IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 8 March 2024, accepted 27 March 2024, date of publication 2 April 2024, date of current version 9 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3383877

== RESEARCH ARTICLE

Research on Detection and Mitigation Methods of
Adaptive Flow Table Overflow Attacks in
Software-Defined Networks

YING ZENG ™, YONG WANG™, AND YUMING LIU

School of Computer and Information Security, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
Corresponding author: Yuming Liu (suiyanlovetian @foxmail.com)
This work was supported in part by the National Natural Science Foundation of China under Grant 61861013, in part by the Science and

Technology Major Project of Guangxi under Grant AA18118031, and in part by the Innovation Project of Guilin University of Electronic
Technology (GUET) Graduate Education under Grant 2023YCXS056.

ABSTRACT In Software-Defined Networks (SDN), the ternary content addressable memory (TCAM)
capacity in switches is limited, making them vulnerable to low-rate flow table overflow attacks. Most existing
research in this field has not focused on the influence of flow entry eviction mechanisms on the effectiveness
of such attacks. This paper proposes an adaptive low-rate flow table overflow attack (ALFO), which can adopt
corresponding attack modes under different flow entry eviction mechanisms, significantly degrading network
service quality. Due to the different features of ALFO under different attack modes, the existing attack
detection methods are ineffective in this attack. Therefore, this paper proposes a detection and mitigation
framework, which is called adaptive low-rate flow table overflow attack guard framework (ALFO-Guard).
It extracts flow features from flow entry information in the switch and aggregates them into a current-time
graph model. Then, combining graph neural networks, it performs graph anomaly detection and flow entry
classification to identify attack flow entries. Finally, the attack can be eliminated by deleting the identified
attack flow entries and blocking the attack flows. The effectiveness of ALFO and ALFO-Guard is validated
through extensive experiments, and the experimental results demonstrate that ALFO-Guard can effectively
defend against ALFO.

INDEX TERMS SDN, flow table overflow, low-rate attacks, graph neural network.

I. INTRODUCTION

Software-Defined Networks(SDN) [1], as a novel network
architecture, exhibits characteristics such as centralized
control, separation of forwarding and control planes, and
network programmability [2]. However, this new architec-
tural paradigm also introduces novel network threats [3],
[4], including security concerns in the data plane [5], [6].
Currently, switches that support the OpenFlow protocol [7]
employ TCAM [8] to store flow entries. Due to cost and
capacity limitations [9], [10], [11], most commercial switches
can only accommodate a few thousand to tens of thousands of
flow entries [12]. Consequently, flow table overflow attacks
have emerged as a significant threat in the realm of SDN

The associate editor coordinating the review of this manuscript and

approving it for publication was Alessio Giorgetti

security, particularly low-rate flow table overflow attacks that
possess higher levels of stealthiness [13].

Most existing research in the field has largely overlooked
the influence of flow entry eviction mechanisms on the
effectiveness of flow table overflow attacks. In this paper,
we present a novel attack called ALFO (Adaptive Low-
rate Flow Table Overflow Attack). ALFO adjusts its attack
modes under different flow entry eviction mechanisms. When
overflow occurs and triggers the eviction mechanism, ALFO
manipulates the controller to favor evict legitimate flow
entries, resulting in a more significant attack effect than
the existing low-rate flow table overflow attack methods.
Literature [14] indicates that different attack flow features can
affect the detection effectiveness of machine learning-based
flow feature detection methods. Due to the different attack
modes under different flow entry eviction mechanisms,

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

48830

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0009-0007-3430-516X
https://orcid.org/0000-0002-5383-5736
https://orcid.org/0000-0002-7995-0847
https://orcid.org/0000-0001-5017-1500

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

IEEE Access

ALFO exhibits more diverse flow features than existing
flow table overflow attacks. Consequently, the existing
attack detection methods are inadequate for detecting ALFO.
In conclusion, effectively defending against ALFO has
become a new challenge in the SDN network environment.

In recent years, the application of graph neural networks
(GNNs) [15] in the field of network security has shown
promising results, such as network intrusion and anomaly
detection [16]. Given the GNN’s ability to capture structural
information hidden in network topologies, we apply it in
detecting flow table overflow attacks for the first time.
Concretely, we introduce a GNN-based attack detection
and mitigation framework called ALFO-Guard. It collects
real-time flow entry information and uses a graph model
represents the interrelationships among them. Subsequently,
combining graph neural networks, it performs graph anomaly
detection and flow entry classification to identify attack
flow entries. Additionally, the framework incorporates the
attack mitigation mechanism which primarily consists of two
operations: deleting attack flow entries and adding them to a
blacklist, to minimize flow table overflow issues and mitigate
their impact on network performance.

The main contributions of this paper are as follows:

1) We propose a novel adaptive low-rate flow table
overflow attack called ALFO. Compared to existing low-
rate flow table overflow attacks, we consider the influence of
flow entry eviction mechanisms. ALFO adopts corresponding
attack modes under different eviction mechanisms, signifi-
cantly degrading the quality of service of normal applications.

2) Existing methods show limited defense performance for
ALFO. To defend against this attack effectively, we propose
a detection and mitigation framework called ALFO-Guard.
It extracts flow features to generate current-time graph model.
Then, combining graph neural networks, it performs graph
anomaly detection and flow entry classification to identify
attack flow entries. Finally, it deletes the identified attack
flow entries and activates a blacklist mechanism to defend
against attack.

3) We conduct extensive experiments to validate the
feasibility and effectiveness of ALFO and ALFO-Guard. The
experimental results demonstrate that the ALFO-Guard can
effectively defend against ALFO.

The organizational structure of this paper is as follows.
In Section II, related work is presented. Section III describes
the attack model and explaining the principles of ALFO
and the attack mode under different eviction mechanisms.
In Section IV, the workflow of the detection and mitigation
framework, ALFO-Guard, is detailed. Section V introduces
the relevant experiments conducted to evaluate the effective-
ness of the attacks and ALFO-Guard. Finally, in Section VI,
a summary of this paper is provided.

Il. RELATED WORKS

This section categorizes LDoS attacks, focusing on flow
table overflow attacks and LDoS attacks targeting hosts in
SDN. Firstly, we discuss flow table overflow attacks against

VOLUME 12, 2024

the data plane, analyzing their attack principles and relevant
detection and defense methods. Secondly, we explore LDoS
attacks against hosts in SDN and summarize existing attack
detection and defense methods. Finally, we summarize all the
references in a table format, as shown in Table 1.

A. FLOW TABLE OVERFLOW ATTACK

Currently, research efforts on flow table overflow attacks
in SDN can be classified into two categories based on the
overflow rate: low-rate and high-rate flow table overflow
attacks. On the one hand, attackers can leverage the
operational mechanisms of the OpenFlow protocol to gather
information about the size of a switch’s flow table and the
timeout duration of its flow entries [17]. By delivering well-
crafted packets, they force the targeted switch to install flow
entries for the attack flows, thereby persistently occupying
the switch’s TCAM memory space. Attackers aims to achieve
flow table overflow with minimal attack flows, resulting in a
degradation of network service quality. On the other hand,
with the gathered information, attackers can send numerous
well-crafted packets to disrupt the network by overloading the
control channel or overwhelming the processing capabilities
of the controller. This effectively hampers the controller’s
ability to serve normal applications. Subsequently, this
section provides a comprehensive overview of existing
approaches for defending against flow table overflow attacks.

1) LOW-RATE FLOW TABLE OVERFLOW ATTACK

Pascoal et al. [18] proposed a low-rate flow table overflow
attack called Slow-TCAM. This attack utilizes a botnet
consisting of half the number of switches to send attack
packets and occupy flow table resources. The sending interval
of each packet is smaller than the inferred timeout duration
of flow entries obtained through network configuration
information. Cao et al. [19] introduced a two-stage low-
rate overflow attack, LOFT. In the probing stage, attackers
probe network configuration (timeout of flow entries, etc.)
and calculate the lower bound of the attack rate. In the
attack stage, attackers periodically send attack packets to
consume flow entries, causing the flow table to remain in an
overflow state. Building upon the work of Pascoal et al. [18],
Zhijun et al. [20] proposed a linearly increasing low-rate
flow table overflow attack. In the initiation stage, the attacker
gradually increases the number of attack packets between
adjacent attack cycles to enhance the stealthiness. However,
these attacks do not consider the influence of flow entry
eviction mechanisms on the effectiveness of the attacks.
Additionally, they implicitly assume a continuous increase
in flow entries during the attack initiation stage, using it as
a triggering condition for detection mechanisms. However,
such an assumption may not always hold true.

Currently, there are several research studies on defending
against low-rate flow table overflow attacks. Zhijun et al. [20]
proposed an attack detection and mitigation mechanism
based on Factorization Machine. This mechanism consists
of multi-feature attack detection and dynamic removal

48831

IEEE Access

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

TABLE 1. Related work summary.

