4.12 GFLOPs to 0.29 GFLOPs, the latency decreases only
by up to 9%.

3) LENGTH RATIOS BETWEEN SUB-PATHS
When constructing the proposed adaptive depth networks,
one important hyperparameter to consider is the ratio between
the lengths of mandatory and skippable sub-paths. In Table 5,
we experiment with three distinct ratios of sub-path lengths
for ResNet50-ADN to explore the impact of varying these
ratios. Figure 8 shows the result. When employing deep
mandatory sub-paths, fewer layers are bypassed by sub-
networks, resulting in a reduced range for depth scaling.
Conversely, when using shallow mandatory sub-paths, sub-
networks can skip more layers, leading to an increased
range for depth scaling. For instance, in ResNet50-ADN, the
FLOPs can be scaled from 4.1 down to 3.0GFLOPswith deep
mandatory sub-paths, while shallow mandatory sub-paths
allow scaling down to 1.7GFLOPs.While employing shallow
mandatory sub-paths increases the depth scaling ranges, low
inference capability of shallow mandatory sub-paths affects
all sub-networks and significantly degrades the performance.
The result also shows that deep mandatory sub-paths longer

FIGURE 8. The performance of ResNet50-ADNs (left) and Swin-T-ADNs
(right) that have different ratios between the mandatory and the
skippable sub-paths. Shallow mandatory sub-paths allows more depth
scaling at the cost of lower performance.

than half does not yield further improvement in classification
performance; instead, it only reduces the range of depth
scaling.

This experiment highlights a limitation of our approach.
While other adaptive network methods, like width scaling,
offer a broader range of FLOPs scaling, our proposed
adaptive depth networks have a more restricted range. For
instance, in Table 4, the slimmable ResNet50 achieves FLOPs
scaling from 4.12 down to 0.29 GFLOPs by adjusting
network widths. In contrast, our ResNet50-ADN can only
scale FLOPs up to 1.7 GFLOPs when shallow mandatory
sub-paths are employed. To achieve additional FLOPs
scaling, we may explore synergies with other adaptation
dimensions, such as adjusting network widths [10] and input
resolutions [15], in combination with our depth adaptation
method. We leave this as our future work.

C. EVALUATION OF QOS-AWARE INFERENCES
In this set of experiments, we investigate if the proposed adap-
tive depth networks combined with the QoS-aware inference
accelerator can support effective QoS under unpredictable
and dynamically changing environments.

We compare the performance of our approach to several
baselines. For example, ResNet50-ADN is our adaptive depth
ResNet50 whose depth is controlled by the QoS-aware
inference accelerator. ResNet50(FFFF) and ResNet50(TTTT)
are the super-nets and the base-nets of ResNet50-ADN,
respectively, and their depths are fixed during the experiment.
With ‘2-ResNets’, we make 2 separate instances of the
super-net and the base-net of ResNet50-ADN to support
the target inference latency with our QoS controller. Since
these 2 separate network instances do not share parameters,
additional memory space (about 100 MBytes for ResNet50)
is required. In order to demonstrate the generality of our
approach, we perform the same experiments for Swin-T-ADN
and its baselines.

1) SUPPORTING VARYING TARGET INFERENCE LATENCY
We first investigate the effectiveness of our adaptive depth
networks by varying the target inference latency at runtime.

49336 VOLUME 12, 2024



W. Kang: QoS-Aware Inference Acceleration Using Adaptive Depth Neural Networks

TABLE 5. The configurations of ResNet50-ADN with different length ratios between the mandatory and the skippable sub-paths.

For ResNet50-ADN and its baselines, the target inference
latency is varied from 20ms to 16ms, then to 13ms, and back
to 20ms at the 50th, 100th, and 150th sampling point, respec-
tively. Our ResNet50-ADN and baselines run continuously to
process input images over 200 sampling periods. Similarly,
the target inference latency of Swin-T-ADN and its baselines
are varied from 44ms to 34ms, then to 24ms, and back to 44ms
at the 50th, 100th, and 150th sampling point, respectively.

Figure 9 shows the transient behavior during 200 sampling
periods and Figure 10 shows the average performance. The
results show that both ResNet50-ADN and Swin-T-ADN
support the target inference latency closely with high
energy efficiency. In Figure 10, our ResNet50-ADN and
Swin-T-ADN consume about 17% and 20% less energy,
respectively, than their super-nets while closely supporting
the varying target latency. The super-nets maintain the
full network depths without skipping any network layers,
and, hence, they maintain the original inference accuracy
during runtime. However, their inference tardiness is greater
than 1.0, implying that they miss the target inference
latency. In contrast, the base-nets consume the least energy
by maintaining the minimum depth of the networks. For
example, the base-net of ResNet50-ADN consumes about
52% less energy than the super-net. However, the base-net
of ResNet50-ADN reduces the network depth unnecessarily
and this results in 1.3% loss of inference accuracy.

