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ABSTRACT Text detection is a fundamental task in computer vision, particularly for Optical Character
Recognition (OCR) applications. This study focuses on text detection within an OCR application, encom-
passing text detection, text recognition, and information extraction, explicitly focusing on text detection.
Character-Region Awareness for Text Detection (CRAFT), Pyramid Mask Text Detector (PMTD), and
Scene Text Detection with Supervised Pyramid Context Network (SPCNET) have demonstrated promising
results in bounding-box detection. However, it faces challenges related to post-processing and multiline
text detection. A post-processing problem arises because of the need to reconfigure the model when new
documents are introduced, which leads to inefficiencies and complexities. In addition, CRAFT tends tomerge
bounding boxes from consecutive lines by introducing multiline errors, especially for CRAFT. To address
these challenges, this study proposes an adapted approach based on Mask R-CNN, an instance segmentation
model that treats each text element as an individual object. By adopting the Mask R-CNN approach, post-
processing issues were successfully eliminated. Moreover, the multiline problem is effectively resolved.
Comparative experiments demonstrate that the proposed model achieves results comparable to those of these
models while surpassing them in accuracy and versatility. The proposed model is extensively evaluated
on various document types, including bankbooks, Thai ID cards (both front and back sides), invoices,
car registrations, mobile banking slips, passports, Indonesian ID cards, driver licenses, and receipts. The
results indicated the model’s high performance and potential for real-world applications. Eliminating
post-processing and multiline problems ensures the model’s adaptability to a wide range of document
structures and reduces both time inference and resource utilization.

INDEX TERMS Deep learning, text detection, optical character recognition (OCR).

I. INTRODUCTION
Text detection is a computer vision process that involves the
identification of text within an image. It has gained popularity
in various applications, such as Optical Character Recog-
nition (OCR) [1], image text translation [2], and document
classification [3], because text detection plays a vital role in
these processes. Specifically, text detection aims to locate the
areas in an image where text is present and define bounding
boxes around the identified texts.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhongyi Guo .

OCR, an application used to interpret text in images or
documents, involves three primary steps: text detection [4],
text recognition [5], and information extraction [6]. However,
our focus is solely on text detection, specifically finding a
bounding box around the text within an image.

We experimented with various methods for extracting
bounding boxes, such as SPCNET the Supervised Pyramid
Context Network (SPCNET) [7], PMTD (Pyramid Mask
Text Detector) [8], and Character-Region Awareness for Text
detection (CRAFT) [9]. Among these, CRAFT has proven to
be the most efficient for detecting text bounding boxes in our
OCR compared to the CRAFT method we used.
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FIGURE 1. A multiline problem is shown in a red rounded rectangle.
There are two lines of black text in one blue bounding box.

Although the CRAFT technique is highly accurate, some
significant issues must be addressed. However, the CRAFT
model cannot be effectively generalized for every document.
When new services or document types are encountered,
they must be adjusted to fit the new document type for
the best result. This is the main issue related to post-
processing problems, including the need to adjust or set
new parameters for the post-processing stage whenever
we have an improved model or encounter new document
types. Thus, post-processing is necessary. However, conduct-
ing post-processing for each document type is challenging
because of the diverse range of document structures, which
requires time-consuming grid searches to determine optimal
parameters. This approach is unsuitable for handling new
document types. Moreover, during post-processing, we can
overlook the parameters that require tuning for each service.
However, accuracy may be affected by the size of the doc-
ument and the text within it. This variability is the primary
reason why we must engage in post-processing is required to
define the final bounding boxes.

In addition, there is a problem in detecting multiline text,
where bounding boxes may encompass multiple lines of text
instead of separate boxes for each line. If two distinct lines
are close to each other, the text-detection model might erro-
neously group them into a single bounding box (as shown
in Figure 1.). This issue is commonly observed in various
document types.

This problem arises because the model can become con-
fused when texts are closely situated as it attempts to localize
each object at the segmentation level. To overcome this
challenge, we propose training a new model using an alterna-
tive approach known as instance-level object detection. This
model identifies each word as an individual object, eliminat-
ing the need for post-processing of different document types.
The final output of the model provided individual bounding
boxes for each text element.

Furthermore, this approach solves the multiline problem
by treating each text element as a separate object. This model
recognizes each character as a distinct object, eliminating the
necessity of post-processing different document types. The
final output of the model yields separate bounding boxes
for each text element. In addition, this approach resolves

the multiline problem by treating each text element as an
independent object.

In contrast to the CRAFT model, which requires
post-processing and threshold-based box separation to obtain
the final individual bounding boxes, our new approach
generates bounding boxes for each object directly in the
model’s output. This means the model resolves the need for
post-processing and effectively addresses multiline issues.

In this paper, we present a model for text detection in
images of documents such as bankbooks, Thai ID cards (front
and back), invoices, receipts, car registration books, mobile
banking slips, passports, Indonesian ID cards, and driver’s
licenses. Building on this, our research proposes a Mask
R-CNN-based method that effectively overcomes the ineffi-
ciencies associated with post-processing and multiline errors
observed in the CRAFT model. The result is an improved
level of accuracy, versatility, and adaptability across diverse
document types, along with a reduced inference time and
resource consumption during model deployment.

II. RELATED WORKS
A. REGION-BASED AND REGION-AWARENESS TEXT
DETECTOR
Region-based techniques in computer vision are fundamental
approaches that focus on analyzing and processing specific
regions or areas of an image. These techniques are cru-
cial for object detection, segmentation, and region-specific
image processing tasks. Region-based methods enable the
identification, classification, and detailed analysis of objects
or regions of interest within images. In this approach, the
CRAFT uses the region in the image to analyze characters
and their relationships. Another approach for this type is
Mask R-CNN [10], [11], [12], instance segmentation [13],
extended from the Faster R-CNN [14], [15] architecture,
which also enhances region-awareness that simultaneously
identifies objects and generates high-precision pixel-level
masks, effectively ‘‘masking’’ individual object instances
within an image. By combining object detection and seman-
tic segmentation, Mask R-CNN allows for the capture of
fine-grained details and boundaries of objects. Pose esti-
mation [16] is a basic example of an application that uses
Mask R-CNN. In the context of text detection, several GitHub
projects show individuals employing a text-detection model
trained using Detectron2 [17], [18] as the underlying frame-
work.

Another approach is the segmentation training technique
YOLOv8 [19], which divides an image into a grid and pre-
dicts bounding boxes and class probabilities directly from
the grid cells. The bounding boxes are then associated with
the regions in the input image. This is in contrast to tra-
ditional object detection methods such as Faster R-CNN,
which involve region proposal networks (RPNs) to generate
potential regions of interest before classifying and refin-
ing bounding boxes. Most studies with YOLOv8 focus on
real-time object detection, such as real-time orchard tree
segmentation [20].
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B. MULTIPLE LAYERS-BASED DETECTOR
Another common approach is based on studies dealing with
the pyramid-based architecture, SPCNET, for such networks
to be used for tasks such as image segmentation, object
detection, and scene parsing, leveraging the multi-scale con-
text information of the Feature Pyramid Network (FPN)
to improve the precision and accuracy of these tasks.
Another pyramid-based PMTD can be inferred as a type
of object-detection framework that incorporates a pyramid-
based approach. Pyramid structures are commonly employed
to analyze objects on multiple scales, which can improve
the accuracy and robustness of object detection tasks. The
‘‘mask’’ component in the Pyramid feature suggests that this
method might be related to instance segmentation, where pre-
cise pixel-level masks are generated to delineate individual
objects within an image.