Classification Paper Detection method Mitigation methods
[18] — selective strategies
Low-rate flow table overflow attack
[19] — —
Low-rate flow table overflow attack — statistical features [21] evaluation strategy base on flow feature, threshold selecting the appropriate flow entries to delete, LRU
[20] Factorization Machine dynamically deleting flow rules
[22] BayesNet the controller issue the rules to block attack flow
Low-rate flow table overflow attack — machine learning 23] RandomForests dynamically migrates flow rules, the blacklist of malicious flows
[24] XGBoost remove rules, a blacklist of suspicious source IPs
[25] D3 (Discriminative Drift Detector) a table segmentation module, score-based flow entry eviction module
. . [26] traffic states of real addresses, evaluation scores, network resource packet filter
High-rate flow table overflow attack — statistical features usages
[27) new frequency features table-miss engineering, packet filter, flow rule management
. . 28] PSO-BP neural network install flow rule in switch
High-rate flow table overflow attack — machine learning
[29] supervised classifiers: KNN, SVM, and Naive Bayes semi-supervised identify the zombie hosts, install high priority blocking rules
classifiers: One-Class SVM, Isolation Forest, Basic Autoencoder, and
Variational Autoencoder
[30] Renyi entropy, Information distance install flow rule in switch
) L [31] the number of connections it engages that sent incomplete HTTP instructing the controller to establish a new flow rule
LDoS attacks targeting hosts in SDN — statistical features requests
32] Mean Euclidean Distance install mitigation rules in ingress switches
[33] expectation of packet size —
[34] GBDT, Logistic Regression locate attack sources and victims, drop packets
LDoS attacks targeting hosts in SDN — machine learning [35] ‘WMS-K-Means —
[36] LightGBM locate attack, packet filter
Low-rate flow table overflow attack — deep learning ALFO- GNN (Graph neural network) delete attack flow entry, the ip_port blacklist base on threshold
Guard

of flow entries, to achieve fine-grained detection results.
Xie et al. [21] presented an attack detection and mitigation
mechanism called SAIA, which consists of four modules:
data collection, overflow prediction, attack detection, and
overflow mitigation. SAIA periodically samples the required
data, performs attack detection based on thresholds, removes
detected attack flow entries, and deletes a certain number
of normal flow entries based on the Least Recently Used
(LRU) algorithm to prevent flow table overflow. Xing-
shu et al. [22] proposed a detection framework for in
SDN. This method extracts ten-dimensional flow features
and employs a Bayesian network for attack detection.
Cao et al. [23] introduced a mitigation system called
LOFTGuard. LOFTGuard dynamically migrates flow entries
between TCAM and software regions based on flow activity
and rate. It detects attacks using long-flow features and
flow table utilization features, and identifies attack flows
based on Random Forests model. Once an attack flow is
identified, the corresponding flow entry is removed and
blocked. Tang et al. [24] proposed an attack detection and
mitigation system called FTMaster. It monitors the number
of flow entries in real time and activates the flow table
detection module when it exceeds a detection threshold. Once
an attack is detected, FTMaster classifies each flow entry
based on XGBoost model, removes the detected attack flow
entries, and initiates a blacklist mechanism. However, the
aforementioned detection methods either rely on threshold-
based approaches, which have limitations under different
network environments or attack modes, or heavily depend on
assumed attack flow features, making it easy for attackers to
bypass detection by disguising the attack flow features. Liu
et al. [25] presented a defense mechanism called POAGuard
for defending against flow table overflow attacks. It consists
of a flow table partitioning module for isolating attack flows,

48832

a score-based flow table entry eviction module, and an attack
detection module based on concept drift. Although the attack
modes under the LFU eviction mechanisms are described
in [25], it does not consider other flow entry eviction
mechanisms, making it unsuitable for detecting ALFO.

2) HIGH-RATE FLOW TABLE OVERFLOW ATTACK

Zhang et al. [26] designed an SDN mitigation framework
called FloodShield. It filters attack packets directly based on
the source IP of flows and monitors traffic status. Besides,
it employs a probabilistic acceptance mechanism for packet-
in messages based on evaluation scores and controller CPU
utilization. Gao et al. [27] proposed a mitigation framework
named FloodDefender, which establishes a traffic migration
model based on queuing theory formulas and link utilization.
When an attack is detected, it filters packet-in messages,
removes unnecessary flow entries, and migrates network
packets to adjacent switches based on the available secure
channel capacity with those switches. Liu et al. [28] presented
a attack detection method that combines information entropy
and BP neural network. This method uses information
entropy to locate anomalous switches and then extracts
flow features from these switches. Besides, BP neural
network model is employed to identify DDoS attack flows.
Khamaiseh et al. [29] proposed a machine learning-based
attack detection framework called vSwitchGuard. It extracts
six features from flows to establish its detection model.
Besides, it determines an ongoing attack and locates attack
hosts based on packet-in messages. The aforementioned
methods focus on detecting high-rate flow table overflow
attacks. Since the flow features of high-rate flow table
overflow attacks differ from those of low-rate overflow
attacks, these methods are not suitable for detecting the
stealthier low-rate flow table overflow attacks.

VOLUME 12, 2024

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

IEEE Access

B. LDOS ATTACKS TARGETING HOSTS IN SDN

In SDN networks, low-rate DoS attacks can target various
components within SDN, such as attacks against switches
and attacks against hosts. The previous section primarily
summarized the research on flow table overflow attacks.
In this section, we will discuss existing methods for other
types of LDoS attacks, which can be categorized into
statistical feature-based detection and machine learning-
based detection methods.

1) STATISTICAL FEATURE-BASED DETECTION METHODS
Statistical feature-based detection methods [30], [31], [32],
[33] detect attacks based on the effect caused and reasonable
thresholds. Anchal et al. [30] proposed an LDoS detection
method called REPD, which utilizes information distance
measurement to evaluate network traffic fluctuations under
different probability distributions. It adopts packet dropping
as a means to mitigate LDoS attacks. Hong et al. [31]
proposed a SDN-based defense method called SHDA to
mitigate low-rate HTTP DDoS. This method detects attacks
by monitoring if the number of HTTP request connections
exceeds a predefined threshold. Xie et al. [32] introduced
a lightweight mitigation system called SoftGuard, which
effectively defends against low-rate TCP attacks. It designs
an adaptive fast Fourier transform algorithm to infer attack
cycles and uses Euclidean distance to identify attack flows,
followed by attack source localization based on flow paths.
Zhou et al. [33] proposed a detection method for LDDoS
based on packet size expectations. The researchers used the
variance of packet sizes as a metric to measure the attack.

2) MACHINE LEARNING-BASED DETECTION METHODS

Machine learning-based detection methods [34], [35], [36]
classify flows based on their features to accurately identify
attack flows. Tang et al. [34] proposed a detection and miti-
gation framework called P&F. This framework extracts traffic
features and categorizes them into two types: performance
features and behavior features for LDoS attack detection.
P&F utilizes time-frequency analysis to locate the source
and target of LDoS attacks based on the flow characteristics.
Finally, based on the detection and localization results, P&F
deploys defense rules to filter LDoS attack traffic. Liu
et al. [35] proposed a low-rate Denial of Service (DoS)
attack detection method in SDN environments based on
the WMS-Kmeans algorithm. This method uses the six-
tuple features of flow table entries in switches as input for
an improved Mean-Shift algorithm, which generates initial
clustering centers. These centers are then used in the WMS-
Kmeans algorithm to perform clustering and detect LDoS
attacks. Tang et al. [36] proposed a detection and mitigation
framework called ADMS for LDoS attacks targeting TCP
congestion control mechanisms. It combines the traffic
features of each switch port with a LightGBM classifier for
flow features. However, these methods are not applicable to

VOLUME 12, 2024

TABLE 2. Symbols and their meanings.

Symbol | Description

Cnax The flow table capacity of the switch, for instance, if the TCAM
capacity of the switch is 1500, then Cpex = 1500

Fy The set of attack flows, e.g., Fyy = {f1,/2,..../fm} Where f;
reprensts an attack flow

Cy The number of normal flows,which is assumed to be constant

Cy The number of attack flows , which change over time

Viy Transmission rate of the i-th normal flow (pkts/s)

v’M Transmission rate of the j-th attack flow (pkts/s)

Vinax Application-limited maximum flow rate (pkts/s)

idle_time | The default timeout value of flow entry, configured by the con-
troller

T Attack cycle

Toverflow | The time when overflow occurs

‘ Pkt low-rate attack packets _” SDN

- === ftrigger rule installation Controller

=

- 4,
. 7
& A PSR
Tl | T~ by
Iss R ISP CRRNNS A
R Ay N

R — =
ITITITINID eesveln: El

OpenFlow Switch2

OpenFlow Switch1

L, . Switch1 Table Switch2 Table
Traffic Generator
flow entry flow entry
[1flow entry] [1flow entry |
flow entry flow entry
flow entry flow entry

>
P attack interval = = = = = = = F------ atiack interval = = = = = = = 1 Time
idle timeout

idle timeout

FIGURE 1. Low rate flow table overflow attack.

the attacks proposed in the current study due to the differences
in attack targets or attack modes.

IlIl. ATTACK MODEL

The ALFO is built upon the foundation of the low-
rate flow table overflow attack. Therefore, in this section,
before introducing the ALFO model, we first describe the
principles of the low-rate flow table overflow attack. Next,
we establish the model of ALFO, followed by an analysis
of its attack mode. Since prior works [19], [37], [38]
have already discussed how to probe the installation rules,
timeout mechanisms, flow entry eviction mechanisms, and
the capacity of the flow table, we will not delve into them
here while assuming that they are readily available. Table 2
presents the symbols used in this paper along with their
corresponding meanings.

