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ABSTRACT The Mini-Mental State Examination (MMSE) is the most widely used cognitive test for
assessing whether suspected symptoms align with cognitive impairment or dementia. The results of this test
are meaningful for clinicians but exhibit highly unbalanced distributions in studies and analyses regarding
the classification of patients with cognitive impairment. This is a complex problem when a large number
of MMSE tests are analysed. Therefore, data balancing and classification techniques are crucial to support
decision-making in distinguishing patients with cognitive impairment in an effective and efficient manner.
This study exploresmachine learning techniques for data balancing and classification using a real unbalanced
dataset consisting of MMSE test responses collected from 103 elderly patients participating in a Chilean
patient monitoring project. We used 8 data classification techniques and five data balancing techniques.
We evaluated the performance of the techniques using the following metrics: sensitivity, specificity, F1-
score, likelihood ratio (LR+ and LR-), diagnostic odds ratio (DOR), and the area under the ROC curve
(AUC). From the set of data balancing and classification techniques used in this study, the results indicate that
synthetic minority oversampling and random forest balancing techniques improve the accuracy of cognitive
impairment diagnosis. The results obtained in this study support clinical decision-making regarding early
classification or exclusion of older adult patients with suspected cognitive impairment.

INDEX TERMS Mini-mental state exam, machine learning, imbalanced data.

I. INTRODUCTION
Decreased cognitive ability is one of the most important
symptoms of Alzheimer’s disease (AD). This decrease in
cognitive ability may span several years, sometimes decades,
starting from normal cognition (NC) and progressing to mild
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cognitive impairment (MCI). This transition causes a change
in the condition of a patient from suspected AD to confirmed
AD [1], [2]. In this scenario, early detection and precise
diagnosis are important; nevertheless, detecting AD requires
an extensive medical assessment, including patient history
and physical and neurological examinations [3].

The diagnosis of dementia requires a cognitive assess-
ment of brain functions such as attention, memory,
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problem-solving, thinking, and mental abilities [4], [5].
While some of these assessments are invasive, costly,
or stressful to the patient, an early and accurate diagnosis is
important for controlling disease progression. In this regard,
the Mini-Mental State Examination (MMSE) is a test in
which a patient can score a maximum of 30 points [6],
and it is frequently used to screen for dementia. The
MMSE is widely used in clinical settings, particularly
by health care professionals specializing in neurology,
psychiatry, geriatrics, and primary care. This examination
helps in identifying cognitive impairment, tracking changes
in cognitive function over time, and determining the severity
of cognitive decline.

Machine learning is a subset of artificial intelligence,
computer science, and statistics where computational tasks
are performed with algorithms that learn patterns from data
to automatically make inferences. One of the main problems
faced in machine learning is dataset class imbalance, which
affects the quality and reliability of the solutions [7], [8],
[9]. This is a very frequent problem because imbalanced
data are a reality in almost all biological datasets [10]. The
prediction of a rare condition is important, especially in the
context of medical diagnosis, where promptly identifying
a specific disease is critical, and the majority of patients
are healthy [11]. This issue is very common in the field of
diagnosis because of the numerous limitations in generating,
managing, and acquiring new samples, especially clinical
data, which heavily depend on a patient’s willingness to
release their data or participate in trials. Consequently,
learning tasks can be difficult, and nonstandard machine
learning methods are needed to achieve desirable results,
especially in the presence of low-prevalence diseases or
clinical conditions.

In this study, we explore the problem of imbalanced data
in an MMSE dataset obtained as part of the EHomeSenior
project [12]. We analyzed the utility of machine learning
techniques in the context of an imbalanced MMSE dataset
and evaluated the efficacy of sampling methodologies in
improving the performance. The primary contribution of this
research lies in its provision of a methodological analysis
of machine learning techniques to address the challenge of
class imbalance in diagnostic data pertaining to cognitive
impairment.

