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ABSTRACT High dynamic range (HDR) imaging techniques offer photographers the ability to capture the
full range of luminance in real-world scenes, overcoming the limitations of capture and display devices. One
popular method for creating HDR images is the multiple exposures technique, which involves capturing
multiple exposures with regular digital cameras and combining them later to generate an HDR image.
In this work, we propose a method called Residual Compressed Exposure Sequences (ResCES) that aims
to consolidate all the information from a bracketed sequence into a single JPEG file. Typically, the main
image that is to be displayed by a standard image viewer is selected as the middle exposure of the sequence,
although any other user-preferred exposure can be selected as well. When needed, the original exposures can
be reconstructed from this single JPEG file, enabling their use in a standard HDR workflow. Our proposed
approach utilizes a patch-based process, where we store under-exposed, over-exposed, and motion-detected
patches while reconstructing other patches through the camera response function to minimize data loss.
To further improve the fidelity of the reconstructed exposures, we employ a residual learning model in the
last stage of our pipeline, effectively eliminating any artifacts that may occur in its earlier stages. The key
innovation of ResCES is its ability to encapsulate the complete set of original exposures within a single
JPEG file in an efficient manner, allowing for on-demand reconstruction – a feature that distinguishes
it from existing HDR file formats in the literature. The experimental results demonstrate that ResCES
achieves a high degree of similarity with respect to the original exposures, as shown by both quantitative
and qualitative evaluations. The subjective visual evaluation conducted using 40 participants indicates
that ResCES reconstruction results are statistically indistinguishable from the original exposures, while,
on average, yielding a 4.5 times storage reduction. This, coupled with the ease of file maintenance, simplifies
storing, sharing, and viewing of HDR images.

INDEX TERMS HDR, multi exposure, JPEG, metadata, residual learning.

I. INTRODUCTION
The pursuit of more accurate, visually compelling, and
scene-referred representations of the real world has driven
the development of HDR imaging [1], [2]. By expanding the
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range of luminance levels that can be faithfully represented,
HDR imaging promises to deliver more realistic, immersive,
and aesthetically pleasing visual content [3]. Today, the
most commonly used method for generating HDR images
remains to be the multiple exposures technique, in which a
bracketed sequence of exposures are merged into a single
HDR image. This process is typically accomplished by the
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following equation:

E(x, y) =

∑N
i=1 w(Zi(x, y))

f −1(Zi(x, y))
1ti∑N

i=1 w(Zi(x, y))
, (1)

where Z indicates the non-linear input exposures, N is their
count, 1t are the exposure times, w is a weighting function,
f is the camera response function (CRF), and E is the final
irradiance estimate at pixel position (x, y) [4], [5], [6].
HDR images can be created from multiple exposures

by other means as well. For instance, in exposure fusion,
multiple exposures are fused into a single HDR image by
using Laplacian blending using well-exposedness, contrast,
and saturation as blending weights [7]. Recent work focuses
on developing neural networks that can either learn blending
weights or directly the final HDR image [8].
Regardless of which technique is used to create an HDR

image, using multiple exposures is a key part of the process.
In the following, we first motivate the need to maintain
these multiple input exposures and not just the final HDR
image. We then provide an overview of our algorithm.
After summarizing the related literature we then elaborate
two variants of our algorithm where the first one is the
baseline method that does not utilize learning, and the
second one is a more sophisticated, learning-based approach
called ResCES. Finally, we share our quantitative/qualitative
evaluation results and demonstrate a use-case that highlights
the motivating principle behind our algorithm.

A. MOTIVATION
One of the primary challenges associated with multiple
exposure techniques is the requirement to store multiple
images for each captured scene. Typically, photographers
capture a series of 3 to 9 exposures. Although it is possible
to discard the individual exposures once the HDR image has
been generated, there are several reasons for retaining them.