Our adaptive depth networks leverage both high accuracy
super-nets and energy-efficient base-nets from a single
network according to the control signal from the QoS
controller that determines the ratio of two sub-networks. For
example, in Figure 9-(a), ResNet50-ADN reduces network
depth and inference accuracy only when the shorter inference
latency is requested. For example, between the 100th and the
150th sampling times, ResNet50-ADN reduces the network
depth by approximately 37% to support the reduced target
inference latency of 13ms. However, once the target latency
is raised to 20ms at the 150th sampling point, the network
depth and resulting inference accuracy are promptly restored
within 5 sampling periods.

2) ROBUSTNESS UNDER UNPREDICTABLE WORKLOADS
In this experiment, we investigate if our approach can
support the target inference latency under unpredictable
workloads. During the experiment of both ResNet50-ADN
and Swin-T-ADN, an inference task runs continuously for
150 sampling periods to process input images. The target

FIGURE 9. Dynamic response of adaptive and non-adaptive networks
while the target inference latency is varied at the 50th, 100th, and 150th
sampling points. The depths of our adaptive depth neural networks are
controlled continuously by the QoS-aware inference accelerator.

inference latency is set to 20ms and 41ms, respectively, for
ResNet50-ADN and Swin-T-ADN. At the 50th sampling
point, we activate a distrurbance task that multiplies two
400 × 400 matrices continuously for 50 sampling periods.
Since both the inference task and the disturbance task share
a single GPU device, they interfere each other, potentially
resulting in delays in inference tasks.

VOLUME 12, 2024 49337



W. Kang: QoS-Aware Inference Acceleration Using Adaptive Depth Neural Networks

FIGURE 10. Average performance while the target inference is varied
during 200 sampling periods. Tardiness 1 with tight error bounds implies
that the desired latency is closely supported.

Figure 11 shows the transient behavior of ResNet50-ADN
and Swin-T-ADN and their baselines. Figure 12 shows the
average performance during the experiment. The results
show that both ResNet50-ADN and Swin-T-ADN support
the target inference latency even in the presense of the
disturbance task. For example, in Figure 11-(a), the latency
of ResNet50-ADN increases by 35% due to the sudden
injection of interfering workloads. However, the latency
is stabilized back to the target within 5 sampling periods
because the QoS controller actively decreases the network
depth by approximately 20%. In contrast, the inference
latency of non-adaptive ResNet50 is increased suddenly by
approximately 37%, resulting in deadline misses during the
presence of the disturbance task. In real-world scenarios,
missing these deadlines can result in serious consequences,
such as tardy reactions to traffic situations in autonomous
vehicles. In order to prevent deadline misses, we might
consider using networks that have low average inference
latency. However, due to the non-adaptive nature of such
efficient networks, its low inference accuracy cannot be
improved even if the disturbance task disappears.

VI. RELATED WORK
Adaptive neural networks have the ability of providing
several sub-networks of various computational capabilities
from a single neural network. There have been significant
efforts to develop adaptive neural networks by exploit-
ing the inherent redundancy of neural networks. Several
dimension of neural networks have been considered for
architectural adaptation, including network widths [9], [10],
[11], [14], depths, [12], [13], [33], [34], [35], input res-
olutions [15], [17], and some combination of them. For
instance, slimmable neural networks [9] can select a sub-
network of 4 different widths from a single trained neural
network. Recently, some adaptive depth networks have been
proposed for transformer-based language models [11], [12].
However, most of these adaptive networks exploit iterative

FIGURE 11. Robustness against disturbance. For both ResNet50 and
Swin-T, disturbance workloads are injected at the 50th sampling time and
lasts for 50 sampling periods.

self-distillation to train sub-networks, requiring significantly
longer training time than their counterpart non-adaptive
networks. Further, theoretic reduction of computation via
network adaption does not always lead to actual inference
acceleration as demonstrated in Table 4. Dynamic networks
[16] is another class of adaptive networks that can adapt
network depths, width, or tokens of CNNs [15], [36], [37],
[38], [39] and transformers [18], [40], [41], [42] in an input
dependent manner. For example, dynamic depth networks
[15], [36], [37], [38], [39] exploit auxiliary decision networks
to determine if a layer can be skipped for a given input.
However, the policies learned for the decision networks
are opaque to users, and, hence, they cannot be used for
predictable adaptation to meet the resource conditions.