A. LOW RATE FLOW TABLE OVERFLOW ATTACK

According to the workflow of the OpenFlow protocol,
packets that do not match any flow entries will trigger SDN
switches to generate Packet-in messages. Upon receiving
such a message, the controller adds the corresponding flow
rule to the switch based on the request. Inspired by low-
rate DoS attacks, researchers have proposed low-rate DoS
attacks targeting the flow table [18], [19], as shown in
Fig.1. In this attack, attackers send well-crafted packets at
a low rate, gradually consuming flow entries until the flow
table overflows degrading the network’s service performance.

48833

IEEE Access

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

Existing attack methods set the attack cycle based on idle
timeout and achieve flow table overflow by sending attack
packets at a low rate. However, they overlook the influence of
flow entry eviction mechanisms on the attack’s effectiveness.
In this paper, we investigate the effect of flow entry eviction
mechanisms and propose the ALFO, which prompts the
controller to preferentially evict the flow entries of normal
applications when overflow occurs, leading to an amplified
degradation of the quality of service of normal applications.
Next, we will provide a detailed introduction to ALFO.

B. ALFO MODEL

The ALFO process consists of two phases: the overflow phase
and the attack maintenance phase. In the overflow phase,
it is assumed that the attacker’s objective is to ensure the
stealthiness H of the attack before overflowing the flow
table. In the attack maintenance phase, it is assumed that
the attacker’s objective is to employ different modes based
on various flow entry eviction mechanisms to sustain the
effect generated by the attack. A detailed analysis is provided
below:

In the overflow phase, the attacker aims to overflow
the flow table covertly. The research conducted in [23]
and [24] indicates a certain correlation between stealthiness
and the growth trends of packet-in messages and flow entries.
Specifically, when there is a significant increase in the
number of packet-in messages or a more pronounced growth
trend in flow entries, the stealthiness of the attack becomes
lower. Therefore, we denote the growth trend of flow entries
at time ¢ as d;, as shown in (1). Additionally, when the
attack cycle exceeds, the switch will delete all attack flow
table entries in each attack cycle, leading to a noticeable
increase in packet_in messages. In such cases, the attack
lacks stealthiness. Hence, we define the expression for the
stealthiness of the attack, H, as shown in (2). In equation
(2), the value of H ranges from O to 1, where a higher value
indicates a more stealthy overflow process. Furthermore,
we define the objective function for the overflow phase of the
ALFO as shown in (3). Here, Cy,(¢) represents the number of
attack flows at time 7.

dy = max(0, Cy () — Cy(t — 1)) (H
Toverﬂovv . :
H— exp(l —max {d;},7}""), T < %dle_t%me @
0, T > idle_time
max H
Cy(t) > Chax — C
St M() = Cmax N (3)
0 <t < Toverflow

In the attack maintenance phase, the attacker can reduce the
quality of service provided to normal flows by increasing the
number of flow entries occupied by attack flows [20]. In other
words, the proportion of attack flow entries in the flow table
reflects the degree of attack effect. Therefore, we define the
occupancy rate of attack flow entries, R, as shown in (4),
which represents the percentage of attack flow entries in the

48834

—_— T=8

3501

N N w
=3 o 1=}
) o S}

Number of packet_in Message

—
%
o

0 100 200 300 400 500 600 700
Time(s)

FIGURE 2. Changes in the number of packet_in messages for different
attack cycle over time.

flow table. Here, Py denotes the survival rate of an attack flow
during flow table eviction, and it exhibits different behavior
under different flow entry eviction mechanisms. We will
subsequently conduct a detailed analysis of Py under various
flow entry eviction mechanisms. In equation (4), a higher
occupancy rate of attack flow entries, R, signifies a greater
degree of attack effectiveness. Consequently, we define the
objective function for the attack maintenance phase of the
ALFO, as shown in (5).

o DB € Fu) @
B Cmax

max R

) 0 < T < idle_time
S.t.
Chax —Cn < Cyp < Vmax - T

)

C. ATTACK MODE ANALYSIS

In the overflow phase, based on the default configuration
policy of the switch, when a new flow arrives that does not
match any flow entries in the flow table, the switch installs
the corresponding flow entry, as indicated by the red arrow
in Fig. 1. Additionally, the switch will delete flow entries
that have not matched any packets within the timeout period.
Therefore, when the attack cycle is greater than idle_time,
the switch will delete all attack flow table entries in each
attack cycle, leading to the generation of a large number of
OpenFlow messages in each attack cycle, as indicated by
the red arrows in Fig. 1, referring to equation (2), it can be
observed that the stealthiness of the attack is significantly
compromised. This paper conducted experiments comparing
changes in the number of packet_in messages sent by the
switch over time before and after the attack. The experiments
involved T = 8, 10, 12 (the default timeout value of flow
entry set to 10), aiming to assess the impact of the attack cycle
on attack stealthiness, the results are shown in Fig.2.

From Fig.2, it can be observed that, compared to T=10
or 12, the number of packet_in messages sent by the
switch is significantly lower when 7T = 8. When the attack
cycle is smaller than the idle_time, the growth trend of

VOLUME 12, 2024

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

IEEE Access

the number of attack flow entries in the current cycle
compared to the previous cycle becomes more significant,
further deteriorating the stealthiness of the attack. Therefore,
by setting the attack cycle T slightly smaller than the
idle_time (such as T = 8 or closer to 10 seconds) and
adjusting the number of attack flows within a single attack
cycle, the stealthiness H of the attack can be maximized.

In the attack maintenance phase, the flow table has already
overflowed, and the controller starts to evict flow entries
based on eviction mechanisms. The value of the objective
function is closely related to the survival rate Py of the
attack flow f during flow entry eviction, and Py is defined
differently under different flow entry eviction mechanisms.
Therefore, we analyze each flow entry eviction mechanism
separately.

1) When FIFO (First-In-First-Out) is deployed, the con-
troller evicts flow entries based on their positions in the
flow table. The position of a flow entry corresponds to its
installation time, whereas flow entries installed earlier have
lower positions and are given higher priority for eviction.
Assuming the desired number of flow table evictions is A,
it can be inferred that flow entries with positions less than
) in the flow table will be evicted. Therefore, we define the
survival rate x; of flow entry f during each eviction as shown
in (6), where Ly represents the position index of flow f in
the flow table (starting from 0). Assuming the number of
batches of attack flows sent in a single attack cycle is d,
which represents the number of times the flow table overflows
within a single attack cycle, the survival rate Py of attack flow
entries within a single attack cycle can be defined as shown
in (7). It should be noted that d takes values in the range
L1, dppax], where dy,q = ﬁ and Tpgc, represents the time
spent by the application to send a single group of attack flows.
From (7), it can be observed that increasing the number of
batches d can increase the value of Pr. The maximum value
of the objective function is achieved when d = djgy -

0, Lr< A
— 6
Xt ’1’ A (©)
Z('l=1xi
=" (7

2) When Random is deployed, the controller randomly
selects flow entries for eviction. Thus the probability of
a single flow entry being evicted is 1/Cpgx, Where Crgx
is the total number of flow entries. The survival rate of
an attack flow during flow table eviction Py is defined as
shown in (8). Since Py remains constant, referring to (6),
it can be observed that increasing the number of attack
flows can increase the value of R. The maximum number of
attack flows that can be sent within a single attack cycle is
limited by the maximum flow transmission rate V,qy, where
Cyf™ = Vpax - T represents the maximum number of attack
flows that can be sent within a single attack cycle, considering
the constraint imposed by the application. The maximum

VOLUME 12, 2024

value of the objective function is achieved when Cyy = Cj™.

— Cmax -1 (8)
Cmax

3) When LRU (Least Recently Used) is deployed, the
flow entries with lower activity are preferentially evicted,
as referred to [25]. A flow entry’s activity corresponds to
the flow’s transmission rate. When the flow table overflows,
the flows with higher transmission rates are more likely
to survive, while those with lower transmission rates are
more likely to be evicted. Therefore, we define the average
transmission rate of attack flows vy; as shown in (9) and the
survival rate of an attack flow during flow table eviction Py
as shown in (10). In this equation, v represents the threshold
transmission rate for flow survival during flow entry eviction,
and g is a scaling factor with 8 > 1. For analysis purposes,
let’s consider B approaching infinity, which transforms Py
into Iy as shown in (11). Here, vy represents the transmission
rate of attack flow f. When v > {V’M jC:Ml, employing
a greedy agproach, the attack flows can occupy at most
Chnax — 2,2 vy > V flow entries. This is because flow
entries corresponding to flows with rates lower than v will
be immediately evicted. In this case, the maximum value

. . C,,mfzp_]\; vjv>\vz v i \Cu

of R is given by ——F=—"—. When v < {v’M}j_l, the
max -

attack flows can occupy exactly Cys flow entries. In this case,

max R = Cy;. Hence, the maximum value of the objective
function is achieved when vy; = V.

Py

X,
VM =]C—M 9
1
Pf=——— (10)
1+ e(—mm)p
1 - >
1f={’ =t an
0, v<r

Based on the above analysis, it can be inferred that attack-
ers can adopt different attack modes to achieve maximum
attack effect under different flow entry eviction mechanisms.
Consequently, attack flows exhibit distinct features under
different flow entry eviction mechanisms, making existing
methods ineffective in mitigating ALFO.