Firstly, most display devices used for viewing images
have limited dynamic range, meaning that they are unable to
accurately reproduce the full range of luminance captured in
an HDR image. By storing the corresponding LDR versions
of the exposures, users can quickly and conveniently view
the captured scene without resorting to the process of tone
mapping, which is required to prepare HDR images for
display on LDR display devices [9], [10], [11], [12], [13].

Secondly, the process of capturing bracketed exposures
may result in misalignment artifacts due to camera and/or
object motion. Although these artifacts could be mitigated
by the application of a deghosting algorithm [14], [15], [16],
complete elimination of ghosting artifacts remains to be
an elusive problem. As such, photographers may choose to
preserve the input exposures and use them to create an HDR
image with better quality as new and improved deghosting
algorithms emerge. An illustrative example is shown in
Figure 1, where a person has been captured while waving his
hand in front of a window using a modern smartphone. The

FIGURE 1. An image produced by a modern smartphone camera. The
hand area is affected by ghosting artifacts, and its background is
saturated (compare the middle window to the left one). Had the
individual exposures been saved efficiently in the produced camera
output, a better offline reconstruction would have been possible, which is
a motivating factor for our study.

‘‘HDR merge’’ algorithm that runs on the phone ISP fails to
produce a satisfactory result for the hand region, making the
fingers totally disappear. It also fails to reproduce details in
that window (compare the middle window to the left one).
Had the individual exposures been saved efficiently in the
produced image file, a better offline reconstruction would
have been possible.

Similar arguments can be made for other components of
the HDR imaging pipeline such as the recovery of the CRF
and the selection of the weighting function used during the
combination of the pixel values (Equation 1). Other decisions
may include denoising of the input exposures [17], [18],
[19], as well as whether exposure fusion should be employed
instead of creating an HDR image [7], [20], [21], [22]. In each
of these areas, new and improved algorithms appear on a
regular basis from which photographers can benefit only if
they retain the original input exposures [23], [24].

Thus, the main problem that we aim to solve in this paper
is an efficient storage scheme for multiple exposures, which
allows the photographer to retain the entirety of information
present in the bracketed sequence in a single compact JPEG
file.

B. OVERVIEW OF THE PROPOSED SCHEME
To address this challenge, this paper proposes a novel method
to reduce the storage requirements of exposure sequences.
To this end, we propose a new multi-exposure and backward
compatible file format stored inside a single JPEG file. The
primary image, which can be displayed by any image viewer,
is a user-selected reference exposure. Rather than directly
storing the remaining exposures, however, the technique
divides them into equal sized patches for efficient storage.
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Each patch is selectively stored or omitted based on its
availability in the reference.

While the storage optimization achieved through patch-
based selective storage significantly reduces the file size
requirements, there is a potential drawback associated with
the reconstruction of non-stored patches. The accuracy of the
reconstruction heavily relies on the CRF, which characterizes
the relationship between pixel values in the captured image
and the corresponding scene radiance [25]. However, the
inaccuracies in the CRF recovery may lead to undesirable
artifacts in the reconstructed exposures. To overcome this
limitation, the proposed method incorporates a deep residual
network, which is designed to specifically address the
reconstruction artifacts caused by the CRF and generate
exposures that closely resemble the original ones.

II. RELATED WORK
In this section, we first review the HDR capture technologies
that are commonly used today and argue that multiple-
exposure based HDR imaging techniques still remain to be
the norm rather than exception. We then summarize the
existing HDR file formats that are mostly related to our
proposed storage scheme.

A. HDR CAPTURE
While a multitude of approaches are available for the creation
of HDR images and videos, one notable method involves
the deployment of specialized HDR capture hardware
[26], [27]. These devices equipped with HDR-capable
sensors hold the potential to yield exceptional HDR content
in future. Nevertheless, the widespread adoption of these
advanced HDR capture tools remains elusive for most users
due to their limited availability and high cost.