Various hardware- and software-based inference acceler-
ators have been developed to run trained neural networks
efficiently on target devices [43], [44]. While hardware-
based accelerators try to maximize the throughput of
deep learning operations on specialized hardware [45],
software-based accelerators mainly focus on optimizing

49338 VOLUME 12, 2024



W. Kang: QoS-Aware Inference Acceleration Using Adaptive Depth Neural Networks

FIGURE 12. Average performance for 150 sampling periods. Disturbance
workloads are activated for 50 sampling periods. Tardiness 1 with tight
error bounds implies that our adaptive depth networks closely support
the desired inference latency.

resource management, pipeline design, model restructuring,
and quantization [46], [47], [48], [49], [50]. For exam-
ple, DeepX [48] decomposes network layers and executes
them by leveraging a mixture of heterogeneous proces-
sors. TensorRT [47] provides various runtime optimization
such as quantizing floating-point numbers into integers,
and combining several layers into a single layer for low
latency.Whilemost hardware/software inference accelerators
provide significant gains in efficiency, they are not aware
of performance requirements from applications and they
cannot adapt when the operating environments change.
To address this problems, there is a set of works that propose
software-based accelerators to support predictable inference
performance [51], [52], [53]. For example, DeepRT [51]
support predictable inference latency and energy consump-
tion by controlling the speed of CPU and GPU devices
using a MIMO (multiple inputs/multiple outputs) controller.
DMS [52] exploits a feedback controller that dynamically
prunes filters of convolution networks at runtime to support
target inference latency and energy consumption. However,
in DMS, the model scaling through pruning filters results in
significant loss of inference accuracy.

VII. CONCLUSION
In this paper, we introduce a holistic approach to providing
predictable inference performance for deep learning appli-
cations even in the presence of external disturbances. Our
approach comprises two major components: adaptive depth
neural networks and the QoS-aware inference accelerator.
The proposed adaptive depth neural networks, exploiting a
novel architectural pattern and the training method for depth
adaptation, can scale computation instantly with marginal
impact on accuracy. We demonstrate that the proposed adap-
tive depth networks outperform non-adaptive counterpart
networks and can provide actual inference acceleration by
adapting network depth, achieving up to 38% acceleration

with a marginal accuracy loss of 1.5%. On target devices,
the proposed QoS-aware inference accelerator dynamically
control the depth of these adaptive depth networks using
a feedback control loop to support the desired inference
latency. We present the performance of the QoS-aware
inference accelerator using an experimental prototype and
various adaptive depth networks. Evaluation results demon-
strate that our approach can make effective use of constrained
resources while supporting the desired inference latency for
unpredictable workloads by dynamically switching between
high-accuracy and high-efficiency sub-networks.

In our future work, we plan to enhance this research in
several directions. Firstly, we will investigate methods to
achieve additional FLOPs scaling while minimizing perfor-
mance degradation. This exploration may involve leveraging
other adaptation dimensions, such as network widths and
input resolutions, in conjunction with our depth adaptation
method. Secondly, we plan to apply our QoS-aware inference
framework to practical deep learning tasks, particularly object
detection for autonomous vehicles. Given the dynamic nature
of autonomous vehicle environments, including varying com-
putational requirements, we will explore how our QoS-aware
inference acceleration can ensure robust performance under
unpredictable environments.

REFERENCES
[1] S. Han, J. Pool, J. Tran, and W. J. Dally, ‘‘Learning both weights and

connections for efficient neural network,’’ in Proc. Adv. Neural Inf.
Process. Syst., Dec. 2015, pp. 1135–1143.

[2] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient convnets,’’ in Proc. Int. Conf. Learn. Represent., 2017.

[3] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[4] L. Beyer, X. Zhai, A. Royer, L. Markeeva, R. Anil, and A. Kolesnikov,
‘‘Knowledge distillation: A good teacher is patient and consistent,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 10915–10924.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[6] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6848–6856.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[8] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[9] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, ‘‘Slimmable neural
networks,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2018.