IV. ALFO-GUARD FRAMEWORK DESIGN

A. SYSTEM OVERVIEW

As shown in Fig. 3, the ALFO-Guard comprises three
components: the flow monitoring mechanism, the attack
detection mechanism, and the attack mitigation mechanism.
The overall process is as follows: Firstly, the controller
queries the information about flow entries and switch ports
for the attack detection mechanism (Step (D). Subsequently,
the controller receives and parses the information provided
by the switches, updating the dataset associated with each
switch based on the parsing results (Step @). Next, the attack
detection mechanism constructs a current-time graph model
for the switch based on the dataset (Step). Besides, Graph

48835

IEEE Access

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

Attack detection and mitigation module . = = = = = = = = -a
o (= N N ~
! ‘I " Attack detection mechanism \‘
l Switch O ;
1 information : : Graph anomaly Classification I
i i of flow entries
o repository . detection |
s I3 Construdti !
S onstruéting
] 1 Graph MoHels !
= [1 1
2 1 1 I
=2
o 1 1 1
= 1 1 1
g 1 1 [
= Pracess 1, 1 Attack mitigation mechanism [
= information I | 1
® for each switch | 1 { [Blacklist] 1
1]
BN s '
1 1 S e e e e e e e e e E e e e e e e e, e —m——
1 IE:A 1 l
l I
| 1 | Controlplang = = = = = = = Ve e m e e e e e e e e == - \
1 Flow 1 @Switch P ;
1 monitorin linformati
tortt = |ln oMY [Switch information collection = !
1 mechanism . - [
1 1 — 1
’ ' ”

FIGURE 3. The framework of ALFO-Guard.

embedding vectors are generated using Graph Convolutional
Networks (GCN) and attention mechanisms. The vectors are
then input into the pre-trained graph anomaly detection model
to detect anomalies (Step @). If anomalies are detected,
the flow entries classification model is triggered to identify
attack flow entries (Step ©)). Finally, the attack mitigation
mechanism is triggered to delete the attack flow entries and
add them to the blacklist (Step ©).

B. CONSTRUCTION OF GRAPH MODEL

To construct the current-time graph model, it is essential
to extract eight features from each flow entry, as shown in
Table 3. These features include duration time, received bytes,
received packets, average packet bytes, the coefficient of
variation of average packet bytes, average packet interval,
the coefficient of variation of average packet interval, and
transmission rate. It should be noted that apart from the
observed variations in features between attack flows and
normal flows (as shown in Fig. 4), there are additional
variations that depend on the specific attack modes, which
can affect the detection performance of flow feature-
based detection methods under different attack modes [14].

48836

®Send flow_mod
message

L

......

200 300 400 500
Duration Time (5)

(b) DT_V

nnnnnn
\\\\\\

(c) Packets_V

(d) V_API

FIGURE 4. Differences in features of normal flow and attack flow entries.

Therefore, when conducting attack detection, it is crucial
to consider the flow features and the structural information
among flow entries as a fundamental detection criterion.
To achieve this, we extract flow features to construct graph

VOLUME 12, 2024

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

IEEE Access

TABLE 3. Extracted flow entry features.

Feature Names

Description

Significance of Selection

DT (Duration Time)

Duration of Flow Entry Occupying Flow Table

The higher the value, the higher the likelihood that it is an attack flow

Bytes (Received Bytes)

Cumulative Received Bytes of the Flow Entry

The lower the value, the higher the likelihood that it is an attack flow

Packets (Received Packets)

Cumulative Matched Packets of the Flow Entry

The lower the value, the higher the likelihood that it is an attack flow

AB (Average Packet Bytes)

Average Packet Bytes of the Flow Entry Matching.
AB=Bytes/Packets (AB=0 if Packets=0)

Attackers often aim to minimize their attack costs by creating attack
packets that are as small as possible. Therefore, the lower the value
of the average packet size, the higher the likelihood that it is an attack
flow

BCV (The Coefficient of
Variation of Average Packet
Bytes)

Adding the newly calculated average packet bytes to
the sequence each time a data packet is matched by
the flow entry. The coefficient of variation of this
sequence represents the BCV

Attackers often employ techniques such as randomizing packet
lengths to evade detection. Relying solely on average packet size may
not be sufficient for effective detection. However, it is important to
note that attackers typically aim to minimize their attack costs, and
once an attack is initiated, they are unlikely to reconstruct attack
packets. Therefore, a lower BCV indicates a higher likelihood of
being an attack flow

API (Average Packet Inter-
val)

The average packet transmission interval for matching
flow entries.
API=DT/Packets (API=DT if Packets=0)

The closer the value is to the default idle timeout of the flow entry,
the higher the possibility that it is an attack flow

ICV (The Coefficient of
Variation of Average Packet
Interval)

Adding the newly calculated average interval to the
sequence each time a data packet is matched by the
flow entry. The coefficient of variation of this se-
quence represents the ICV

When it comes to attack traffic, the intervals between the transmission
of attack packets tend to be periodic. On the other hand, for normal
traffic, the packet intervals are typically random. Therefore, if the ICV
exhibits periodic patterns, it indicates a higher likelihood of being an
attack flow

V (Transmission Rate)

Received bytes per unit time of the flow entry.
V=Bytes/DT

The lower the value of the transmission rate, the higher the likelihood
that it is an attack flow

s_ip:port
244,253, 127. 211:2212
244,253, 127. 211:2231
244,253, 127. 211:2232
244, 253. 127. 211:2233

90. 218. 72. 95:10749
90. 218. 72. 95: 13695

nw_src nw_dst tp_src tp_dst duration bytes packets action
244.253.127. 211 10.0.0.2 2212 80 0 360 6 output:s2-eth3
244.253.127. 211 10.0.0. 1 2231 80 0 0 0 output: s2-eth?)
244, 2f 10.0.0.1 2232 80 1 0 0 output:s2-eth2
X 244. 10.0.0.1 2233 80 0 70 1 output:s2-eth2
2o 1 10.0.0.2 9809 1869 1 0 0 tput:s2-eth3
. .0.0.2 980 6 output:s2-eth:
. Table
d_ip:port 1. 10.0.0. 1 39924 1618 1 0 0 output:s2-eth2
10. 0. 0. 2:80 1. 177. 3. 10.0.0.1 50327 1618 0 0 0 output:s2-eth2
10.0.0. 1:80 90.218.72.95 10.0.0.1 9210 80 1 0 0 output :s2-eth?)
10.0.0.1:80 90.218.72.95 10.0.0.2 10749 80 1 0 0 output : s2-eth3|
10.0.0.1:80 90.218.72.95 10.0.0.1 13695 80 0 0 0 output:s2-eth?)
10. 0. 0. 2:1869
10.0.0.1:1618 -
X node | duration bytes packets
10.0.0.1:1618
0 0 360 6
10.0.0.1:80
1 0 0 0
10. 0. 0. 2:80
10.0.0. 1:80 2 ! 0 0
.0.0.1: Graph 3 0 70 1
— +
Model 4 1 0 0
5 1 0 0
6 0 0 0
7 1 0 0
8 1 0 0
9 0 0 0

FIGURE 5. The structure diagram of the current-time graph model.

models for the switches based on the granularity of flow entry
deployment by the controller.

The undirected graph Gt (Vy, Ey, Lg, Ly) represents
the graph model of switch S at time ¢. Here, V;, = {v
X (v)} denotes the set of flow entries, which includes all the
flow entries in the switch S at the current time. X(v)

[x1,x2,...,x8] represents the extracted feature vector of
each flow entry. E, = e;,1,j €V, represents the set of
edges, where ¢;; = (vi,v;)). Lg = {0, 1} represents the

set of graph labels. Ly {L(v),v € V;} represents
the set of node labels. Fig. 5 illustrates the process of
constructing the current-time graph model. When dealing
with different flows, the switch matches them to different

VOLUME 12, 2024

flow entries. Consequently, the current-time graph model
adds new nodes and stores its flow feature accordingly.
In Fig. 5, assuming there are ten flows, FlowTable represents
the flow aggregation process in a switch, while GraphModel
represents the process of graph model construction. The
corresponding analysis of these two processes reveals that
the number of flow entries in FlowTable is equal to the
number of nodes in GraphModel, and the information of
each flow entry in FlowTable corresponds to the information
of each node in GraphModel. Therefore, the current-time
graph model closely resembles the flow table of switches in
both information and structure, enabling it to detect attacks
effectively.

48837

IEEE Access

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

The construction process of the graph model is described
in Algorithm 1. As shown in lines 5-9, the algorithm collects
the flow table information from the switch at the current
time. Each flow entry is treated as a node, and the algorithm
reads the information of each flow entry to construct the node
feature matrix and edge index matrix, thereby generating the
current-time graph model. The construction method for the
node feature matrix is presented in lines 10-21. Based on
the information collected at the current time, the algorithm
extracts the eight features for each flow entry and generates
the feature matrix. Then, the algorithm normalizes the feature
matrix by scaling each column using the minimum and
maximum values, resulting in the node feature matrix of
the current-time graph model. The construction method for
the edge index matrix is shown in lines 23-35. Specifically,
utilizing the information at the current time, the algorithm
identifies flow entries with the same source IP address.
Subsequently, it creates undirected edges for all nodes with
the same source IP address and stores them in the edge index
matrix.

C. ATTACK DETECTION MECHANISM

The attack detection mechanism can be divided into three
stages: node embedding, graph embedding, and attack
detection. Next, we will provide a detailed description of each
stage.