The rest of this paper is structured as follows: Section II
describes the methodology used in this study; Section III
details the results; Section IV describes the discussion and
key findings; Section V discuss related work; and Section VI
concludes the research.

II. METHODS
The methodology used in this study is illustrated in Figure 1.
The aim of our study is to explore the performance

of machine learning techniques in terms of classifying
previously balanced data in a real dataset consisting of
results from an MMSE test administrated to older adults.
The research question of our study is as follows: Which

FIGURE 1. Proposed methodology.

data balancing and classification technique achieves better
performance in diagnosing cognitive impairment on an
unbalanced dataset?

A. MMSE DATASET
The data used in this study are from the EHomeSe-
nior project [12]. The EHomeSenior project employs a
non-intrusive monitoring system that adapts to the daily
routine of elderly individuals. This system continuously (24
h a day) monitors their daily activities to detect risk events
(e.g., falls) and evaluate nocturia and actimetry, alerting
family members about fall risks, carbonmonoxide inhalation,
early symptoms of degenerative diseases, and general safety
hazards. This system uses the MMSE to measure the
cognitive status of older adults. The process of administering
the MMSE begins when sensors are installed in an older
adult’s home. A clinician then asks initial demographic
questions to determine their habits, whether they use any
assistive devices (cane, glasses, removable dental prosthetic),
or if they have had surgery. Once the interview is completed,
the MMSE is started, and the answers are sent to a server.
In our study, the results form 103 participants were added
to the dataset based on inclusion and exclusion criteria (see
Table 1).

TABLE 1. Inclusion/exclusion criteria for MMSE patients.

We defined these inclusion and exclusion criteria based on
our previous experience [13], [14] performing an EQ5D [15]
survey in research projects with older adults. As we have
gained experience dealing with older adults, the inclusion
and exclusion criteria defined in Table 1 have helped us
obtain a meaningful set of older adults to conduct our study.
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Concerning Table 1, patients with MMSE scores outside the
range of 0 to 30 are eliminated.

B. DATA CLEANING AND FORMATTING
The MMSE consists of 30 questions, some of which are
simple and some of which are complex. This examination
also includes tasks in certain areas, such as time and
place orientation, word repetition, attention or calculation,
language use, and motor skills. Table 2 summarizes the
questions that were applied.

TABLE 2. MMSE topics and quantity of questions.

Concerning the questions described in Table 2, Folstein et al.
[16] explained the survey in detail, and Mitchell [17]
discussed updates on diagnostic accuracy and its evolution.
It is important to note that several resources on the Internet
display MMSE surveys for the community. The original data
distribution, consisting of 90% of NC and 10% ofMCI, with a
total of 103 older adults who participated in the eHomeSenior
project, agreed to take the test. This distribution represents
the sample of all older adults in our study. Given that the
results obtained from the 103 participants are pioneering in
Chile, we elected to analyse them as they were obtained in
order to uncover more significant results in a clinical context.
Therefore, we treated the problem as an imbalanced problem
for binary classification. Consequently, to preprocess the
answers, we used a binary vector that identifies every answer
to every question. We added a 1 for every true answer and a
0 for every false answer.

C. TRAINING AND TEST DATA
We trained the models using the NC andMCI classes to make
predictions from MMSE data collection according to the
features. To optimize the model testing process, we split the
data into five folds. In each iteration, four different folds were
used for training, and the remaining fold was used for testing.
We used 5-fold cross validation to fit the models. Once this
stage was completed, a dataset that the models had not seen
was tested (this dataset is the same for all models). This
dataset was used to report the model performance. On the
other hand, we trained each classification model to learn the
approximate function to classify the patients’ MMSE values,
thus minimizing the classification error. Each classification
model was trained using the same training set (80% of
the samples) and tested on the same test set (20% of the
samples). The features were normalized using z scores. The

FIGURE 2. Effect of the sampling methods on the original MMSE dataset
using normal data distribution.

evaluation metrics were generated over 20 runs, considering
the random data distribution in each partition. The proposed
approach was implemented in Python 3 using scikit-learn as
the backend.