For more information on the mask involved in the pyramid
feature and Mask R-CNN, the mask refers to the pixel-wise
segmentation mask generated by the model for each instance
of an object in an image. The ‘‘mask’’ in Mask R-CNN is
essentially a binary image where pixels inside the object
boundary are set to 1, indicating the presence of the object,
and pixels outside the boundary are set to 0. These masks
provide fine-grained segmentation of objects, enabling the
model to understand not only where objects are located in an
image but also which pixels specifically belong to each object
instance.

Multiple layers from an FPN are widely used to extract rich
feature representations. Zhang et al. [21] proposed an active
pedestrian detection system that operates on multiple layers
to address the performance of detecting small pedestrians far
from a camera. The key idea is that pedestrians of different
sizes have distinct appearances, and multilayer neuronal rep-
resentations capture these differences effectively.

Another work by Zhang et al. [22] used multiple layers
from an FPN to enhance the performance of capturing the
difference scale of a pedestrian. High-level convolutional
layers, such as ResNet-50-C4 and ResNet-50-C5, are used
to extract ROI features and perform feature aggregation for
pedestrian detection at different scales.

More examples of using multiple layers from the FPN,
Zhang et al. [23]. Utilizing multiple layers in this study
allowed the network to acquire hierarchical representations.
The lower layers capture basic features, like edges and tex-
tures, whereas the higher layers capture more complex and
abstract features. By combining these features across various
layers, the network enhances its abilities, leading to improved
accuracy in both the classification and regression tasks, par-
ticularly in visual tracking.

C. HYBRID TEXT DETECTOR
This approach combines many features to obtain text detec-
tion results. TextFuseNet [24] extracts and captures richer
fused features for text localization. It utilizes three branches:
semantic segmentation [25] for global semantics, word and

character detection, and masks, for instance, segmentation.
These branches generated richer fused features for text detec-
tion. TextFuseNet incorporates a feature pyramid network
(FPN) [26] for multi-scale feature extraction and a region pro-
posal network (RPN) for text proposal generation. It employs
a semantic segmentation branch to obtain global features.
The detection branch predicts the categories and performs
bounding box regression using word- and global-level fea-
tures. Themask branch performs instance segmentation using
character, word, and global-level features. A multipath fusion
architecture aligns and merges extracted features for robust
text detection, particularly for arbitrary shapes. The fusion
process enhances text detection by combining text represen-
tation and fusion techniques. This approach enables more
robust and accurate detection of text areas of various shapes.

D. DETECTRON2 AS A FRAMEWORK
Detectron2,1 developed by the Facebook AI Research team,
is a cutting-edge object detection framework renowned
for its modular architecture, exceptional performance, and
widespread adoption in computer vision applications. This
method is notable for its versatility, ease of use, and top-tier
accuracy on the benchmark datasets.

Detectron2 in comparison to other frameworks, offers a
winning combination of accuracy, flexibility, and efficiency.
Its widespread adoption is attributed to modular design, com-
munity support, and rich feature sets.

Researchers and developers can leverage Detectron2 to
build, train, and deploy models for tasks, such as instance
segmentation, object detection, and keypoint detection. With
this, Detectron2 provides a powerful model, Mask R-CNN,
for instance segmentation, capable of providing pixel-level
segmentation masks for objects in an image.

Furthermore, the outputs generated by the Mask R-CNN
model revealed four integral components that provided details
pertaining to object detection and segmentation. These pri-
mary components encompass bounding boxes, denoted as
boxes, comprising coordinates (x, y, width, and height)
that encapsulate the identified bounding boxes surrounding
objects. Additionally, the class labels, denoted as classes, rep-
resent the predicted classification for each identified object.
The scores, referred to as confidence scores, are accompa-
nied by the predicted bounding boxes and reflect the level
of certainty associated with the predictions. Finally, masks,
characterized as segmentation masks, delineate the detected
objects and demarcate their spatial extent.

To derive the final bounding box for each text, we used
segmentation masks to extract the bounding boxes because
the segmentation masks provided the area of the text at
the pixel level. We cannot use the bounding boxes directly
because if the model faces the rotated images, the coordinates
of the bounding boxes will give us strange boxes (as shown in
Figure 2. and Figure 3.) owing to the structure of the bounding
boxes (x, y, width, and height).

1https://github.com/facebookresearch/detectron2
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FIGURE 2. The rotated image with the ground-truth of bounding boxes
and segmentation masks in COCO format.

FIGURE 3. The image is cropped from the rotated image, there is a
bounding box and mask represented in it. The bounding box is rectangle
coordinate, but the mask is span along the characters area.

III. EVALUATION METRICS, TYPEFACE ANATOMY AND
MODEL FUNDAMENTAL
A. TEDEVAL- TEXT DETECTION EVALUATION
TedEval is an evaluation metric designed specifically for
scene-text detection models [27]. It also addresses com-
mon issues, such as granularity, multiline text, and charac-
ter incompleteness. Unlike the traditional Intersection over
Union (IoU) approaches, TedEval is suitable for detecting
both single- and multi-character texts. It evaluates the results
through instance-level matching and character-level scor-
ing, focusing on granularity and completeness. By creating
pseudo character centers (PCC) from word bounding boxes
and lengths, TedEval computes matches and penalizes miss-
ing or overlapping characters.

TedEval was designed to evaluate the scene-text-detection
model. It addresses common issues, such as granular-
ity, multiline, and character incompleteness (as shown in
Figure 4.). The IoU approach is a standard method for
assessing an object detection model by determining the inter-
section between the union of the detected box and ground
truth. However, this method is unsuitable for text detection
because several characters exist in a single text. TedEval also

FIGURE 4. Examples of incomplete detections. Red dot: PCC. Red box:
ground-truth, Green: detection. A: Complete detection, B: One-To-Many
detection, C: Incomplete detection, and D: Split detection (Big App).

addressed this problem by changing the detection level from
the object or character level to the instance level. However,
TedEval still reports character-level scoring with a focus
on granularity and completeness. The granularity score was
computed from the character alignment between the predic-
tion and ground truth. There were one-to-one, one-to-many,
and many-to-one character matches that were used as error
cases. Because we do not have a character-level ground truth,
TedEval creates pseudo-character centers (PCC) from a word
(or text) bounding box and its length. TedEval can then find
the IoU from the instance (or text) level while reporting a
penalty for missing and overlapping at the character level.

FIGURE 5. Examples of computing the score from each error case. Red
dot: PCC. Red box: ground-truth, Green: detection.

TedEval provides recall and precision at the character level
using PCC fromword-level bounding boxes and word lengths
(as shown in Figure 6.). It can compute the score of an entire
match from a partial match by penalizing the missing or
overlapping characters(as shown in Figure 5.). If a word is
split into multiple detections, TedEval classifies it as a one-
to-many error and penalizes the prediction by decreasing the

FIGURE 6. Example of computing PCC of Gi. Red dot: PCC. Red dash:
pseudo character box. Grey: Ci (ground truth of image i).
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FIGURE 7. In the example images, there are the red dots appear upper
and lower from the normal line. This assure that if the word has the
upper or lower component, we can count the score accurately. The red
boxes show the ground-truth annotation, the green boxes show the
prediction result from the detection model.

total matching score. Apart from the model evaluation and
error analysis, TedEval can ensure that the text detection
result is sufficiently reliable for the subsequent text recogni-
tion process. Even though we do not have the ground truth
at the character level, or the text-level ground truth needs
to be cleaner, TedEval can still evaluate the detection result
effectively.