[10] D. Wang, C. Gong, M. Li, Q. Liu, and V. Chandra, ‘‘AlphaNet:
Improved training of supernets with alpha-divergence,’’ in Proc. Int. Conf.
Mach. Learn. (ICML), in Proceedings of Machine Learning Research,
vol. 139, M. Meila and T. Zhang, Eds., Jul. 2021, pp. 10760–10771.

[11] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and Q. Liu, ‘‘DynaBERT:
Dynamic BERT with adaptive width and depth,’’ in Proc. Conf. Neural Inf.
Process. Syst. (NeurIPS), vol. 33, 2020, pp. 9782–9793.

[12] A. Fan, E. Grave, and A. Joulin, ‘‘Reducing transformer depth on demand
with structured dropout,’’ in Proc. Int. Conf. Learn. Represent. (ICLR),
2020.

[13] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Weinberger,
‘‘Multi-scale dense networks for resource efficient image classification,’’
in Proc. Int. Conf. Learn. Represent. (ICLR), 2018.

VOLUME 12, 2024 49339



W. Kang: QoS-Aware Inference Acceleration Using Adaptive Depth Neural Networks

[14] H. Li, H. Zhang, X. Qi, Y. Ruigang, and G. Huang, ‘‘Improved techniques
for training adaptive deep networks,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 1891–1900.

[15] L. Yang, Y. Han, X. Chen, S. Song, J. Dai, and G. Huang, ‘‘Resolution
adaptive networks for efficient inference,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 2366–2375.

[16] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, ‘‘Dynamic
neural networks: A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 11, pp. 7436–7456, Nov. 2022.

[17] L. Beyer, P. Izmailov, A. Kolesnikov, M. Caron, S. Kornblith, X. Zhai,
M. Minderer, M. Tschannen, I. Alabdulmohsin, and F. Pavetic, ‘‘FlexiViT:
One model for all patch sizes,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2023, pp. 14496–14506.

[18] M. Fayyaz, S. A. Koohpayegani, F. R. Jafari, S. Sengupta, H. R. V. Joze,
E. Sommerlade, H. Pirsiavash, and J. Gall, ‘‘Adaptive token sampling for
efficient vision transformers,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds.,
2022, pp. 396–414.

[19] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. U. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Conf.
Neural Inf. Process. Syst. (NeurIPS), vol. 30, 2017.

[21] S. Jastrzebski, D. Arpit, N. Ballas, V. Verma, T. Che, and Y. Bengio,
‘‘Residual connections encourage iterative inference,’’ in Proc. Int. Conf.
Learn. Represent. (ICLR), 2018.

[22] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. 13th Int. Conf. Learn. Represent.
(ICLR), 2015.

[23] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift,’’ in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448–456.

[24] W. Kang, ‘‘Adaptive depth networks with skippable sub-paths,’’ 2023,
arXiv:2312.16392.

[25] L. Ljung, ‘‘System identification,’’ in Signal Analysis and Prediction.
London, U.K.: Springer, 1998, pp. 163–173.

[26] P. K. Janert, Feedback Control for Computer Systems: Introducing Control
Theory to Enterprise Programmers. O’Reilly Media, 2013.

[27] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control
of Computing Systems. Hoboken, NJ, USA: Wiley, 2004.

[28] (2023). Image Classification Reference Training Scripts in
PyTorch. [Online]. Available: https://github.com/pytorch/vision/tree
/main/references/classification

[29] (2023). NVIDIA Jetson Orin Nano. [Online]. Available:
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems
/jetson-orin/

[30] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16 × 16 words:
Transformers for image recognition at scale,’’ in Proc. Int. Conf. Learn.
Represent. (ICLR), 2021.

[31] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, ‘‘Swin Transformer: Hierarchical vision transformer using shifted
windows,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 9992–10002.

[32] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q.Weinberger, ‘‘Deep networks
with stochastic depth,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV). Cham,
Switzerland: Springer, 2016, pp. 646–661.

[33] H. Hu, D. Dey, M. Hebert, and J. A. Bagnell, ‘‘Learning anytime
predictions in neural networks via adaptive loss balancing,’’ in Proc. AAAI
Conf. Artif. Intell., 2019, vol. 33, no. 1, pp. 3812–3821.

[34] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, ‘‘Be your own
teacher: Improve the performance of convolutional neural networks via
self distillation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 3712–3721.

[35] C. Wan, H. Hoffmann, S. Lu, and M. Maire, ‘‘Orthogonalized SGD
and nested architectures for anytime neural networks,’’ in Proc. Conf.
Mach. Learn., 2020, pp. 9807–9817.