This disparity in access to high-quality HDR con-
tent creation tools has been evident in the work of
Mukherjee et al. [28], who explored the feasibility of training
object detectors directly with HDR images. Faced with the
scarcity of HDR training data, they resorted to creating a
pseudo-HDR dataset by applying a dynamic range expansion
operator [29], [30] to a collection of low dynamic range
(LDR) images, with a small subset of authentic HDR
images employed for evaluation purposes. Indeed, while
using inverse tone mapping approaches can be considered
as an HDR content creation method, they hallucinate
missing details rather than faithfully reconstructing them
[31], [32], [33].

Other recent HDR capture methods involve creation
of HDR images using neuromorphic (i.e. event) cameras
[34], [35]. Due to high temporal resolution of these cameras,
any high frequency change in the scene can be detected as
events and this information can be used either in isolation
or together with accompanying RGB data to create HDR
images/videos [36], [37].

Despite the promise of these hardware solutions, their
widespread adoption is expected to take time and therefore

multiple-exposure based HDR capture solutions remains to
bemorewidely used. Even if modern smartphone cameras are
used in the ‘‘HDR mode’’, they internally resort to multiple
exposures techniques and only show the combined image to
the user [38]. The multiple-exposures techniques, which is
pioneered by the works of [4], [5], and [6], is among one of
the most highly studied topics of HDR imaging. Recent work
focuses on reconstructing high quality HDR images/videos
using learning-based approaches [39], [40], [41]. It is this
rapid progress inmulti-exposure HDR imaging that motivates
our work: it is important to preserve an exposure bracketed
sequence efficiently so that it can be used to create higher
quality HDR images as new and improved multi-exposure
based methods become available.

B. HDR STORAGE
HDR content is renowned for its ability to provide enhanced
contrast and an expanded color gamut by increasing the
range of luminance values it can represent [42]. However,
the increased dynamic range necessitates higher bit depths
to accurately encode the data, resulting in higher storage
and transmission costs compared to LDR content. To address
these challenges, several image and video encoding methods
have been proposed in the literature.

One of the notable approaches in HDR image compression
is the JPEG 2000 standard [43], which is a powerful
image compressionmethod that offers improved compression
performance and supports higher bit depths compared to
the original JPEG format. Similarly, the JPEG XR standard,
presented by Dufaux et al. [44], is another approach that
aims to overcome the bit-depth limitations of JPEG. JPEG
XR, formerly known as HD Photo or Windows Media
Photo, provides support for high dynamic range imaging
and exhibits improved compression efficiency. However,
despite their advantages, JPEG 2000 and JPEG XR have
not gained widespread adoption in the realm of digital
photography. The primary reason for their limited success is
the lack of backward compatibility with the dominant legacy
JPEG format, which is still widely used for storing digital
images.

To address this compatibility issue, researchers have
explored the utilization of existing JPEG standards and
additional metadata for storing HDR content. The JPEG
standards include marker segments that can be used to store
application-specific data within the JPEG metadata sections
[45], [46]. These application-specific markers enhance the
functionality of JPEG images by providing essential data for
image management, analysis, and interpretation [47], [48].

Leveraging this feature, Ward et al. [49] introduced JPEG-
HDR, an extension of the standard JPEG format specifically
designed to store HDR images in a manner that allows
accurate conversion to both HDR and LDR representations.
This backward-compatible approach aims to facilitate the
adoption of HDR imaging while ensuring compatibility with
existing software and workflows. Similarly, for HDR video
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streams, Mantiuk et al. proposed MPEG-HDR as an efficient
backward-compatible video compression technique [50].

In addition to standardized approaches, various formats
have been proposed specifically for HDR images such as,
RGBE [51], LogLuv [52], and OpenEXR [53]. While these
formats offer advanced capabilities and flexibility for HDR
content, they often lack backward compatibility with existing
software, limiting their practicality for widespread adoption.