For the Thai language, there are many special components
that differ from those of the English language; we will discuss
these components in the following sub-section. An example
of a special component is the upper and lower vowels that
appear in Thai (as shown in Figure 9).
Furthermore, we implemented TedEval to gain further

insight into the specific errors that occurred during the eval-
uation. This includes identifying issues, such as missing
characters, multiline text detection, missing single characters,
or situations in which one-character maps to multiple or
multiple-character maps to one. Precisely, for a language with
upper and lower components, such as the Thai language,
in this study, we can also count the number of error cases
involving missing upper- or lower-case components.

Errors in the Thai language (as shown in Figure 7), the
upgraded version of TedEval that we extended from the orig-
inal code, will count if the upper or lower vowels are not
detected, extended error cases with missing upper and lower
characters.

B. ENGLISH AND THAI TYPEFACE ANATOMY
Typeface anatomy is a fundamental concept in typography
that includes visual elements and components that make
up a typeface [28]. Understanding these elements, such
as baseline, cap height, x-height, serifs, stems, and coun-
ters (as shown in Figure 8), is essential for designers and
typographers to create well-designed and legible texts. The

FIGURE 8. Typographic parts of a glyph: 1) x-height; 2) ascender line;
3) apex; 4) baseline; 5) ascender; 6) crossbar; 7) stem; 8) serif; 9) leg;
10) bowl; 11) counter; 12) collar/link/neck; 13) loop; 14) ear; 15) tie;
16) horizontal bar; 17) arm; 18) vertical bar; 19) cap height;
20) descender height.

complexity of these elements contributes to the overall aes-
thetics and readability of the written communication.

In the field of technology, computer vision and under-
standing typeface anatomy are essential for tasks such as text
detection. Knowledge of typeface anatomy is essential for
building accurate detection algorithms that can identify text
regions regardless of the typeface used, orientation, or layout
variation.

Typeface anatomy is the basis of typography and influ-
ences design, communication, and technology. Its signifi-
cance has spread across diverse languages and applications,
from crafting culturally appropriate typefaces to develop-
ing advanced text-detection algorithms that support various
aspects of our digital lives.

FIGURE 9. Variation in Thai Typeface Anatomy. This image shows diverse
typographic elements in Thai fonts, including character height, head, and
tail, highlighting the rich spectrum of design choices in Thai typography.

In our case, in terms of typeface anatomy, languages such
as Thai were used (as shown in Figure 9), and there are unique
considerations owing to the distinct script characteristics.
Thai script features loops, curves, and stacking elements that
influence the design of typefaces. In addition, the writing can
go above and below normal lines, with or without connecting
parts. This is important in text detection. We need to be
careful about the upper and lower parts of the letters because
these distinctions might confuse the model and might not
capture all the text correctly.

Understanding how typefaces work, like building blocks
for typography, affects design and technology. It is important
across different languages and uses, from creating fonts that
match different cultures to creating smart algorithms that
form the foundation of text detection.

C. FUNDAMENTAL OF OUR PROPOSED MODEL
The mask region-based Convolutional Neural Network
(R-CNN) is a state-of-the-art model for object instance seg-
mentation. It extends the Faster R-CNN architecture by
adding an additional branch to predict segmentation masks
in parallel with the existing branches for object detection and
bounding box regression.

For some of the fundamental concepts of Mask R-CNN,
one needs to know before performing the model training:

1) BACKBONE NETWORK
The purpose of the backbone network is to extract hierarchi-
cal features from the image. We used several backbones to
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compare the results while tuning the hyperparameters. The
results show that the more complex the backbone, the better
the performance. The results of the backbone architecture are
presented in Section VI.

2) REGION PROPOSAL NETWORK (RPN)
A Mask R-CNN utilizes an RPN to generate region propos-
als for potential object instances. RPN proposes candidate
bounding boxes and assigns scores to them.

3) REGION-BASED ROI ALIGN
This operation enables precise pixel-to-pixel alignment
between the extracted features and the output masks.

4) OBJECT BRANCH
This branch is used to predict class labels and refine the
bounding box coordinates for each proposed region. In our
work, we focus on mask prediction because it is more versa-
tile than the object branch.

5) MASK BRANCH
It is a parallel branch with an object branch to predict the
segmentation masks for the identified objects. Unlike the
object-detection branch, the mask branch produces an output
at the pixel-to-pixel level.

6) LOSS FUNCTIONS
The model is trained using multiple loss functions, includ-
ing classification loss for object detection, bounding box
regression loss, and mask segmentation loss. These losses are
combined to form a comprehensive training objective. The
option of the loss function that detectron2 provides for us:
Smooth_L1, GIoU, DIoU, and CIoU. This is particularly true
in the training of bounding-box regressionmodels. These loss
functions aim to quantify the difference between the predicted
bounding boxes and the ground truth bounding boxes. The
choice of the loss function to use may depend on the specific
characteristics and requirements of the object detection task.
The results of the loss function are used in Section V.

IV. EXPERIMENT SETTING
Our main goal is to use an instance-level object detection
model with the Detectron2 framework to accurately locate the
bounding box within an image. To this end, the experiments
were divided into three phases. This first phase obtains the
best dataset by training the model using default hyperparam-
eters. The second phase used the best dataset from the first
phase to perform a grid search and fine-tuning to determine
the best parameters for enhancing the accuracy of the model.
The final phase uses the final model to integrate the detection
model with an end-to-end pipeline to extract and recognize
text from images in various applications. Examples include
Thai ID cards (both front and back), passports, and car regis-
tration. The overall training process is illustrated in Figure 10.

FIGURE 10. Diagram of the training process with step-by-step
instructions on how to acquire the optimal model for the purpose of
testing the entire end-to-end pipeline.

The detection model is a Mask-RCNN for instance, seg-
mentation. To facilitate the training process, we utilized
Detectron2, developed by the Facebook research team.

Initially, we trained the model on Google Collaboratory
Pro with a GPU that provided us with preinstalled libraries
and configurations, such as CUDA, for GPU acceleration.
The workstation specifications include up to 27 GB of RAM,
more than 200GB of storage capacity (the storage capac-
ity varies), Tesla T4, and P100. Unfortunately, this was
difficult because the training process took a long time, some-
times more than a day, owing to the difference in epochs
we had trained, that is, 18 hours once when training with
100000 epochs. However, Google Collaboratory sessions
can only run for up to 12 hours. Therefore, we initially
trained only for a few epochs to obtain training. Subsequently,
we switched to a workstation. The workstation specifications
included 128GB of RAM, 2TB storage capacity, and 24GB
GPU. We also used this workstation to train YOLOv8 using
Ultralytics.2

V. DATASETS EXPERIMENT
In this section, we present a comprehensive investigation to
determine the optimal dataset for our study. Three distinct
datasets–Simple, Simple+, and Simple++–were created to
examine how the composition of the dataset affected our
analysis. The primary difference between these datasets was
the number and type of documents contained. The overall
training phase is illustrated in Figure 11.