D. MACHINE LEARNING APPROACHES
We used machine learning techniques that have been used
in different clinical studies analysing datasets, such as [10],
[11], [18], [19], [20], and [21]. Table 3 summarizes the
techniques used in this study.

Because the MMSE data are highly imbalanced, in this
study, the amount of data available for MCI patients is
small compared with that of the other class. In this regard,
most classifiers are biased towards the class with more data
(cognitively normal patients) and have poor classification
rates for the class with less data. In other cases, the
classifier may consider everything within a larger class
and ignore smaller ones; this is a problem with multiclass
data. Therefore, there are many techniques for handling
imbalanced data problems. Often, these techniques classify
the approaches as sampling methods (preprocessing) and
cost-sensitive methods. Some sampling techniques are more
accessible and do not require any specific information about
the classification problem. In these cases, a new dataset is
created to balance the classes, giving the classifiers a better
opportunity to distinguish the decision boundary between
them. Table 4 summarizes the methods used in this study.

Figure 2 represents the original balance of the data, where
9% of the data corresponds to normal cognition patients
(normal) and 91% corresponds to mild cognitive impairment
patients (mild). Additionally, Figures 3, 4, 5, 6 and 7 show
the application of the techniques described in Table 4.
Figure 2 to Figure 7 depict an X -Y axis representation of
the dataset, which is inherently multidimensional in nature.
These graphics display a visualization of the data subsequent
to the application of Principal Component Analysis (PCA)
[33] and the reduction of all features to two dimensions.
In some instances, the scale changes are a result of resampling
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TABLE 3. Machine learning methods.

TABLE 4. Metrics used to compare algorithms.

methods that generate new data samples that are proportion-
ate to the existing data. When analysing Figures 2, 3, 4, 5,
6 and 7, it can be observed that the SMOTE, SMOTETomek,
ADASYN, ROS and RUS techniques balance the distribution
of the data.

E. EVALUATION METRICS
When a classification task is performed, four possible outputs
can be obtained. The classifier may correctly assign a
sample as positive (target condition) or negative (without
target condition), i.e., true positives (TP) and true negatives
(TN), respectively. Alternatively, the classifier may make
wrong predictions, where the true labels obtained from the
gold standard contrast with the predicted labels, i.e., false-
positives (FP) or false-negatives (FN), respectively. These

TABLE 5. Confusion matrix of binary classification.

results are summarized in the confusion matrix, as shown in
Table 5.

In the presence of imbalanced data, not all data can
be used for diagnostic tasks [34]. The most well-known
example is accuracy, which is widely used in classification.
However, this metric does not necessarily reflect the bio-
logical significance of the results. For this reason, machine
learning approaches should always be accompanied by expert
decisions regarding the final result. In this paper, we focused
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FIGURE 3. Effect of the sampling methods on the original MMSE dataset
using SMOTE data distribution.

FIGURE 4. Effect of the sampling methods on the original MMSE dataset
using SMOTETomek data distribution.

FIGURE 5. Effect of the sampling methods on the original MMSE dataset
using ADASYN data distribution.

on seven distinct metrics commonly used in classification and
diagnostic tasks, which can be used for imbalanced data [34],
[35], [36] (see Table 6).

III. RESULTS
In this section, we present the results of the experiments
conducted to demonstrate the effects of resampling on

FIGURE 6. Effect of the sampling methods on the original MMSE dataset
using ROS data distribution.