1) NODE EMBEDDING STAGE

In this study, the graph convolutional networks (GCN) [39]
are utilized to encode each node’s neighborhood features
and structural properties in the graph model, enabling node
embedding. The aggregation function is defined as shown
in (12). Here, N (n) represents the set of first-order neighbors
of node n, including node # itself. d,, is equal to the degree
of node n plus 1. W RP'*D"™ denotes the weight matrix
associated with the 1th GCN layer. 50 e RO represents
the bias. The activation function f(-) is applied, such as
ReLU(x) = max(0, x).

> L WO 0 (12)
meN (n) d"dm

conv(up) = f

2) GRAPH EMBEDDING STAGE

Firstly, based on the node feature matrix generated in the
node embedding stage, we compute the weighted average
of each node on each feature and generate a graph context
vector through a non-linear transformation, as shown in (13).
The graph context vector provides information about the
structure and features of the graph. Next, using the graph
context vector, we calculate attention weights for each node
and apply the sigmoid function to ensure that the attention
weights are within a range. Nodes that are similar to the
global context will generate higher attention weights. Finally,
we perform a weighted sum of the node feature matrix to

48838

Algorithm 1 Graph Model Construction

Require: The information about flow entries collected at the current time f.
Ensure: Current-time graph model Gt.

1: Initialize the network graph Gt
2: Initialize the flow entry feature list x
3: Initialize the dictionary ip_dict
4: Initialize the list of edges of the graph edge_index
5: function main(f)
6: Gt.x < get_node_feature(f)
7: Gt .edge_index < get_edge_index(f)
8: Save Gt
9: end function
10: function get_node_feature(f)
11: for p in Switch flow table information f do
12: duration, bytes, bytes_list, pakets, interval_list < Parse the
flow table information p
13: average_bytes < bytes divided by packets
14: average_time_interval <— duration divided by packets
15: rate <— bytes divided by duration
16: bytes_cv < The coefficient of variation of bytes_list
17: interval _cv < The coefficient of variation of interval_list
Encapsulate data such as duration, bytes, packets,
18: average_bytes, rate, average_time_interval, bytes_cv,
interval_cv to obtain node_features.
19: Add node_features to the flow entry feature list x
20: end for
21: Normalize the list x of flow entry feature by column
22: Save the list x of flow entry feature

23: end function

24: function get_edge_index(f)

25: for p in Switch flow table information f do

26: The source node ip src is obtained by parsing the flow entry p

27: if src not in ip_dict then

28: Initialize a list as the key of the src dictionary’s value

29: end if

30: Binds the index of the current flow entry to the key-value pair

31: end for

32: for src in ip_dict do

33: for i in ip_dict[src] do

34 Other flow entries with the same source ip are obtained,

' according to the index 7 of the current src.

The indexes of flow entries with the same source ip are

35: formed as edges and stored in edge set of the graph
edge_index

36: end for

37: end for

38: Saves a list of edge sets of the graph edge_index
39: end function

obtain the graph embedding vector, as shown in (14). Where
N represents the number of nodes in the graph. u,, € R is the
embedding vector of node n, where D is the dimensionality
of the embedding. W € RP*P is a learnable weight matrix.
o (-) denotes the sigmoid function.

N
1
¢ = tanh(; u W) (13)

N
h= Z LtnTU(MnC)
n=1

N 1 N
_ T _
- ;u o (uy tanh(N mzz‘i U W)) (14)

VOLUME 12, 2024

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

IEEE Access

Olnput layer neurons

FIGURE 6. Two-layer fully connected neural network.

' Hidden layer neurons . Output layer neurons

3) ATTACK DETECTION STAGE

In this stage, the graph embedding vectors generated in the
graph embedding stage are used for classification, aiming to
determine whether an attack has occurred at the current time.
Specifically, we utilize cross-entropy as the loss function,
as shown in (15). Here, p(x;) represents the predicted value
at the current time ¢, and g(x;) represents the ground truth at
the current time ¢.

n
CELoss = — »_ p(x;) e log q(x;) (15)

i=1
If an attack occurs at the current time, we feed the node
embedding matrix generated in the node embedding stage
into a two-layer fully connected neural network to classify
the flow entries. Based on the classification results, we can
identify attack flow entries, as illustrated in Fig. 6. The two-
layer fully connected neural network in Fig. 6 employs a non-
linear activation function to enhance the expressive power
of the model and models the relationships between nodes

through fully connected layers.

D. ATTACK MITIGATION MECHANISM

The attack mitigation mechanism primarily consists of two
operations: deleting attack flow entries and adding them
to a blacklist. Upon detecting an attack, the mitigation
module deletes each identified attack flow entry by sending
OFPFlowMod messages to the switches. However, simply
deleting the attack flow entries does not eliminate the effect of
the attack, as the attack flows can continue to consume flow
entries. Therefore, while deleting the attack flow entries, the
mitigation module also keeps track of the number of times
each flow entry is deleted within a certain period. If the
deletion count exceeds a threshold, the flow entry is added
to the blacklist to block the attack source.

V. EXPERIMENTS AND ANALYSIS

This paper introduces a novel adaptive low-rate flow table
overflow attack (ALFO). To counter this attack, we propose
a detection and mitigation framework called ALFO-Guard.
In this section, we validate the effectiveness of ALFO,
the effectiveness of ALFO-Guard, and the performance

VOLUME 12, 2024

il

h4

FIGURE 7. Experimental topology.

TABLE 4. Number of normal and attack flows in dataset.

Eviction Normal Flow Attack Flow Total Flow
Mechanism
FIFO 1202097 2773613 3975710
Random 1159647 2951133 4110780
LRU 1095370 2723557 3818927

overhead through experiments. Code and data are available
at https://github.com/446571357/ALFO

A. EXPERIMENTAL ENVIRONMENT

In our experimental setup, we utilize Mininet and Ryu
controllers to simulate the SDN environment within a virtual
machine. The virtual machine operates on Ubuntu 20.04 with
a 4-core CPU and 8 GB of memory. The versions of Mininet
and Ryu controller are 2.3.1b1l and 4.3.4, respectively. The
software switch used is OpenvSwitch. On the Ryu controller,
we run a custom controller program that implements the
functionality of installing flow entries based on IP and port
matching. The matching fields include protocol, port_src,
port_dst, ip_src, and ip_dst. Since the proposed method in
this paper relies solely on the flow features of a single switch
and is independent of the network topology, we adopt the
topology from reference [21] as our experimental topology,
as depicted in Fig. 7.

In this paper, the capacity of the flow table is set to 1500,
with a default idle timeout of 10 seconds [24]. To generate
background traffic, we use the Tcpreplay tool [40] on host h8
to replay the IMC-10 data center network trace [41] dataset.
For generating the attack traffic, we implement an attack
program based on scapy [42] and launch the attack on host
h1. Specifically, we simulate several groups of ALFO attacks
under different flow entry eviction mechanisms: FIFO, Ran-
dom, and LRU. We collect information about the flow entries
and port status of the targeted switch S2 every second. Each
group of attacks lasts for 700 seconds, with the attack initiated
at the 150th second. The presence of attack flow entries in
the flow table is used to set the graph labels and node labels
are assigned based on whether the source IP is the attacking
IP. The specific information of dataset collection is shown in
Table 4, with a training set to a testing set ratio of 7:3.

B. VALIDATION OF THE EFFECTIVENESS OF ALFO

Firstly, we validate the proposed attack model by examining
the effect of ALFO on the number of normal flow entries
under different flow entry eviction mechanisms. (1) For the

48839

IEEE Access

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

Number of Normal Flow Entry
Number of Normal Flow Entry

e

Number of Normal Flow Entry

560 580 600 620 640 660 680 700 560 580 600

Time(s)

(a) FIFO

FIGURE 8. Attack effect verification under different parameters.

FIFO eviction mechanism, the attack parameter is the number
of batches sent in a single attack cycle. We set it to be 1, 10,
and 20. (2) For the Random eviction mechanism, the attack
parameter is the number of attack flows. We set it to be 1500,
1875, and 2250. (3) For the LRU eviction mechanism, the
attack parameter is the attack cycle. We set it to be 8 second,
5 second, and 1 second.

Specifically, we collect the number of normal flow entries
after launching the attack for 400 second, which serves as the
evaluation metric for Section III-C. The results are shown in
Fig. 8. Under each flow entry eviction mechanism, regardless
of the chosen attack parameters, the number of normal flow
entries of the target switch is relatively small compared with
the case of no attack, indicating that the attack decreases the
forwarding efficiency of normal flows.

Furthermore, we observe that in the FIFO eviction
mechanism (Fig. 8(a)), the attack has a more pronounced
effect with a higher number of batches sent within a single
cycle. In the Random eviction mechanism (Fig. 8(b)), the
attack has a more pronounced effect with a higher number
of attack flows. In the LRU eviction mechanism (Fig. 8(c)),
the attack has a more pronounced effect with a shorter attack
cycle. These observations align with the results derived in
Section III-C.

Next, to demonstrate the effectiveness of ALFO, we com-
pare it with two representative low-rate flow table overflow
attack methods, Slow-TCAM [18] and LOFT [19]. Based
on the results of the previous experiments, we set the attack
parameters for ALFO as follows: For the FIFO eviction
mechanism, the number of batches sent by ALFO within a
single cycle is set to 20. For the Random eviction mechanism,
the number of attack flows for ALFO is set to 2250. For the
LRU eviction mechanism, the attack cycle for ALFO is set to
1 second.