The most recent advancements in HDR image and
video technology are JPEG XT, Dolby Vision, HDR10,
and HDR10+ standards. JPEG XT, as described by
Artusi et al. [54], extensively utilizes metadata to store HDR
images within a JPEG file. This approach offers backward
compatibility with the widely recognized JPEG format
while providing both lossy and lossless compression options
for HDR images. Dolby Vision [55], on the other hand,
is designed for a visually immersive HDR video experience
by allowing the metadata to dynamically change each frame.
HDR10 [56] and HDR10+ [57] are open standards with
the former being limited to static metadata and the latter
supporting dynamic metadata similar to Dolby Vision.

In addition to these, Hybrid Log-Gamma (HLG) [58], is a
pioneering HDR technology developed by the BBC (British
Broadcasting Corporation) and NHK (Japan Broadcasting
Corporation), specifically tailored for live broadcasting and
streaming. It stands out by being compatible with both
LDR and HDR displays, eliminating the need for static
metadata. Furthermore, SMPTE ST 2094 introduces the
technology of Single Layer High Dynamic Range (SL-HDR)
in three versions: SL-HDR1 [59], SL-HDR2 [60], and SL-
HDR3 [61]. Each version plays a unique role in advancing
HDR technology. SL-HDR1 enhances the HDR experience
through scene-by-scene dynamic metadata, while SL-HDR2
builds upon this by incorporating advanced color grading
techniques. Taking it to the next level, SL-HDR3 further
improves HDR for displays with heightened brightness and
contrast capabilities.

Overall, these various approaches and standards in HDR
image and video compression demonstrate ongoing efforts
to balance the increased demands of higher dynamic range
content with backward compatibility and efficient storage
solutions, aiming to facilitate the adoption and practicality of
HDR technology in various domains.

The proposed method builds upon the existing backward-
compatible storage schemes for HDR imaging. However,
it differs from previous approaches that store a tone-mapped
image as the primary representation along with auxiliary
data for HDR image reconstruction. Instead, the proposed
method stores the complete information captured in an
exposure sequence by minimizing redundancy. By efficiently
storing the original sequence, this approach simplifies the
maintenance and usability of bracketed exposure sequences
and enables the creation of an HDR image at any point in
the future to benefit from ever-evolving HDR reconstruction
algorithms.

FIGURE 2. The compression pipeline of the patch-based CES algorithm.

III. COMPRESSED EXPOSURE SEQUENCES (CES)
The basic idea of the CES algorithm was outlined in our
earlier work [62]. Here, we briefly review its key aspects and
focus on the patch-based approach that makes this algorithm
more useful and efficient. The core of the CES algorithm is
comprised of two primary pipelines, namely compression and
decompression. In the compression pipeline, we consolidate
the information from multiple exposures into a single image
to achieve a concise representation of the exposure sequence.
Conversely, the decompression pipeline extracts the main
image and its accompanying metadata from the JPEG file to
subsequently reconstruct the original exposures.

A. COMPRESSION PIPELINE
A visual representation of the compression pipeline is
shown in Figure 2. This pipeline is comprised of image
sorting, reference determination, alignment, CRF computa-
tion, patchification, and patch compression stages. Our full
workflow is detailed in Algorithm 1. Below, we explain these
main stages.

1) IMAGE SORTING
Firstly, we load the image set and arrange all the exposures
based on their respective exposure times. This results in
a sequence denoted as ⟨I1, I2, . . . , Im, . . . , In⟩, where the
exposures are sorted in ascending order from the shortest
to the longest exposure time. The middle (i.e., the median)
exposure is represented by Im. Each exposure in this set
consists of 24 bits per pixel, allocating 8 bits per color
channel. The corresponding exposure values are similarly
arranged as ⟨E1,E2, . . . ,Em, . . . ,En⟩.