FIGURE 7. Effect of the sampling methods on the original MMSE dataset
using RUS data distribution.

the original dataset. Table 7 shows the application of the
techniques to the original unbalanced dataset, and Tables 8,
9, 10, 11, and 12 show the results of the application of the
resampling techniques. The columns in each table show the
performance of the classifiers (accuracy, F1, sensitivity, and
specificity) along with the diagnostic metrics (LR+, LR−,
AUC, and DOR). When evaluating the machine learning
techniques, good performance was achieved in terms of
accuracy, particularly for the RF, with the original dataset,
as presented in Table 7.
However, as expected, the models exhibited poor perfor-

mance in terms of F1-score and sensitivity. Notably, the
RF also exhibited good discriminative power and diagnostic
performance, as indicated by its high AUC and DOR.
By applying ROS, as shown in Table 8, the class imbalance
issue was effectively addressed, leading to improved model
performance compared to that with the original dataset. The
models achieved higher accuracies, F1-scores, and sensitivity
values. This increase in accuracy indicates an overall
improvement in the classification performance, whereas the
improved F1-scores demonstrate a better balance between
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TABLE 6. Metrics used to compare algorithms.

precision and recall. Once again, the RF exhibited exceptional
performance on this oversampled dataset, achieving the
highest accuracy and F1 score. The RF also achieved high
sensitivity and specificity, indicating its ability to identify
both positive and negative cases effectively. Furthermore,
the RF achieved high AUC and DOR, demonstrating its
remarkable diagnostic performance. It displayed remarkable
diagnostic performance with high AUC, DOR, LR+ values
and low LR - values. These results indicate the superiority
of the RF in accurately identifying positive cases while
minimizing false-negatives.

In Table 9, LR emerged as the top performer on the RUS
dataset. It achieved the highest accuracy and F1 score, indi-
cating its strong overall performance. LR also demonstrated
relatively high sensitivity, suggesting its effectiveness in
correctly identifying positive and negative cases. Moreover,
LR exhibited high AUC and DOR, further confirming its
diagnostic capabilities. While other models, such as the
RF and SVM, also showed competitive metrics, logistic
regression proved to be the best-performing model in this
analysis of the RUS dataset. However, when considering
the AUC, DOR, LR+, and LR- metrics, LR displayed
moderate discriminative power and diagnostic performance.
This suggests that while LR performs reasonably well in

diagnosing medical conditions, it may not provide the same
level of accuracy and reliability as the RF on an oversampled
dataset.

As shown in Table 10, the RF continued to outperform
the other models based on the metrics. It demonstrated
exceptional diagnostic performance, as reflected by the
nearly perfect AUC and significantly high DOR. Addition-
ally, the RF achieved a remarkably high LR+, indicating
a substantial increase in the odds of a positive diagnosis
while maintaining an extremely low LR-, implying a minimal
likelihood of false-negatives. These findings highlight the
outstanding diagnostic capabilities of the RF when using
SMOTE.

Similarly, as shown in Table 11, the RF outperformed
the other models, showing strong discriminative power and
diagnostic performance, as evidenced by the high AUC and
DOR values. Furthermore, the RF achieved a high LR+,
indicating a considerable increase in the odds of a positive
diagnosis while maintaining a low LR-, implying a low
probability of false-negatives.

Table 12 shows that the accuracy values are competitive,
allowing synthetic data to be generated considering the class
imbalance. The ability of the ADASYN technique to assign
large weights to data that are difficult to classify contributes
to its high sensitivity. This suggests the potential of the
method to identify cases of cognitive impairment, even if
that means sacrificing specificity (this metric remains stable,
indicating the ability to detect normal cases). Regarding
LR, the values show the ability of the method to improve
diagnostic certainty, while managing the likelihood of false
positives and negatives. In turn, AUC has competitive values,
which emphasize the ability to distinguish between cognitive
impairment and normal cases efficiently. Likewise, DOR
values improve the likelihood of diagnosis, suggesting an
improvement in the accuracy of detection of cognitive
impairment.

In Tables 7, 8, 9, 10, 11 and 12, we also considered the
Cohen Kappa coefficient [37], as it is crucial to evaluate
the agreement between the results generated by the model
and those of a human expert. This coefficient measures
the degree of confidence in the model’s classification,
considering the agreement. A high Cohen’s Kappa value
describe that the classification result is consistent with the
human assessment, thereby enhancing confidence in the
accuracy of the diagnostic model. In this research, the Cohen
Kappa results enable us to interpret that the results obtained
using the sampling techniques are dependable in aiding
the diagnosis of cognitive impairment using the minimental
test.