[36] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman, and
R. Feris, ‘‘BlockDrop: Dynamic inference paths in residual networks,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 8817–8826.

[37] C. Li, G. Wang, B. Wang, X. Liang, Z. Li, and X. Chang, ‘‘Dynamic
slimmable network,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 8603–8613.

[38] Q. Guo, Z. Yu, Y. Wu, D. Liang, H. Qin, and J. Yan, ‘‘Dynamic recursive
neural network,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 5142–5151.

[39] Y. Li, L. Song, Y. Chen, Z. Li, X. Zhang, X. Wang, and J. Sun, ‘‘Learning
dynamic routing for semantic segmentation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 8550–8559.

[40] L. Meng, H. Li, B.-C. Chen, S. Lan, Z. Wu, Y.-G. Jiang, and S.-N. Lim,
‘‘AdaViT: Adaptive vision transformers for efficient image recognition,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 12299–12308.

[41] H. Yin, A. Vahdat, J. M. Alvarez, A. Mallya, J. Kautz, and P. Molchanov,
‘‘A-ViT: Adaptive tokens for efficient vision transformer,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 10799–10808.

[42] B. Heo, S. Yun, D. Han, S. Chun, J. Choe, and S. J. Oh, ‘‘Rethinking spatial
dimensions of vision transformers,’’ inProc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2021, pp. 11916–11925.

[43] P. Dhilleswararao, S. Boppu, M. S. Manikandan, and L. R. Cenkeramaddi,
‘‘Efficient hardware architectures for accelerating deep neural networks:
Survey,’’ IEEE Access, vol. 10, pp. 131788–131828, 2022.

[44] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, T. Jiang, J. Crowcroft, and P. Hui,
‘‘Edge intelligence: Empowering intelligence to the edge of network,’’
Proc. IEEE, vol. 109, no. 11, pp. 1778–1837, Nov. 2021.

[45] K. Seshadri, B. Akin, J. Laudon, R. Narayanaswami, and
A. Yazdanbakhsh, ‘‘An evaluation of edge TPU accelerators for
convolutional neural networks,’’ 2021, arXiv:2102.10423.

[46] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural network with pruning, trained quantization and Huffman coding,’’
in Proc. Int. Conf. Learn. Represent. (ICLR), 2016.

[47] (2023). NVIDIA TensorRT. [Online]. Available: https://developer.nvidia.
com/tensorrt

[48] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro,
and F. Kawsar, ‘‘DeepX: A software accelerator for low-power deep
learning inference on mobile devices,’’ in Proc. 15th ACM/IEEE Int. Conf.
Inf. Process. Sensor Netw. (IPSN), Apr. 2016, pp. 1–12.

[49] (2023). ONNX Runtime: Cross-Platform Accelerated Machine Learning.
[Online]. Available: https://onnxruntime.ai

[50] B. Fang, X. Zeng, and M. Zhang, ‘‘NestDNN: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision,’’ in Proc.
24th Annu. Int. Conf. Mobile Comput. Netw. New York, NY, USA:
Association for Computing Machinery, Oct. 2018, pp. 115–127, doi:
10.1145/3241539.3241559.

[51] W. Kang and J. Chung, ‘‘DeepRT: Predictable deep learning inference
for cyber-physical systems,’’ Real-Time Syst., vol. 55, no. 1, pp. 106–135,
Jan. 2019.

[52] W. Kang, D. Kim, and J. Park, ‘‘DMS: Dynamic model scaling for
quality-aware deep learning inference in mobile and embedded devices,’’
IEEE Access, vol. 7, pp. 168048–168059, 2019.

[53] W. Kang and J. Chung, ‘‘Power- and time-aware deep learning inference
for mobile embedded devices,’’ IEEE Access, vol. 7, pp. 3778–3789, 2019.

WOOCHUL KANG (Member, IEEE) received
the Ph.D. degree in computer science from the
University of Virginia, in 2009. He was a Senior
Researcher with the Electronics and Telecom-
munications Research Institute, South Korea,
from 2000 to 2004 and from 2009 to 2012,
and a Postdoctoral Research Associate with the
University of Illinois at Urbana–Champaign, USA,
from 2012 to 2013. Since 2013, he has been
a Professor with the Department of Embedded

Systems Engineering, Incheon National University, Incheon, South Korea.
His research interests include deep learning for edge devices, real-time
systems, distributed middleware, and feedback control of computing
systems.

49340 VOLUME 12, 2024

http://dx.doi.org/10.1145/3241539.3241559