We have a diverse set of datasets, including passports,
Thai ID cards (both front and back), and car registrations.
However, this quantity was insufficient for training large-
scale models. Because we only have a small amount of data
for each type of document, training the model solely with
these data may not yield highly accurate results. To overcome

2https://github.com/ultralytics/ultralytics
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FIGURE 11. Diagram of the training process of phrase 1 which is a dataset
experiment training to obtain the optimal dataset for the next phrase.

this limitation, synthetic data can be used to train the model
instead of relying solely on real-world datasets. By generating
synthetic data that resembles real documents, we can increase
the overall amount of training data and enhance the accuracy
of the model. Note that the training experiments were con-
ducted using default hyperparameters.

We employed a synthesizer tool to create images, in which
the tool mimicked real images during the generation pro-
cess. Each document comprises template backgrounds, field
positions, and a diverse pool of words that are specific to
the document. During image synthesis, the tool randomly
assigns synthetic words to their respective field positions
(Table 1). Augmentation techniques include image rotation
or conversion of the image to black and white (as shown
in Figure 12.) and were applied after the initial image was
generated.

TABLE 1. Field position for thai ID card synthesizer.

Table 1, an example of the position fields on the front side
of the Thailand ID Card that shows the position of the field,
font size, font color, and the type of the word to fill in, which
is static or randomly picked using regex.

Two additional outputs are obtained from a single synthesis
iteration: the ground truth at the word and character levels.
These two ground truths were then utilized to construct a
ground truth in the COCO format [29], facilitating the train-
ing of the detectron2 model.

The synthetic data consists of three components:
Image: The synthetic images include normal cases as well

as augmented variations (as shown in Figure 12.). These

FIGURE 12. Examples of synthetic Thai ID card with ground truth
COCO-instance annotation in normal cases (on the left) and augmented
cases (on the right). The top upper rows are synthetic images and the
bottom rows are ground-truth annotations in word-level ground-truth.
And the box filled with color is the character-level ground-truth.

variations can include faded images, distorted images, rotated
images, or images with added noise. This approach allows us
to expose the model to a wider range of document variations,
improving its ability to handle real-world scenarios.
Word-level ground-truth: This component provides rectan-

gular bounding box positions for each word text within the
synthetic image. This allows the model to learn the spatial
relationships and positions of the words within a document.
Character-level ground-truth: This component provides

rectangular bounding box positions for each character text
within the synthetic image. This enables the model to under-
stand the precise positioning of individual characters within
the words.

To train the model, it was necessary to convert the
ground-truth data into COCO instance format. The training
process requires this format to train the model.

By utilizing both word- and character-level ground-truth
data, we can generate a polygon that follows the curves of
the characters and serves as a mask bounding box (as shown
in Figure 12.). This approach allows for more precise and
accurate localization of text within an image.

A. TRAIN DATASET
We generated multiple datasets for training purposes, focus-
ing on the three primary datasets to report the results. The
remaining datasets were used for trial and error, and some
contained incorrect ground truths.

1) SIMPLE
The synthetic data include Thai ID cards (both front and
back), Indonesian ID cards, six types of car registration,
and passports. Initially, we trained this model to ensure the
correctness of the training process and ground truth. Subse-
quently, we generated additional samples for each document,
resulting in a final dataset of 24,900 images. We used this
dataset as the foundational dataset and incorporated addi-
tional documents.
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2) SIMPLE+

Once themodel is trained for a certain period, more document
types are added to create a more challenging dataset. This
new dataset includes driver licenses and bankbooks. Build-
ing on the previous dataset (Simple), this led to improved
performance, particularly for driver licenses, bankbooks, and
all previously included documents. The final dataset size was
30,900 images.

3) SIMPLE++

We included additional document types such as receipts,
invoices, and statements in the dataset. The reason for this
is that these new document types pose a higher level of diffi-
culty owing to their numerous fields and diverse structural
templates. Our assumption was that training the model on
challenging data would become more robust. Subsequently,
upon training the model, we observed an improved per-
formance, particularly when using these document types.
Hereafter, we will use this dataset as the primary training
source for moving forward. The final dataset was comprised
of 44,641 images.

Note that, for each document type, we generated varying
numbers of documents because the fields in each document
differed. In addition, some documents contain different sub-
templates, typically with each template containing approxi-
mately 3000 images per template in each document, including
normal and augmented images.

TABLE 2. Training, validation and test dataset.

B. VALIDATION DATASET
The purpose of this validation dataset is to assess the perfor-
mance of the proposed model on unseen data during training.
This helps prevent overfitting [30], fine-tune the hyperparam-
eters, select the best model, and evaluate the generalization
before deploying the model in real-world scenarios.

This dataset was generated using the synthesizer gener-
ator tool, Test_01. It resembles the training dataset but is
created with a different seed, resulting in variations between
the datasets. The document consists of a bank book, car
registration, driver’s license, Indonesian ID card, and Thai
ID cards (both front and back). We generated a separate
synthetic dataset for the model validation. This validation
dataset consists of approximately 40 images per document
template to measure the performance of the model. A total of
480 validation datasets were used: 480.

In model validation, Detectron2 offers a script to evaluate
the model using mean average precision (mAP). However,
in our case, we compared the accuracy of the new models
with that of the CRAFTmodel. To ensure a fair and consistent
comparison, using a central metric that produces comparable
output is important. By doing so, we can measure accuracy
and make meaningful comparisons.

We used TedEval as the central measure to compare the
models. TedEval was specifically designed to evaluate the
scene-text detector models. TedEval provides metrics, such
as recall, precision, and F1 scores, which were used to assess
the performance of our models. These metrics help us to
understand how well our models detect text. As we needed
to compare the outcomes with the earlier model, utilizing the
mAP for comparison was not possible because the CRAFT
model was not evaluated using the mAP. Instead, TedEval
offers a more effective way to display accuracy and highlight
instances of error.

The results in Table 3 show the default model’s perfor-
mance for the validation dataset. This outcome indicates
enhancements in the model compared to the preceding train-
ing iterations and ensures that the model is not susceptible to
overfitting.

TABLE 3. Score from each dataset evaluated with validation dataset.

C. TEST DATSET
We prepared a test dataset called Test_02, which is comprised
of real-world images for unit testing and evaluation of the
detection models. This dataset included nine document types:
bankbooks, Thai ID cards (both front and back), invoices, car
registration books, mobile banking slips, passports, govern-
ment documents, and receipts. All models were evaluated and
compared using this dataset, which has 405 real test datasets.

Table 4 shows the results of the default model for the
real-world test dataset, Test_02. The results show that adding
different types of data boosts all evaluation metrics.

In the Simple dataset, we initially included fundamental
document types such as Thai ID cards (both front and back),
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TABLE 4. Score from each dataset evaluated with test dataset.

Indonesian ID cards, car registrations, and passports. This
served as our baseline dataset, providing a foundational set of
documents for the analysis. We used this dataset to train the
first model, and we believe that we can train a more accurate
model if we add more documents to the dataset.

By expanding upon a simple dataset, we created a sim-
ple +. We added more document categories in this extended
version, including driver licenses and bankbooks. This expan-
sion aims to improve the diversity and comprehensiveness of
a dataset by covering a wider range of document types.