Table 13 describes that RF, LR, and SVM have better
results in terms of sensitivity, that is, the probability of
classifying data corresponding to MCI when it actually
belongs to the disease. Additionally, Table 13 shows a
substantial improvement using the sampling techniques,
as opposed to what is obtained with the original dataset,
considerably improving the generalization ability.
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TABLE 7. Original dataset versus model mean (Std).

TABLE 8. ROS dataset versus model mean (Std).

TABLE 9. RUS dataset versus model mean (Std).

TABLE 10. SMOTE sampled dataset versus model mean (Std).

TABLE 11. SMOTETomek sampled dataset versus model mean (Std).

TABLE 12. ADASYN sampled dataset versus model mean (Std).
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TABLE 13. Analysis of techniques versus sampling.

IV. DISCUSSION
The RUS technique reduces the overall accuracy. While
the sensitivity values improve, the decrease in the accuracy
values indicates that the ability of the model to classify
balanced and unbalanced cases is impaired. This implies
that the model can identify cases of cognitive impairment
but may misclassify some normal cases. The sensitivity
values indicate that the model can correctly classify cases of
cognitive impairment. This is significant because it is possible
to address the problem of data imbalance, which reduces
the overrepresentation of the majority class. Regarding
specificity, the values of this metric are low, as the sensitivity
values are high. This implies that while the model becomes
good at identifying positive cases, there is a correspondence
in increasing false-positives among normal cases. Sensitivity
and specificity influence the LR+ and LR- ratios. A high
LR+ and a low LR- mean that the model has improved
its diagnostic ability for cognitive impairment, but the
false-positive likelihood increases. The AUCmetric indicates
that the reduction in accuracy is reflected by a low AUC,
demonstrating that the discriminative ability of the model
is lowered. Finally, the trade-off between sensitivity and
specificity implies that the DOR metric increases. However,
the risk of false-positives also increases.

For the ROS technique, the good results are achieved with
respect to the accuracy metric. However, these results are
accompanied by a decrease in specificity, indicating that the
overall classification is improved, but there is an increase
in false-positives. The sensitivity is stable, which implies
that the model focuses on balancing the representation of
the classes. However, the reduction in specificity indicates
that the model continues to detect normal cases as cases of
cognitive impairment. The trade-off between sensitivity and
specificity influences LR+ and LR-, indicating a trade-off
between high true-positive and false-positive rates. In turn,
the improvement in accuracy leads to a high AUC, which
improves the discriminative ability of the model. Finally, the
increase in accuracy results in an increase in the DOR, which
improves the diagnostic accuracy.

SMOTE is highly accurate because its ability to gener-
ate synthetic data improves the balance between classes,
resulting in accurate predictions for both balanced and
unbalanced cases. Good performance is achieved in terms
of the sensitivity metric, indicating that this method is
appropriate for identifying cases of cognitive impairment.
This aligns with the objective of addressing class imbalance
and improving the detection of positive cases. The specificity

metric remains stable, indicating that SMOTE also classifies
the normal cases. In turn, the balance between sensitivity
and specificity allows for adequate values for LR+ and LR-.
In this sense, SMOTE contributes to better diagnosis while
mitigating the risk of false-positives and false-negatives.
Regarding the AUC metric, the results of this metric indicate
that SMOTE is effective in distinguishing between cognitive
impairment cases and normal cases. Regarding the DOR
metric, the values obtained are relevant, indicating SMOTE’s
ability to improve the diagnostic accuracy across the entire
dataset.