2) REFERENCE IMAGE SELECTION
The ideal reference image would be the one that closely
represents the scene’s lighting conditions, colors, and overall
visual characteristics. In this work, we select the middle
exposure as the main reference exposure, assuming that it is
the most balanced one in terms of pixel intensity distribution.
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Algorithm 1 Compression Process of Patch-Based CES
1: procedure CESCompression(IList ,N ) ▷ IList is the set

of exposures, N is the number of exposures in the set
2: ⟨I1, I2, . . . , Im, . . . IN ⟩ ← SortImageList(IList )
3: ⟨E1,E2, . . . ,Em, . . .EN ⟩ ←

GetExposureTimes(IList )
4: m← median(1 . . .N )
5: for each image x in IList do
6: Irefx ← FindReference(Ix) ▷ Equation 2
7: Shiftx ← AlignImage(Ix , Irefx )

8: f ← ComputeCRF(IList )
9: for each image x in IList do

10: Lx ← Linearize(Ix) ▷ Equation 3
11: for each image x in IList do
12: Ldifx ← FindDifference(Lx ,Lrefx ) ▷ Equation 4

13: for each image x in IList except Im do
14: for each patch p in Ix do
15: if x < m then
16: if mean(prefx ) > 225 then
17: Pxoe ← Add(px) ▷ over-exposed
18: else if variance(Ldifxp ) > 25 then
19: Pxmd ← Add(px) ▷ motion-detected
20: else
21: Pxs ← Add(px) ▷ standard

22: else
23: if mean(prefx ) < 25 then
24: Pxue ← Add(px) ▷ under-exposed
25: else if variance(Ldifxp ) > 25 then
26: Pxmd ← Add(px) ▷ motion-detected
27: else
28: Pxs ← Add(px) ▷ standard

29: Cdata← Compress(P⟨1..N ⟩oe ,P⟨1..N ⟩ue ,P⟨1..N ⟩md )
30: Metadata← {Cdata, f , Shift⟨1..N ⟩,E⟨1..N ⟩,N }
31: JPEGFile← {Im,Metadata}
32: return JPEGFile

This exposure will be shown as the main image by a standard
image viewer.

The reference image for a particular exposure, x, is deter-
mined by selecting an adjacent exposure in terms of exposure
time in the direction of the median exposure, m, as illustrated
in Figure 3 and shown by the following equation:

Irefx =

{
Ix+1 if x < m
Ix−1 if x > m,

(2)

where Ix+1 denotes the subsequent image following the
image with index x, Ix−1 represents the preceding image
before the image with index x, and Irefx designates the
reference image for the image with index x.

By selecting exposures that are closely related in terms
of their exposure time, we maximize the coherency between
them, which ultimately results in better quality and compres-
sion efficiency.

FIGURE 3. The reference of each exposure is the neighboring one in the
direction of the middle exposure. This choice improves temporal and
brightness coherency between them.

3) IMAGE ALIGNMENT
The aim of this stage is to align each exposure with its
corresponding reference image in order to compensate for
any camera movement that may have occurred during the
image capture process. To accomplish this, we employ the
enhanced correlation coefficient (ECC) image alignment
algorithm [63]. Unlike conventional approaches that rely
on pixel intensity differences as a similarity measure, ECC
is capable of handling photometric distortions related to
contrast and brightness, making it suitable to be used between
images with different exposure values.

The ECC algorithm addresses the alignment task by
formulating an objective function, which, although nonlinear
in terms of the parameters, can be efficiently solved using
an iterative scheme that is ultimately linear. This means
that despite the apparent computational complexity of the
problem, the algorithm discovers a simplified iterative
solution. Consequently, we opted for the ECC algorithm in
our pipeline due to its simplicity, efficiency, and ability to
handle exposure differences while maintaining robustness.

4) CRF COMPUTATION
Once the alignment process is complete, we proceed to find
the CRF, f , using the aligned exposures in order to linearize
them. This transformation is accomplished using Equation 3,
with Ix as the input images. The output of this linearization
process is represented as Lx , denoting the resulting linear
images:

Lx = 255 f −1
(
Ix
255

)
. (3)

To recover the camera response function, we adopt the
classical algorithm by Robertson et al. [64], which provides a
robust and accurate estimation according to our experimental
results. The linearization process takes us from the integer
to the floating point domain. We perform the subsequent
operations in this domain to prevent data loss due to
quantization.