To further explore the impact of dataset composition,
we created the Simple++ dataset. In this iteration, we added
receipts, invoices, and statements from Simple+ while
retaining the remaining document categories. All additional
documents are quite challenging; we hope that they can
enhance the model performance, and these documents have
been proven to enhance the model (as shown in Table 4).
We established a reliable and consistent dataset by select-

ing the best hyperparameters for the model. We obtained
the Simple++ dataset, with 44500 images containing bank
books, car registrations, passports, driver licenses, Indonesian
ID cards, Thai ID cards (both front and back sides), receipts,
bank statements, and invoices, as the best dataset for the next
experiment, which is a hyperparameter-tuning phrase [31].

D. ADDITIONAL TRAINING DATASET RESULT
Considering the details of adding additional datasets to this
experiment, we were curious about its impact on the CRAFT
model when subjected to an increased number of datasets.
We trained the CRAFT models using our datasets and found
that augmenting the dataset did not enhance the performance
of the model (Figure 13). To ensure this, we included our
experiment with the proposed model; adding more data to the
experiment enhanced the model’s performance. As shown in
the graph, the number of red dots increases significantly when
the dataset is added. At the last point, which is the orange star,
we also include the hyperparameter tuning results to ensure
that the ability of the proposed model can overcome the
CRAFT model, measured with an F1-score from the Test_02
dataset, when we perform hyperparameter tuning, which is
discussed in the next section.

E. LOSS FUNCTION FOR OUR TASK
At the early step of the experiment, we implemented the
training pipeline involving data synthesis, created the ground
truth for training, and then trained the model. Once we
confirm that our training pipeline can execute the training

FIGURE 13. The image shows the trend of adding more amount of data
into the training dataset can improve the performance in proposed
model, but it does not improve in the case of CRAFT model. Note that the
orange star is the result from hyperparameters tuning section. To ensure
the ability of the proposed model can overcome the CRAFT.

accurately, we proceed to the next step, which involves iden-
tifying an appropriate loss function for our task. To achieve
this, we conducted some model training, employing default
hyperparameters and the dataset ‘‘Simple’’ while varying the
loss function across the four options. The results are presented
in Table 5.

TABLE 5. Score from each dataset evaluated with test dataset.

The results in Table 5 indicate that the Smooth L1 loss
function achieves the highest Recall and Precision values
of 77.10% and 75.22%, respectively, resulting in an overall
F1 score of 76.14%. While GIoU, DIoU, and CIoU showed
competitive performance with relatively close metrics, the
choice of the most suitable loss function may depend on the
specific requirements. For our task, we decided to choose
Smooth L1 because the result show it as the best performance
among the others.

VI. HYPERPARAMETERS TUNING EXPERIMENT
In this section, we move from the dataset experiment
(section V.) to the phase of fine-tuning the model. With a
robust and stable dataset in place, our focus shifted to the
critical task of optimizing hyperparameters that significantly
affect the model performance. The overall training phase is
illustrated in Figure 14.

This hyperparameter tuning process encompasses a thor-
ough evaluation of various parameters, including the base
model, learning rate adjustments, minimum and maximum
image sizes, anchor choices, aspect ratio configurations,
angle parameter fine-tuning, Intersection over Union (IoU)
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FIGURE 14. Diagram of the training process of phrase 2 which is a
hyperparameter tuning experiment training to obtain the optimal
hyperparameters for the model.

threshold adjustments, and the potential to freeze specific
layers of the model’s backbone. The values of each hyper-
parameter are listed in Table 6.

TABLE 6. Hyperparameters configuration.

A. MODEL HYPERPARAMETERS
Along with the existing configurations in the notebook that
detectron2 offered, we were able to edit additional con-
figurations to fine-tune the model. For further details on

the available configurations and options, please refer to the
Detectron2 GitHub repository.3 This allowed us to customize
and optimize the model according to specific requirements.
Some important configurations are as follows:

These hyperparameters are discussed in detail in
Section III. This provides a better understanding of hyper-
parameter tuning.

- Base Model:
There are four backbone choices for the model archi-
tecture: R50-FPN-1X [32], R50-FPN-3X [33], R101-
FPN-3X (ResNet) [34], and X101-FPN-3X (ResNeXt)
[35]. These architectures differ in depth, computational
complexity, and the number of layers.

- General Model Hyperparameters:
The general model hyperparameters are the learning
rate and the number of training iterations. The learning
rate determines the size of the optimization step. The
number of training iterations specifies the number of
times the model was trained. This hyperparameter was
set to 200000 iterations for every experiment, and the
model was saved every 1000 iterations.

- Advanced Model Hyperparameters:
Advanced hyperparameters include the anchor size,
aspect ratio, and angle. The anchor sizes are prede-
fined bounding box shapes used for region proposal
generation. We configured the anchor sizes and aspect
ratios to match the objects and the text in the dataset.
Hyperparameters such as anchor sizes, aspect ratios,
and angles for text detection might be different from
the settings for normal object detection, because texts
are typically smaller than normal objects. Consequently,
we decreased the values of these parameters to smaller
than the default settings. For example, the default value
of the anchor size is [[32], [64], [128], [256], [512]], and
we adjust this value to be smaller [[16], [32], [64], [128],
[256]] and hope that this new value will be able to detect
the text object better. The aspect ratios help the anchor to
have various shapes; for example, if the anchor size is 32
and the aspect ratio is [[0.5, 1.0, 2.0]], the anchor box
will be [32× 16], [32× 32], and [32× 64], respectively.

- Enable Model Components:
In the backbone, we can include or exclude specific
feature pyramid levels, adjust the number of heads in
the model, and enable different feature-fusion strategies.
These choices can influence the performance of the
model and the computational requirements.

Following the training of the models with the default
parameters for selecting the final dataset, Simple++, from
Section V, we enhanced our model through hyperparameter
tuning.

Hyperparameter tuning is a training loop in which we
experiment with different settings to determine the best set
for our detection model. The goal was to determine the

3https://github.com/facebookresearch/Detectron
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optimal combination of hyperparameters for improving the
performance of the model.

B. HYPERPARAMETERS TUNING RESULTS
1) BEST HYPERPARAMETERS FROM GRID SEARCH
After conducting a grid search to fine-tune the hyperparam-
eters, we identified the optimal hyperparameters that yielded
the best results when evaluated for both validation and test
datasets. These hyperparameters are particularly relevant for
our text detection task. For instance, when considering the
anchor size in Table 7, the specified value proved to be
appropriate and effective for detecting text within an image.
The default value, [[32, 64, 128, 256, 512]], may be well
suited for larger objects in images butmay be less effective for
the specific text we aim to detect. Another notable hyperpa-
rameter is the angle, where the chosen value is more suitable
for document images containing text than the default value
for real-world or scene images.

TABLE 7. Best hyperparameters from grid search.

2) VALIDATION TEST WITH TEDEVAL
As shown in Table 8, the proposed model appears to be
effective, particularly for documents such as Thai ID backs,
fronts, passports, driver’s licenses, and Indonesian ID cards.
It achieved a good balance between recall and precision.
However, for documents such as car registration books and
bankbooks, there is room for improvement, particularly in
terms of both recall and precision.

TABLE 8. Validation score from TedEval.

3) ACCURACY FROM UNITTEST WITH TEDEVAL
In Table 9, 10, and 11. We compared the performance
of PMTD, SPCNET, CRAFT, YOLOv8, and the proposed
model using TedEval. The proposed method tends to perform
well in terms of precision, whereas the CRAFT may have
a higher recall in some cases. The overall performance of
the proposed method is comparable to or superior to that
of CRAFT, depending on the specific document type. The

TABLE 9. Recall score of unit test score from TedEval.