With regard to SMOTETomek, the accuracy results are
robust, implying that the technique is successful in refining
the dataset by removing Tomek links and improving the
separability of the data. The results for the sensitivity metric
suggest that the model improves its ability to identify cases
of cognitive impairment. In relation to sensitivity, the values
of the metric indicate that SMOTETomek preserves the
model’s ability to identify unbalanced classes. In relation to
LR+ and LR-, an improved diagnosis is achieved without
compromising this balance. The AUC values are good, which
also demonstrates the discriminative ability of this technique.
Finally, the DOR metric demonstrates that SMOTE-Tomek
can improve the diagnostic accuracy and reliability.

The accuracy results obtained using the ADASYN tech-
nique indicate that the obtained values are competitive,
as they describe the ability to generate synthetic data
dealing with class imbalance. The ability of ADASYN to
assign large weights to hard-to-classify data contributes
to high values of the sensitivity metric. This suggests
the potential of the method to identify cases of cognitive
impairment, even if that means sacrificing specificity, as this
metric describes stable results, indicating the ability to
detect normal cases. Regarding LR+ and LR−, the values
show the ability of the method to improve the diagnostic
certainty while managing the likelihood of false-positives
and false-negatives. In turn, the values obtained for the
AUC metric indicate that ADASYN can efficiently dis-
tinguish between cognitive impairment and normal cases.
Finally, the values obtained for the DOR metric suggest
an improvement in the accuracy of cognitive impairment
detection.

Concerning performance, LR and SVM demonstrate
strong performance in diagnostic metrics, particularly in
discerning patterns indicative of the target class, in this
instance, MCI. This success in applying probability-based
techniques to distinguish the disease effectively increase
confidence in their utility for diagnostic tasks, particularly
in situations where data is difficult to differentiate or
distinctions are minimal.

A. PRINCIPAL RESULTS
After the evaluation of various resampling techniques within
the context of mild cognitive impairment diagnosis using
an unbalanced MMSE dataset, it is observed that these
techniques performwell for classification techniques. Among
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the techniques explored, SMOTE performs best, achieving
superior classification performance for the metrics used,
including accuracy, precision, recall, F1, and AUC. Its ability
to generate synthetic samples to balance the dataset while
preserving the underlying distribution of data contributes to
its excellent performance. In this regard, the RF shows a
better fit for unbalanced datasets. This method corresponds
to an ensemble that uses multiple decision trees to capture
patterns in the data and obtain a robust prediction. These
findings suggest that SMOTE and the RF can significantly
improve the accuracy and reliability of cognitive impairment
diagnosis. These results reflect the importance of dealingwith
data imbalance and using advanced classification algorithms
that improve the predictive ability of learning models.

From a clinical perspective, this study offers important
results in the application of machine learning techniques for
the diagnosis of cognitive impairment. In particular, SMOTE
using the RF has the potential to significantly improve
diagnostic outcomes, helping health care professionals make
more informed and timely decisions regarding patient care.
Asmedicine continues to be aided by technological solutions,
our study will play a pivotal role in approaches to cognitive
impairment detection and patient support.

B. LIMITATIONS
This study is limited by the relatively small size of our
dataset. This affects the generalizability of the methods and
may not represent the diversity and complexity of cognitive
impairment in older adults. On the other hand, we use data
with some level of bias due to selection criteria factors or
patient location. Regarding class imbalance, despite applying
some balancing techniques, the data may still have some level
of imbalance, which affects the effectiveness of the methods.
To mitigate these issues, we followed the recommendation of
Button et al. [38] regarding describing methods and findings
in a transparent manner. In this regard, the machine learning
techniques used in our study are implemented in highly
cited programming libraries used in data research (such as
scikit-learn Python library). Additionally, the findings we
reported are supported on the basis of the data described in
the article to foster reproducibility of the results.