To compare the effectiveness of the three attacks under
different flow entry eviction mechanisms, we collected the
number of flow entries and normal flow entries in the switch
over time before and after the attacks. Additionally, we used
D-ITG on host h2 to send 50 new flows, with each flow
transmitting 1 MB of data. This operation was repeated ten
times to calculate the average round-trip time (RTT) from
sending to receiving a response for all flows, evaluating the
effect of different attacks on the delay of normal applications.
The results are shown in Figs. 9 to 11.

48840

(b) Random

640 660 680 700 560 580 600 620 640 660 680 700

Time(s) Time(s)

(¢) LRU

Figs. 9 and 10 demonstrate that under each flow entry
eviction mechanism, all three attacks decrease the number
of normal flow entries in the target switch and cause the
flow table to reach its capacity limit compared to the typical
scenario. Fig. 11 shows that all three attacks significantly
increase the average RTT of new flows. These observations
indicate that the attacks effectively degrade the quality of
service for normal applications. Furthermore, compared to
the attacks Slow-TCAM and LOFT, which do not consider
flow entry eviction mechanisms, ALFO has a higher effect
on the number of flow entries occupied by expected flows
and significantly increases the forwarding delay of new
flows. This suggests that ALFO outperforms Slow-TCAM
and LOFT in terms of attack effectiveness.

C. VALIDATION OF ATTACK DETECTION MECHANISM
We utilize the following metrics to assess the effectiveness of
detection methods:

Accuracy (Acc): The proportion of correctly classified
samples. The calculation formula is defined as shown in (16).

TP + TN
ACC = (16)
TP + TN + FP + FN
False Positive Rate (FPR): The proportion of misclassified
samples among all normal samples. The calculation formula

is defined as shown in (17).

_ FpP
- FP+TN
False Negative Rate (FNR): The proportion of misclas-

sified samples among all attack samples. The calculation
formula is defined as shown in (18).

_IN
" FN+TP

F1-score: The harmonic mean of precision and recall. The
calculation formula is defined as shown in (19).

FPR (17)

FNR (18)

2 x Precision x Recall
F1 - Score = — (19)
Precision x Recall
Precision: The proportion of true attack samples among
samples classified as attack. The calculation formula is

defined as shown in (20).

- TP
Precision = —— (20)
TP + FP

VOLUME 12, 2024

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

IEEE Access

1400

1200

8
8
s

1000

2
8
8

Number of Flow Entry
@
8
8
a
8
8

Number of Flow Entry
™
g
8

N
8
s
IS
&
3

—— Normal
Slow-TCAM

—— LOFT

—— ALFO

3
8
N
3
8

o
o

1400

1200

B
8
s

Number of Flow Entry
©
8
s

N
8
s

= Normal
Slow-TCAM

— LOFT

— ALFO

—— Normal
Slow-TCAM

—— LOFT

—— ALFO

3
s

o

0 100 200 300 400 500 600 700 0 100 200
Timel(s)

(a) FIFO

(b) Random

300 400 500 600 700 0 100 200 300 400 500 600 700

Time(s) Time(s)

(c) LRU

FIGURE 9. Changes in the number of flow entries for different attack methods over time.

Slow-TCAM
- LOFT
- ALFO

700

3
g I
3 S

®
&

a
g

2
&

Number of Normal Flow Entry
Y
g
IS
&

Number of Normal Flow Entry

S
N
3

| j i i
8
20
0
550 600 650

°

J I I 0 j I i
550 600 650 550 600 650

Slow-TCAM 100
= LOFT
- ALFO

Slow-TCAM
= LOFT
- ALFO

2 2 ©
& 3 8

Number of Normal Flow Entry

3

Time(s)

(a) FIFO

Timel(s)

(b) Random

Time(s)

(c) LRU

FIGURE 10. Comparison of the number of normal flow entries under different attack methods (t = 550, 600, 650, 700s).

Average RTT(s)
= N N
& 3 &
Average RTT(s)

5

Normal Slow-TCAM

(a) FIFO

Normal Slow-TCAM

(b) Random

Average RTT(s)

Normal Slow-TCAM

(¢) LRU

FIGURE 11. Comparison of average RTT under different attack methods.

Recall: The proportion of correctly classified attack
samples among all attack samples. The calculation formula
is defined as shown in (21).

TP
TN 21
TP +FN

To validate the detection performance of ALFO-Guard,
this study trained the graph anomaly detection model and
flow entries classification model under different flow entry
eviction mechanisms. The detection results are shown in
Tables 5 to 8. In Table 5, regardless of the flow entry eviction
mechanism, the graph anomaly detection model achieves
a 99% accuracy and a near-zero FNR, indicating its high
accuracy in identifying attack situations. The graph anomaly
detection model aims to determine whether the current
situation is under attack. We aim to improve the sensitivity of
the model to attack scenarios rather than misclassifying attack
situations as usual. Therefore, FNR is a crucial detection
metric.

Recall =

VOLUME 12, 2024

As shown in Tables 6 to 8, the flow entries classification
model exhibits an accuracy and F1 score of around 99%,
indicating its accurate identification of attack flow entries.
In terms of false positive rates, it can be observed that the
flow entries classification model has a low misclassification
rate for normal flow entries. Since the identified attack flow
entries by the flow entries classification model will be deleted
and blocked by the attack mitigation mechanism, a lower
misclassification rate for normal flow entries implies minimal
influence on normal flows. Furthermore, regardless of the
flow entry eviction mechanism, the flow entries classification
model shows minimal differences in its performance metrics.
This indicates that the proposed method in this study is less
susceptible to environmental influences and possesses high
robustness.

To evaluate the capability of ALFO-Guard in detecting
ALFO, we compare its detection performance with LOFT-
Guard [23] and FTMaster [24]. Specifically, this study trains

48841

IEEE Access

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

1400

1200

8
8
3

Number of Flow Entry
®
8
8

W w/o ALFO-Guard
W with ALFO-Guard

150

200 250 300 350 400 450
Time(s)

(a) FIFO

Number of Flow Entry

1400

1200

1000

®
8
8

@
8
s

2
8
3

N
S
8

°

W w/o ALFO-Guard
W with ALFO-Guard

150 200 250 300 350
Time(s)

(b) Random

FIGURE 12. Comparison of flow entry numbers with and without ALFO-Guard.

TABLE 5. Graph anomaly detection model.

1400

1200

1000

Number of Flow Entry
2 =
g 8
g8 8

I
8
3

3
8

°

W w/o ALFO-Guard
W with ALFO-Guard

150

200 250

300 350
Time(s)

(¢) LRU

TABLE 7. Flow entries classification model (Random).

400 450

Acc FPR FNR F1-score Acc FPR FNR Fl-score
FIFO 99.619% 1.869% 0.0% 99.761% LOFTGuard 87.812% 39.451% 1.476% 92.068%
Random 99.047% 4.386% 0.0% 99.395% FTMaster 95.179% 5.529% 4.543% 96.602%
LRU 99.619% 0.897% 0.242% 99.758% ALFO-Guard 99.338% 0.8% 0.609% 99.54%
TABLE 6. Flow entries classification model (FIFO).
TABLE 8. Flow entries classification model (LRU).
Acc FPR FNR F1-score
LOFTGuard | 85.124% | 42.844% | 2.773% | 90.122% Acc FPR FNR Fl-score
FTMaster 93.841% 6.69% 5.9299% 95.52% LOFTGuard 97.847% 4.812% 1.084% 98.496%
ALFO-Guard | 98.993% | 0.651% 1.161% | 99.376% FTMaster 98.924% 0.77% 1.2% 99.242%
ALFO-Guard 99.084% 0.928% 0911% 99.357%

the detection models using the same dataset under different
flow entry eviction mechanisms, and the detection results
are shown in Tables 6 to 8. LOFTGuard and FTMaster
exhibit significant differences in their detection results under
different flow entry eviction mechanisms. This suggests that
detection methods that overly rely on the features of attack
flows are more susceptible to the influence of flow entry
eviction mechanisms, resulting in lower robustness when
dealing with ALFO as proposed in our study. On the other
hand, ALFO-Guard constructs a current-time graph model
based on the current moment, which not only collects flow
entry information but also captures structural information
embedded in flow entries. This captured structural infor-
mation is not affected by flow entry eviction mechanisms.
Therefore, regardless of the flow entry eviction mechanism,
ALFO-Guard achieves better detection performance than
other models in various metrics.

D. VALIDATION OF ATTACK MITIGATION MECHANISM
The attack was initiated at 150 seconds, and approximately
200 seconds later, the flow table started to overflow in
the absence of ALFO-Guard deployment. To verify the
mitigation performance of ALFO-Guard, this study deployed
the number of flow entries and attack flow entries in the
flow table of targeted switches over time under different flow
entry eviction mechanisms with and without ALFO-Guard,
as shown in Figs. 12 and 13.

In Fig. 12, without the deployment of ALFO-Guard, the
utilization of the switch’s flow table significantly increased
shortly after the attack initiation. After a certain period,
the number of flow entries reached the maximum limit of

48842

the switch’s flow table, indicating overflow of the flow
table. However, in the case of ALFO-Guard deployment,
the number of flow entries remained lower, indicating that
ALFO-Guard can effectively mitigate the occupancy of the
switch’s flow table by the attack flows.