TABLE 10. Precision score of unit test score from TedEval.

TABLE 11. F1 score of unit test score from TedEval.
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results show that, in most services, CRAFT and our proposed
model have better accuracy than the other three models.

4) ERROR CASES FROM UNITTEST WITH TEDEVAL
Table 12 shows the error cases from the TedEval. The pro-
posed method tends to have fewer multiline errors (as shown
in Figure 17), split detection, one-to-many, and many-to-one
(Figure 16), and duplicate detections ( Figure 18) andmiss the
lower characters. However, CRAFT has fewer missing upper
characters (as shown in Figure 19), missing characters, and
missing characters (Figure 15). These results suggest that the
proposed method may have advantages over the CRAFT in
various cases. The proposed model, which treats individual
objects independently, resulted in a significant decrease in
multiline errors. Similarly, for other cases where the model
outperforms CRAFT, its output provides suitable bounding
boxes for use. However, in the case of missing upper char-
acters, the results may indicate a higher error rate compared
with CRAFT. This issue could be attributed to the model hav-
ing encountered fewer instances of upper characters during
the training. For further training, we may prioritize incorpo-
rating more examples of this character type to enhance the
model’s performance and achieve better results.

TABLE 12. Error cases from TedEval.

FIGURE 15. The model’s predictions are represented by green boxes,
while the actual ground-truth boxes are red boxes. The red dot within a
box, approximates the character’s position. In the above figure, it is a
missing character case. There are some dots that do not intersect with the
green boxes. The TedEval will count as a missing character. In the below
figure, it is a missing single character case. In the first red box, there is no
overlap with any green boxes, the TedEval will count as a missing single
character and also count as missing character too.

We experimented with YOLOv8 using the Simple++

dataset to assess its performance. It appears that it is not

FIGURE 16. The above figure, there are two red boxes as ground-truth,
but the model predicted these two boxes grouped together in one green
box. In this case, TedEval will count as many-to-one case. The below
figure, there is one red box as ground-truth, but the model predicted two
boxes separately, TedEval will count as one-to-many case.

FIGURE 17. Example of the multiline case from CRAFT model and our
proposed model. The upper image is the bounding box from CRAFT and
the lower image is from our proposed model. In the image above,
observe that in CRAFT, the red bounding boxes include a box that extends
across distinct horizontal lines. This is called multiline. However, in the
image below, our proposed model doesn’t generate that kind of box.

FIGURE 18. Example of the duplicate detection in our model that does
not affect the result from TedEval. As you can see in the left below of the
image, the number ‘‘6’’ is detected by 2 times which are the biggest box
and its own box, TedEval will count as duplicate detection.

particularly effective for text detection, so we decided not to
test it using the E2E pipeline.

C. ANALYSIS OF THE MODEL COMPLEXITY
In the model training, various aspects of the model must
be addressed. For example, we should consider the model’s
architecture, the number of parameters, and how these factors
impact the time it takes for the model to make inferences
(more details are provided in Section VII).

In this section, we examine the architecture of our pro-
posed model. We experimented with different backbone
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FIGURE 19. Example of the missing upper char from proposed model.

TABLE 13. Results evaluated in each backbone of model.

architectures (Table 13). Using the optimal dataset from
Section V. Dataset Experiment and default parameters,
we observed how each backbone model influenced accuracy
in terms of Recall, Precision, and F1 score.

1) RECALL
recall values generally increase as the backbone model
becomes more complex or deeper. X101-FPN-3X had the
highest recall, indicating a better performance in capturing
true positives.

2) PRECISION
The precision values show a slight variation across different
backbone models.

3) F1 SCORE
X101-FPN-3X had the highest F1 score, suggesting a good
balance between precision and recall.

4) MODEL COMPLEXITY
This trend indicates that as the backbone model becomes
more complex (from ResNet-50 to ResNet-101 to
ResNeXt -101), the performance generally improves.

In summary, the primary concern is the overall perfor-
mance, with a good balance between precision and recall,
and the X101-FPN-3X backbone is the most suitable choice.
However, the backbone choice may depend on specific
requirements or constraints in the application domain. In our
task, selecting X101 as the backbone model yielded the best
performance among available options. The grid search results
further confirm that the X101-FPN is the chosen final back-
bone model when tuning the hyperparameters.

D. CONCLUSION OF HYPERPARAMETERS TUNING
In conclusion, based on the results in Tables 11 and 12,
our performance matched the CRAFT baseline. However,
it is important to note that our approach showed signifi-
cant improvements in certain critical documents, such as

enhancing the front side of the Thai ID card. Moreover, our
use of the proposed model effectively overcomes the post-
processing challenges, which is the focus of our research.
This implies that we no longer need extensive post-processing
each time a new service is introduced. Themultiline detection
problem was reduced, as presented in Table 12.

Once we obtained the best model from the training phase,
we directly utilized it to detect bounding boxes in the images
without any additional post-processing steps. The detected
bounding boxes are then passed on to the next stages, which
is text recognition and matching of the key and value in the
information extraction part.

E. EXAMPLE OF BBOX PREDICTION FROM MODEL
See Figure 20 to 25.

FIGURE 20. Example of the bounding box prediction from the proposed
model of both front and back size of Thai ID Card with synthetic images.
The green one represents the prediction bounding box and the red one
represent the ground-truth bounding box.
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FIGURE 21. Example of the bounding box prediction from the proposed
model of bank book with synthetic images. The green one represents the
prediction bounding box and the red one represent the ground-truth
bounding box.

FIGURE 22. Example of the bounding box prediction from the proposed
model of passport with synthetic images. The green one represents the
prediction bounding box and the red one represent the ground-truth
bounding box.

VII. PIPELINE EXPERIMENT
In this section, we describe the integration of the proposed
model into the (OCR) pipeline. The OCR pipeline comprises
three fundamental stages: text detection, text recognition, and
information extraction. The proposed model is placed in the
text detection part.

We performed end-to-end tests for all of our services and
compared the performance of our proposed model with the
baseline from the CRAFT. The overall training phase is illus-
trated in Figure 26.

FIGURE 23. Example of the bounding box prediction from the proposed
model of Thai driver license with synthetic images. The green one
represents the prediction bounding box and the red one represent the
ground-truth bounding box.

FIGURE 24. Example of the bounding box prediction from the proposed
model of Indonesian ID Card with synthetic images. The green one
represents the prediction bounding box and the red one represent the
ground-truth bounding box.

A. TEST DATASET FOR END-TO-END TESTING
In order to compare the predicted results of the two different
models, we need to use the same dataset that was used for the
CRAFT model, and that dataset is this one.

This dataset consists of real images randomly selected
from an end-to-end dataset.

This dataset serves as an evaluation benchmark for the
OCR pipeline (Table 14). There are multiple datasets that are
aligned with multiple pipelines. These datasets encompass
real images and exhibit various characteristics such as noise,
black-and-white, and distorted images.

B. END-TO-END RESULTS
1) END-TO-END RESULTS FROM ALL SERVICES
The end-to-end results (as shown in Table 15) demonstrate
significant improvements in OCR and text detection for spe-
cific document types, such as the front side of the Thai ID
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FIGURE 25. Example of the bounding box prediction from the propsed
model of car registration with synthetic images. The green one represents
the prediction bounding box and the red one represent the ground-truth
bounding box.