V. RELATED WORK
Belarouci and Chikh [39] discussed how imbalanced data
are related to medical diagnosis. The authors mentioned
that because of the distribution of the imbalanced data,
it is difficult to obtain good performance for most of them
using traditional classifiers where a balanced distribution
exists. In addition, Sribhashyam et al. [40] analysed complex
imbalanced data with high dimensionality and big data.
In contrast, the problem of imbalanced data can be combined
with incomplete data in a dataset named Western Medicine
and Symptom Prediction using a multi-instance neural
network architecture. There are problems associated with
computer vision using machine learning with imbalanced
data.

Lee et al. [41] evaluated different sampling techniques
using the naive Bayes method. Similarly, He et al. [42]
noticed that the hyperplane is biased to the majority class
for an SVM using imbalanced data, leading to more false-
negative predictions. Feltes et al. [18] used other classifiers
against imbalanced data for microarray gene expression
analysis. Kadir et al. [43] discussed how k-nearest neighbour
is biased towards the majority class in the training set,
and Cieslak et al. [44] discussed decision trees. Brown and
Mues [45] and Chang and Chawla [46] analysed how gradient
boosting outperforms SVM, decision trees, and kNN for
problems with imbalanced data.

Regarding cognitive assessment and the MMSE, Flaxman
and Vos [47] mentioned that developing machine learning
approaches for this task requires considerable experience and
clinical correlation. Machine learning techniques have con-
straints such as fairness, accountability, transparency, privacy,
explainability, and causal inference. Almubark et al. [48] used
a multilayer perceptron (MLP) to compare the classification
performance using behavioural data. Youn et al. [49] used the
Korean Dementia Screening Questionnaire (KDSQ) and the
MMSE, utilizing 24 variables, including education, sex, age,
and hypertension. So et al. [50] used naive Bayes, bagging,
and demographic data to predict normal, MCI, and dementia
in a quick, inexpensive, and reliable way to detect dementia
in its early stages and to increase accuracy.

Jun et al. [3] develop a multiple linear regression model
to predict mild cognitive impairment using a combination
of bioimpedance variables and the Korean Mini-Mental
State Examination total score. The authors compared the
accuracy of the model with SNSB-II (Seoul Neuropsycho-
logical Screening Battery) domain scores using the area
under the receiver operating characteristic. In addition, they
analyzed the performance of the model using several machine
learning models. Similarly, García-Gutiérrez et al. [51]
implement several machine learning models to identify indi-
viduals without cognitive impairment (subjective cognitive
impairment), with mild cognitive impairment, and dementia
due to Alzheimer’s disease. The authors described models
that are capable of predicting performance in cognitive
domains.

VI. CONCLUSION
This study evaluated machine learning techniques on unbal-
anced data related toMMSE test responses in elderly patients.
The techniques used were naive Bayes, support vector
machine, k-nearest neighbour, decision trees, random forest,
logistic regression, and multilayer perceptron. The dataset
consists of data from the EHomeSenior project, the main
objective of which is to monitor older adults. Because the
dataset was unbalanced, we applied balancing techniques
to avoid bias in our study, namely, RUS, ROS, SMOTE,
SMOTETomek, and ADASYN. To evaluate the performance
of the machine learning techniques, we used seven metrics:
sensitivity, specificity, F1-score, LR+, LR−, DOR, and
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AUC. The results obtained indicate that SMOTE together
with the random forest significantly improves the accuracy
of diagnosing cognitive impairment.

The primary advantage of this research lies in the appli-
cation of sampling methods to datasets that are inherently
unbalanced. It is widely acknowledged that obtaining disease
data, particularly for complex conditions where distinguish-
ing one patient from another is challenging, is difficult.
Consequently, a significant portion of such data is typically
derived from healthy individuals.

The results obtained provide the opportunity to use
techniques in suspected patients according to the results of
the MMSE test and provide a new tool to accept results or
discard them. Independent of the sampling technique, they
decrease the bias for the majority class and improve the
general classification; however, no single method alone can
achieve the best performance. The data must be evaluated
for every case. More importantly, every case must be
analysed with more than one metric, with no trust in only
one of them. This is especially important when analysing
clinical data and depends on the classifier and sampling
method.
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