In Fig. 13, without the deployment of ALFO-Guard, the
number of attack flow entries gradually increased, eventually
reaching 1200 entries, occupying 80% of the flow table,
greatly impacting the forwarding efficiency of normal flows.
On the other hand, with ALFO-Guard deployed, the number
of attack flow entries only existed in the flow table during
the initial stages of the attack. After a certain period,
their count approached zero. This indicates that the flow
entries classification model can identify the attack flow
entries promptly, and the attack mitigation mechanism can
effectively delete and block the identified attack flow entries,
restoring the flow table to its normal state.

To evaluate the mitigation capabilities of ALFO-Guard
against ALFO, we compared the changes over time in the
number of flow entries and the number of attack flow entries
in the flow table after deploying ALFO-Guard, LOFTGuard,
and FTMaster. The results are shown in Fig. 14. From
the perspective of the number of flow entries, LOFTGuard
exhibits significant fluctuations and has some impact on the
number of normal flow entries. Besides, both ALFO-Guard
and FTMaster maintain the number of flow entries at a normal
level. This indicates that LOFTGuard and FTMaster methods
can prevent flow table overflow and mitigate the effect of
ALFO to some extent, which aligns with the detection results
shown in Tables 5 to 7.

VOLUME 12, 2024

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks I E E EACCGSS "

= w/o ALFO-Guard 1200 | W wio ALFO-Guard W /o ALFO-Guard
EEm with ALFO-Guard W with ALFO-Guard W with ALFO-Guard
1200 1200
1000
z z z
£ 1000 £ £ 1000
§ § §
z 2 800 z
2 800 2 2 800
¥ 3 ¥
3 3 3
% 600 g o 2 o0
5 s 5
2 8 400 5
£ 400 2 £ 400
£ £ £
2 2 2
200 200 200
0 0 0
150 200 250 300 350 400 450 150 200 250 300 35 400 450 150 200 250 300 350 400 450
Time(s) Time(s) Time(s)
(a) FIFO (b) Random (¢) LRU

FIGURE 13. Comparison of attack flow entry numbers with and without ALFO-Guard.

W w/o LOFTGuard flow W w/o LOFTGuard flow W w/o LOFTGuard flow
1400 { WM with LOFTGuard flow 1400 { WEM with LOFTGuard flow 1400 { WM with LOFTGuard flow
with LOFTGuard attack flow with LOFTGuard attack flow with LOFTGuard attack flow
1200 1200 1200
F~4 4 g
£ 1000 £ 1000 £ 1000
g 3 &
3 3 3
2 800 2 800 2 800
s s k3
2 600 $ 600 2 600
£ B E
E , £
= 400 = a00 = 400
200 200 200
o o o
150 200 250 300 350 400 450 150 200 250 300 350 400 450 150 200 250 300 350 400 450
Time(s) Time(s) Time(s)
(a) LOFTGuard-FIFO (b) LOFTGuard-Random (c) LOFTGuard-LRU
W w/o FTMaster flow W w/o FTMaster flow W w/o FTMaster flow
1400 1 WM with FTMaster flow 1400 { EEE with FTMaster flow. 1400 { WM with FTMaster flow
with FTMaster attack flow with FTMaster attack flow with FTMaster attack flow
1200 1200 1200
- B =4
£ 1000 £ 1000 £ 1000
g H H
2z z z
2 800 2 800 2 800
s k3 s
3 600 & 600 2 600
5 5 5
= 400 = 400 = 400
200 200 200
[o [
150 200 250 300 350 400 450 150 200 250 300 350 400 450 150 200 250 300 350 400 450
Time(s) Time(s) Time(s)
(d) FTMaster-FIFO (e) FTMaster-Random (f) FTMaster-LRU
W w/o ALFO-Guard flow W w/o ALFO-Guard flow N w/o ALFO-Guard flow
1400 { MM with ALFO-Guard flow 1400 { WEM with ALFO-Guard flow 1400 { WM with ALFO-Guard flow
with ALFO-Guard attack flow ‘with ALFO-Guard attack flow with ALFO-Guard attack flow
1200 1200 1200
E E 4
£ 1000 £ 1000 £ 1000
& H &
g z z
800 2 800 2 800
s s s
3 600 % 600 g 600
E E £
H £ £
= 400 = 400 = 400
200 200 200
[o 0
150 200 250 300 350 400 450 150 200 250 300 350 400 450 150 200 250 300 350 400 450
Time(s) Time(s) Time(s)
(g) ALFOGuard-FIFO (h) ALFOGuard-Random (i) ALFOGuard-LRU

FIGURE 14. Comparison of flow entry numbers with different method.

Regarding the number of attack flow entries, LOFTGuard
shows significant fluctuations, and FTMaster still has a cer-
tain number of attack flow entries. Additionally, LOFTGuard
and FTMaster yield significantly different results under
different flow entry eviction mechanisms, which is consistent
with the detection results shown in Tables 5 to 7. In contrast
to LOFTGuard and FTMaster, the number of attack flow
entries for ALFO-Guard exists only during the initial stages

VOLUME 12, 2024

of the attack. After a certain period, their count approaches
zero, regardless of the flow entry eviction mechanism.
This indicates that ALFO-Guard is less susceptible to
environmental influences and more robust. Since ALFO-
Guard has the lowest number of attack flow entries and
provides a consistently stable mitigation effect under different
flow entry eviction mechanisms, it demonstrates superior
mitigation effectiveness compared to other methods.

48843

IEEE Access

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

Average (with - w/o) = 5.18727

CPU Utilization (%)
(=) o ~ ~ © ©
o w o w o v
@
l o

w
o

o
o

o

IS
o

w/o ALFO-Guard with ALFO-Guard

(a) CPU Utilization

FIGURE 15. Performance overhead of ALFO-Guard.

E. PERFORMANCE OVERHEAD

We evaluated the CPU utilization and memory usage for
ALFO-Guard, as shown in Fig. 15. The figure shows that
compared to the scenario without ALFO-Guard deployment,
the average CPU utilization only increases by approximately
5.19% when ALFO-Guard is deployed. However, the average
memory usage increases by approximately 206 MB after
deploying ALFO-Guard, suggesting the need for further
reduction.

VI. CONCLUSION
This study has identified ALFO as a significant threat to
the security of SDN. ALFO considers the influence of
flow entry eviction mechanisms on attack effectiveness and
adjusts the attack modes under different flow entry eviction
mechanisms, thereby amplifying the effect of an attack.
To defend against this attack, we designed the detection
and mitigation framework ALFO-Guard. It extracts flow
features from flow entries information in the switch and
aggregates them into a current-time graph model. Then,
combining graph neural networks, it performs graph anomaly
detection and flow entry classification to identify attack flow
entries. Finally, the attack can be eliminated by deleting the
identified attack flow entries and blocking the attack flows.
The effectiveness of ALFO and ALFO-Guard is validated
through extensive experiments, and the experimental results
demonstrate that ALFO-Guard can effectively defend against
ALFO under different flow entry eviction mechanisms.
However, ALFO-Guard does have certain limitations.
In future work, the focus will be on reducing the system
overhead of ALFO-Guard and deploying it in real-world
environments. Additionally, there are plans to explore and
discuss more attack scenarios to enhance the applicability of
ALFO-Guard against other types of attacks. Simultaneously,
integrating data plane programmable technologies, such as
P4, to optimize switches is a worthwhile research direction.
For instance, by writing custom flow table operations,
switches can perform real-time monitoring and analysis of

48844

Average (with - w/o) = 205.93895

—— w/o ALFO-Guard
7100 A —— with ALFO-Guard
7050 A
o
2
GJ
2 7000 A
&
o)
fl
o
5 6950
=
6900 A
—_
0 100 200 300 400 500 600
Time(s)

(b) Memory Usage

network flows, enabling faster matching and filtering of
attack traffic to ensure the availability of network services.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their helpful comments.

REFERENCES

[1] N. McKeown, “Software-defined networking,” INFOCOM Keynote Talk,
vol. 17, no. 2, pp. 30-32, 2009.

[2] D. Kreutz, . M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, ‘“Software-defined networking: A
comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp.14-76,
Jan. 2015.

[3] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in
software defined networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 623-654, 1st Quart., 2016.

[4] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras,
and G. Gu, “Flow wars: Systemizing the attack surface and defenses
in software-defined networks,” IEEE/ACM Trans. Netw., vol. 25, no. 6,
pp. 3514-3530, Dec. 2017.

[5] T.Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A survey
on the security of stateful SDN data planes,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1701-1725, 3rd Quart., 2017.

[6] Y. Tzang, H. Chang, and C. Tzang, “Enhancing the performance
and security against media-access-control table overflow vulnerability
attacks,” Secur. Commun. Netw., vol. 8, no. 9, pp. 1780-1793, Jun. 2015.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69-74, Mar. 2008.

[8] X.Shengxu, X. Changyou, Z. Guomin, S. Lihua, and H. Guyu, “Survey of
openflow switch flow table overflow mitigation techniques,” J. Comput.
Res. Develop., vol. 58, no. 3, pp. 586-603, 2021.

[9] R. Mohammadi, M. Conti, C. Lal, and S. C. Kulhari, “SYN-guard:
An effective counter for SYN flooding attack in software-defined
networking,” Int. J. Commun. Syst., vol. 32, no. 17, p. e4061, Nov. 2019.