TABLE 14. End-to-end dataset.

card, car registration, invoice, receipt, and Indonesian ID
card (see the example results in Figures 20, 25, and 22.).
The model exhibited superior performance for the accurate
extraction of text from these documents.

The proposed model performed well for the important
services. Achieving optimal accuracy for other document

TABLE 15. End-to-end results.

FIGURE 26. Diagram of the pipeline process of phrase 3 which is an
End-to-End pipeline. To test our proposed model with the real world
cases compare to the CRAFT model.

types remains a challenge. The model’s performance was
relatively lower for less important documents, such as pass-
ports, bank books, and driver’s licenses (see examples in
Figures 22, 21, and 23) because of the differences in
document templates, data availability, data diversity, and
complexities specific to each document type.

The average overall accuracy of the proposed model
matched that of the CRAFT model. However, the key advan-
tage of the proposed model is its ability to decrease both
inference time and resource requirements for deploying the
model. This reduces the costs associated with the training
process and the maintenance of the model in the cloud.

2) PIPELINE TIME INFERENCE, RESOURCE CONSUMING
AND MODEL ARCHITECTURE
The average inference time for each model is less than
1 s, which is quite for the OCR pipeline because we have
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TABLE 16. Comparing the results, resources and model architecture.

two more parts to perform (text recognition and informa-
tion extraction) before sending the results to the users. It is
desirable for this time to be minimized as much as possible.
Consider a scenario in which numerous users simultaneously
request OCR services, which usually occurs. In such a case,
the processing time of the pipeline may increase. This is
particularly evident in scenarios, such as processing a car
registration book with numerous text fields for detection. Our
proposed model outperformed the other models in handling
such tasks.

Utilizing Mask R-CNN, built on Detectron2, resulted in
faster inference times than the CRAFTmodel. We can reduce
resources when deploying our proposed model. Additionally,
eliminating post-processing reduces the time gaps in the pro-
cess by approximately 0.20 s.

3) EXAMPLE OF FIELDS FROM PASSPORT
From the passport result in Table 17, we exclusively extracted
information from the MRZ lines located at the bottom of the
passport (see the sample in Figure 22). Although the overall
accuracy aligns closely with CRAFT’s, we will continue
improving this service.

TABLE 17. End-to-end results.

4) EXAMPLE OF FIELDS FROM FRONT SIDE OF THAI ID CARD
From the graph in Figure 27, this service reads Thai ID card
documents and is vital for handling the highest number of
daily transactions. Maintaining and enhancing this service is
crucial, even if it results in a mere 0.50% increase in accu-
racy. These improvements extend beyond accuracy to include
reduced inference time and decreased resource utilization.

FIGURE 27. Show the E2E results from Thai ID Card pipeline comparing
between CRAFT and proposed model. The fields are ordered by the most
important one.

5) EXAMPLE OF FIELDS FROM CAR REGISTRATION
The graph in Figure 28 shows that the OCR pipeline service
focuses on car registration. Although significant improve-
ments have been made in the most important fields, some
fields of the proposed model still need to catch up to CRAFT.
Efforts are ongoing to enhance these specific fields further to
improve overall performance.

C. ANALYSIS OF THE RESULT PREDICTION
For result prediction, we conducted an E2E test for real-world
case testing. Once we obtain results from the E2E pipeline
experiment, it is beneficial to analyze individual images.
We went through images in which the predictions differed
from the ground truth. We evaluate the key-value pairs and
inspect the bounding boxes defined by the proposed model.
This detailed analysis enabled us to understand why certain
predictions were incorrect.

The images were examined by grouping the key values
of the results. For example, when reviewing the front side
of a Thai ID card, we inspect keys such as id_number,
full_name_th, full_name_en, or date_of_birth, the additional
keys are listed in Table 18. We analyzed the bounding boxes
from our proposed model and identified the differences from
the actual ground truth. Most incorrect predictions are from
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FIGURE 28. Show the E2E results from car registration pipeline
comparing between CRAFT and proposed model. The fields are ordered
by the most important one.

bounding boxes that are too tight around the text; the bound-
ing boxes cannot cover the entire text, potentially missing a
single character, or having correct bounding boxes that, when
passed to the next module (text recognition), cannot be read
because of issues with the text recognition itself. An example
of the prediction analysis is shown in Table 18.

After analyzing the images, we can identify and address
common issues in each key and find ways to enhance the
model in the future. We not only analyzed the results for the
front side of the Thai ID card but also for other services. This
process is time consuming because of the multiple number
of services and images available for review. This creates
an overload of information.To make it more manageable,
we chose to showcasethe results for only one serviceas a
concrete example.

D. ANALYSIS OF INFERENCING IN MODEL PIPELINE
We conducted experiments in a consistent environment for all
parts of the inference step during testing. For example, in the
E2E part, we conducted a testing-in-development (DEV)
environment to compare and analyze the results.

TABLE 18. Analysis of the result prediction.

We explored why the proposed model performed faster
when inferring bounding boxes. We examined different
aspects of the model, such as the parameters of the model
architecture and post-processing. We excluded factors such
as the environment and hardware acceleration because we
conducted the test in the same setting.

Regarding the parameters, we referred to each model’s
architecture and found that the CRAFT model had more
parameters than our proposed model. In general, models with
more parameters often require more computational time for
inferences. For post-processing, unlike the CRAFT model,
our model does not require an additional step to extract the
bounding boxes. This difference contributes to an increase
in the detection process time in the CRAFT. For PMTD and
SPCNET, although the detection inference time is slightly
less than that of our proposed model (approximately 0.1 s,
a post-processing step is required before finalizing the bound-
ing boxes. Consequently, the total inference time remains
higher than the proposed model’s.

E. ANALYSIS OF THE MODEL RESOURCE CONSUMPTION
Variations in the model architecture necessitate distinct
resource allocations. In the case of neural network models,
both CPU and GPU are essential for constructing the model.

CPUs are more versatile and better suited for general-
purpose computing. Some parts of the inference process,
such as data preprocessing or post-processing tasks, may be
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handled more efficiently by the CPU. Because the CRAFT
model requires an additional post-processing step, unlike our
proposed model, an extra 2 gigabytes was incorporated to
facilitate its execution.

The GPU has a greater ability to perform parallel pro-
cessing. Both CRAFT and Mask R-CNN involve a large
number of matrix operations that can be parallelized. GPUs
are well suited for handling these parallel computations and
can significantly speed up the inference process compared to
only a CPU. From Table 16, our proposed model is smaller
than the CRAFT model, possibly in terms of the number of
parameters. The CRAFT requires more computational work,
resulting in a higher GPU consumption of approximately
4 gigabytes more.

F. CONCLUSION OF END-TO-END PIPELINE
In conclusion, we selected the best model from the previous
section (Section VI.) to conduct end-to-end tests on the OCR
pipeline for each service. We combined our proposed model,
which is a text detection model, with other services, text
recognition, and information extraction.

1) PIPELINE
The average accuracy of the proposed model surpassed that
of the CRAFT model for the most important services. It is
important to note that some less essential services, such as
driver’s licenses and bank books, may not be currently uti-
lized by users. We can set aside these services for further
improvement. In addition, we focused on other services that
are currently used services.