[10] M. Zhang, J. Bi, J. Bai, Z. Dong, and Z. Li, “FTGuard: A priority-aware
strategy against the flow table overflow attack in SDN,” in Proc.
SIGCOMM Posters Demos, Los Angeles, CA, USA, Aug. 2017,
pp. 141-143, doi: 10.1145/3123878.3132015.

[11] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite cacheflow
in software-defined networks,” in Proc. 3rd Workshop Hot Topics Softw.
Defined Netw., 2014, pp. 175-180.

[12] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, *“Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in Proc.
Symp. SDN Res., 2016, pp. 1-12.

VOLUME 12, 2024

http://dx.doi.org/10.1145/3123878.3132015

Y. Zeng et al.: Research on Detection and Mitigation Methods of Adaptive Flow Table Overflow Attacks

IEEE Access

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

S. Xie, C. Xing, G. Zhang, and J. Zhao, ‘“Research on table overflow
Ldos attack detection and defense method in software defined networks,”
in Big Data and Securit (Communications in Computer and Information
Science), vol. 1210, Y. Tian, T. Ma, and M. Khan, Eds. Singapore: Springer,
2020, doi: 10.1007/978-981-15-7530-3_7.

S. Y. Khamaiseh, I. Alsmadi, and A. Al-Alaj, “Deceiving machine
learning-based saturation attack detection systems in SDN,” in Proc. [EEE
Conf. Netw. Function Virtualization Softw. Defined Netw. (NFV-SDN),
Nov. 2020, pp. 44-50.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61-80, Jan. 2008.

W. Jiang, “Graph-based deep learning for communication networks:
A survey,” Comput. Commun., vol. 185, pp. 40-54, Mar. 2022.

J. Leng, Y. Zhou, J. Zhang, and C. Hu, “An inference attack model for
flow table capacity and usage: Exploiting the vulnerability of flow table
overflow in software-defined network,” 2015, arXiv:1504.03095.

T. A. Pascoal, Y. G. Dantas, I. E. Fonseca, and V. Nigam, ““Slow TCAM
exhaustion DDoS attack,” in ICT Systems Security and Privacy Protection:
32nd IFIP TC 11 International Conference, SEC 2017, Rome, Italy, May
29-31, 2017, Proceedings 32. Springer, 2017, pp. 17-31, doi: 10.1007/978-
3-319-58469-0_2.

J. Cao, M. Xu, Q. Li, K. Sun, Y. Yang, and J. Zheng, “Disrupting SDN
via the data plane: A low-rate flow table overflow attack,” in Security
and Privacy in Communication Networks: 13th International Conference,
SecureComm 2017, Niagara Falls, ON, Canada, October 22-25, 2017,
Proceedings 13. Springer, pp. 356-376, doi: 10.1007/978-3-319-78813-
5_18.

W. Zhijun, X. Qing, W. Jingjie, Y. Meng, and L. Liang, “Low-rate
DDoS attack detection based on factorization machine in software defined
network,” IEEE Access, vol. 8, pp. 17404-17418, 2020.

S. Xie, C. Xing, G. Zhang, and J. Zhao, “A table overflow LDoS attack
defending mechanism in software-defined networks,” Secur. Commun.
Netw., vol. 2021, pp. 1-16, Jan. 2021.

C. Xingshu, H. Qiang, W. Yitong, G. Long, and Z. Yi, “Research
on low-rate DDoS attack of SDN network in cloud environment,” J.
Commun./Tongxin Xuebao, vol. 40, no. 6, pp. 210-222, 2019.

J. Cao, M. Xu, Q. Li, K. Sun, and Y. Yang, “The attack: Overflowing
SDN flow tables at a low rate,” IEEE/ACM Trans. Netw., vol. 31, no. 3,
pp. 1416-1431, Jun. 2023.

D. Tang, C. Gao, W. Liang, J. Zhang, and K. Li, “FTMaster:
A detection and mitigation system of low-rate flow table overflow
attacks via SDN,” IEEE Trans. Netw. Service Manag., vol. 20, no. 4,
pp. 5073-5084, Dec. 2023.

Y. Liu, Y. Wang, and H. Feng, “POAGuard: A defense mechanism against
preemptive table overflow attack in software-defined networks,” IEEE
Access, vol. 11, pp. 123659-123676, 2023.

M. Zhang, J. Bi, J. Bai, and G. Li, “FloodShield: Securing the SDN
infrastructure against denial-of-service attacks,” in Proc. 17th IEEE Int.
Conf. Trust, Secur. Privacy Comput. Commun./12th IEEE Int. Conf. Big
Data Sci. Eng. (TrustCom/BigDataSE), Aug. 2018, pp. 687-698.

S. Gao, Z. Peng, B. Xiao, A. Hu, Y. Song, and K. Ren, “Detection
and mitigation of DoS attacks in software defined networks,” IEEE/ACM
Trans. Netw., vol. 28, no. 3, pp. 1419-1433, Jun. 2020.

Z. Liu, Y. He, W. Wang, and B. Zhang, “DDoS attack detection scheme
based on entropy and PSO-BP neural network in SDN,” China Commun.,
vol. 16, no. 7, pp. 144-155, Jul. 2019.

S. Khamaiseh, E. Serra, and D. Xu, “VSwitchGuard: Defending OpenFlow
switches against saturation attacks,” in Proc. IEEE 44th Annu. Comput.,
Softw., Appl. Conf. (COMPSAC), Jul. 2020, pp. 851-860.

A. Ahalawat, K. S. Babu, A. K. Turuk, and S. Patel, ““A low-rate DDoS
detection and mitigation for SDN using Renyi entropy with packet drop,”
J. Inf. Secur. Appl., vol. 68, Aug. 2022, Art. no. 103212.

K. Hong, Y. Kim, H. Choi, and J. Park, “SDN-assisted slow HTTP DDoS
attack defense method,” IEEE Commun. Lett., vol. 22, no. 4, pp. 688-691,
Apr. 2018.

R. Xie, M. Xu, J. Cao, and Q. Li, “Softguard: Defend against the low-rate
tep attack in SDN,” in Proc. IEEE Int. Conf. Commun. (ICC), Oct. 2019,
pp. 1-6.

L. Zhou, M. Liao, C. Yuan, and H. Zhang, “Low-rate DDoS attack
detection using expectation of packet size,” Secur. Commun. Netw.,
vol. 2017, pp. 1-14, Jan. 2017.

VOLUME 12, 2024

(34]

(35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

D. Tang, Y. Yan, S. Zhang, J. Chen, and Z. Qin, ‘‘Performance and features:
Mitigating the low-rate TCP-targeted DoS attack via SDN,” IEEE J. Sel.
Areas Commun., vol. 40, no. 1, pp. 428-444, Jan. 2022.

L. Xiangju, L. Xiaohao, F. Xianjin, and S. Linsong, ‘“‘Low-rate denial-
of-service attack detection method under software defined network
environment,” J. Comput. Appl., vol. 42, no. 4, p. 1301, 2022.

D. Tang, X. Wang, Y. Yan, D. Zhang, and H. Zhao, “ADMS: An online
attack detection and mitigation system for LDoS attacks via SDN,”
Comput. Commun., vol. 181, pp. 454-471, Jan. 2022.

M. Yu, T. Xie, T. He, P. McDaniel, and Q. K. Burke, “Flow table security
in SDN: Adversarial reconnaissance and intelligent attacks,” IEEE/ACM
Trans. Netw., vol. 29, no. 6, pp. 2793-2806, Dec. 2021.

Y. Zhou, K. Chen, J. Zhang, J. Leng, and Y. Tang, “Exploiting the
vulnerability of flow table overflow in software-defined network: Attack
model, evaluation, and defense,” Secur. Commun. Netw., vol. 2018,
pp. 1-15, Jan. 2018.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.
Tcpreplay. Accessed: Nov. 18, 2023.
https://tcpreplay.appneta.com/

T. Benson. Data Set for IMC 2010 Data Center Measurement.
Accessed: Nov. 18, 2023. [Online]. Available: https://pages.cs.
wisc.edu/tbenson/IMC10_Data.html

Scapy. Accessed: Nov. 18, 2023. [Online]. Available: https://scapy.net/

[Online]. Available:

YING ZENG received the B.S. degree from
the Institute of Information Technology, Guilin
University of Electronic Technology (GUET),
China, in June 2020, where she is currently
pursuing the master’s degree with the School of
Computer Science and Information Security. Her
current research interests include software-defined
networking and network security.

YONG WANG received the Ph.D. degree from the
East China University of Science and Technology,
in 2005. He is currently a Full Professor with
the School of Computer Science and Information
Security, Guilin University of Electronic Tech-
nology. His current research interests include
distributed storage systems, cloud computing, and
information security.

YUMING LIU received the M.S. degree in
computer science and technology from Guilin
University of Electronic Technology, in 2017,
where he is currently pursuing the degree with the
School of Computer and Information Security. His
current research interests include software-defined
networking and network security.

48845

http://dx.doi.org/10.1007/978-981-15-7530-3_7
http://dx.doi.org/10.1007/978-3-319-58469-0_2
http://dx.doi.org/10.1007/978-3-319-58469-0_2
http://dx.doi.org/10.1007/978-3-319-78813-5_18
http://dx.doi.org/10.1007/978-3-319-78813-5_18