2) POST-PROCESS
We successfully resolved the post-processing issue by
eliminating the need to configure each service individu-
ally to obtain the bounding box information. Our model’s
default process allows for the easy retrieval of bounding
boxes.

3) MULTILINE
We also addressed the problem of multiline or closely
positioned bounding boxes by treating objects individually,
ensuring that such situations occur less frequently with our
proposed model.

4) TIME INFERENCE AND RESOURCES
By employing our proposed model, we can reduce the
inference time while simultaneously reducing the utilization
of the CPU, GPU, and RAM resources. This leads to a
decrease in the overall cost of maintaining a model in the
cloud.

G. EXAMPLE OF RESPONSES FROM OCR PIPELINE WITH
OUR PROPOSED MODEL
1) RESPONSE FROM THAI ID CARD FRONT SIDE
See Figure 29.

FIGURE 29. Response from Thai ID card front side pipeline. The left is the
image, and the right is the response of key and value in JSON format.

2) RESPONSE FROM THAI ID CARD BACK SIDE
See Figure 30.

FIGURE 30. Response from Thai ID card back side pipeline. The left is the
image, and the right is the response of key and value in JSON format.

3) RESPONSE FROM PASSPORT
See Figure 31.

FIGURE 31. Response from passport pipeline. The left is the image, and
the right is the response of key and value in JSON format.

4) RESPONSE FROM BOOK BANK
See Figure 32.

FIGURE 32. Response from book bank pipeline. The left is the image, and
the right is the response of key and value in JSON format.

5) RESPONSE FROM DRIVER LICENSE
See Figure 33.
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FIGURE 33. Response from driver license pipeline. The left is the image,
and the right is the response of key and value in JSON format.

FIGURE 34. Response from car registration pipeline. The left is the image,
and the right is the response of key and value in JSON format.

6) RESPONSE FROM CAR REGISTRATION
See Figure 34.

7) RESPONSE FROM RECEIPT
See Figure 35.

FIGURE 35. Response from receipt pipeline. The left is the image, the
middle is the response from the head of the receipt. The right is the
information in the table of key and value in JSON format.

FIGURE 36. Response from Indonesian ID card pipeline. The left is the
image, and the right is the response of key and value in JSON format.
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FIGURE 37. The upper image represents the original image, while the
lower image is the binary image that pass through the preprocess
function.

8) RESPONSE FROM INDONISIAN ID CARD
See Figure 36.

VIII. ABLATION EXPERIMENTS
Our focus is on enhancing the OCR accuracy, not only
through model training but also by refining the image
preprocessing before feeding it into the OCR steps.
We hypothesized that effective preprocessing could enhance
the performance of both text detection and text recognition
models. These preprocessing steps may involve denois-
ing, contrast enhancement, binarization, or angle correction.
However, it has been observed that preprocessing can lead to
information loss in the image (as shown in Figure 37.).

A. BINARIZATION
B. We applied pre-processing to enhance our model’s perfor-
mance by attempting to convert the original image from the
RGB format to a binary format [36], where pixels are either
black or white. This simplifies the text-detection process,
making it easier to identify text regions. However, using

FIGURE 38. The upper image represents the original image, while the
lower image pass thought the DnCNN deep learning model to eliminate
noise in the image.

a binary format can result in the loss of information from
an image. This is shown in Figure 37, particularly in the
pale-colored text. We cannot integrate this function into our
pipeline directly, but it is possible for users to activate it by
setting the ‘‘pre-process’’ flag to use this function.

B. DENOISING WITH DEEP LEARNING MODEL
Various denoising models have recently been developed, and
some have been utilized with object- or text-detection models
to boost accuracy [37]. We experimented with a pre-trained
denoising deep neural network known as DnCNN [38].
As shown in Figure 38, the lower image was denoised using
the DnCNN model. However, the denoised image appears
blurrier than the original one. This could occur because of
the large amount of noise in the image or because the model
is unsuitable for the document images.

Consequently, the results did not meet our expectations.
We decided not to use a denoising model in our pipeline.
The focus is on incorporating a broader range of diverse noise
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FIGURE 39. The upper image represents the original image, while the
lower image is rotated to the angle from the angle correction function.

types into the model to enhance its ability to become a robust
model.

C. ANGLE CORRECTION
Angle correction is another algorithm that can boost the
performance of an OCR pipeline. This process aligns the
text in the correct orientation to address potential challenges
posed by skewed or rotated text in the input image. OCR
models such as text detection and text recognition are typi-
cally trained on horizontally aligned texts. If the input image
contains skewed or rotated text, the model may struggle to
recognize the characters accurately. Angle correction ensures
that the text is aligned, thereby improving the chances of
correct character recognition.

Angle correction is performed by iterating over a range of
degrees (−10 to 10) and rotating the input binary image by
each degree. For each rotation, the projection was calculated
from the projection of a binary image by counting the number
of white pixels in each row. It then counts the rows with
fewer white pixels than or equal to 0.01 times × width of
the image (width). The final count was then returned. The

FIGURE 40. These images cannot perform angle correction by using our
angle rotation function due to the background.

degree of rotation (best degree) yielded the highest row count
with low white pixel counts was stored. This function then
refines the best degree by considering a smaller range around
the initially determined best degree. Finally, it returns to the
optimal degree of rotation.

The algorithm performs effectively on images such as
books, document images with explicit lines of text, and
images without a background.

In our experiment, we integrated this function into our
pipeline and observed that some images could not be rotated,
as shown in Figure 40. The function captures white pixels
not only from the document but also from the background in
the image, leading to confusion and incorrect degree values.
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Consequently, we chose not to integrate this algorithm into
the pipelines. Instead, we plan to enhance the OCR accuracy
by training the text-detection model with diverse rotation
angles, various noise levels, and backgrounds. In addition, for
text recognition, we will augment the training data with more
skewed images to improve the recognition capabilities of such
image types.

Further enhancements of this angle-correction function are
required to ensure that our function performs optimally across
all types of images.

IX. CONCLUSION
In conclusion, our research focuses on advancing OCR and
text detection accuracy across various services, including
Thai ID cards (front and back), car registrations, mobile
banking slips, book banks, passports, receipts, Indonesian
ID cards (front side), and driver licenses (see the sample
results in Figures 29, 30, 31, 32, 33, 34, 35, and 36.). The
experimental results demonstrated significant progress, out-
performing the CRAFT model, particularly for Thai ID card
fronts, passports, receipts, car registrations, mobile banking
slips, and Indonesian ID cards (front side).

While acknowledging these achievements, we recognize
the need for further enhancements, particularly in accuracy,
for less commonly used document types such as Thai ID
cards back, bank books, and driver’s licenses; despite their
infrequent use, these documents remain significant in specific
applications. Addressing the challenges associated with these
document types has the potential to contribute to the devel-
opment of more comprehensive and versatile OCR and text
detection systems.

Our proposed model successfully improved the extraction
of bounding boxes for important services, effectively resolv-
ing the post-processing issues encountered in the CRAFT
model. This enhancement results in improvements in both
time inference and resource utilization. Notably, errors,
including those related to multiline detection that could affect
recognition services, were significantly reduced.

In summary, this study contributes significantly to the
advancement of OCR and text-detection technology, specif-
ically in the domain of document services. As we continue
to refine and expand our research, future efforts may lead to
more robust OCR solutions that can handle a broader range
of documents with a higher accuracy and efficiency.
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