5) PATCH PROCESSING
Different from our earlier work that stored image differences
directly [62] and therefore incurred significant storage costs,
we divide each exposure into multiple patches, with each
patch comprised of 64 × 64 pixels. These patches are then
classified into four distinct categories as under-exposed,
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FIGURE 4. Patch-wise analysis of image exposures. Left-half: Reference exposure, low exposure, and the mask image indicating over-exposed (blue),
and motion-detected (green) patches. A similar result is shown for the high exposure in the right-half of the figure with under-exposed patches of the
reference shown in red. Orange patches are the standard patches that can be reconstructed from the reference. The reference image of a low and high
exposure can be different, although it was shown as the same image in this example.

over-exposed, motion-detected, and standard patches. The
main criteria in this categorization is the average luminance
value of the reference patch and the difference of a patch from
its reference. We compute this difference in the following
manner:

Ldifx =
∣∣Lrefx − kxLx ∣∣ , where kx =

Erefx
Ex

. (4)

In this equation, Ex and Erefx stand for the exposure times of
image x and its reference image, respectively. Additionally,
Lx and Lrefx represent the linearized versions of image x and
its reference, and Ldifx signifies the difference between them
in the linearized domain.

By employing this approach, we are able to categorize
and store the relevant patches for each exposure, avoiding
redundant storage of patches which can be recovered from
their reference. We use the following rules for patch
classification:
• Over-exposed patch: An over-exposed patch occurs
when its reference patch’s average luminance sur-
passes a specified threshold (e.g., 225 in 8-bit data).
Such patches are excessively bright, lacking the
necessary details for accurate reconstruction during
decompression.

• Under-exposed patch: An under-exposed patch is
identified when the average luminance of its reference
patch falls below a specified threshold (e.g., 25 in 8-bit
data). These patches tend to be overly dark, devoid of
the requisite details for accurate reconstruction during
decompression.

• Motion-detected patch: If any significant deviation
(e.g., 25 in 8-bit data) is detected between a patch
and its corresponding reference after normalization
(Equation 4), it is labeled as a motion-detected patch.

• Standard patch: These patches do not exhibit notable
motion or exposure problems, allowing them to be
reconstructed from their reference patches.

Of these categories, standard patches of a given exposure
are not stored in the metadata section of the JPEG file,
whereas all other categories are directly stored in their
original JPEG compressed form (Figure 4).

B. DECOMPRESSION PIPELINE
The decompression pipeline as described in Algorithm 2
involves a series of steps designed to reconstruct the original
exposures (Figure 5). The reconstruction process consists of
individually reconstructing each exposure, starting with those

Algorithm 2 Decompression Process of Patch-Based CES
1: procedure CESDecompression(JPEGFile)
2: {Irecm ,Metadata} ← JPEGFile
3: {Cdata, f , Shift⟨1..N ⟩,E⟨1..N ⟩,N } ← Read(Metadata)
4: {P⟨1..N ⟩oe ,P⟨1..N ⟩ue ,P⟨1..N ⟩md } ← Decompress(Cdata)
5: for each index x in ⟨1 . . .m−1⟩ and ⟨m+1 . . .N ⟩ do
6: Irefx ← FindReference(Ix) ▷ Equation 2
7: Lrefx ← Linearize(Irefx ) ▷ Equation 3
8: kx =

Ex
Erefx

▷ Equation 5
9: Lx = kxLrefx ▷ Equation 5

10: Ix = ApplyCRF(Lx) ▷ Equation 6
11: for each patch p in Ix do
12: if p is not in Pxoe ,Pxue ,Pxmd then
13: Pxs ← Add(p) ▷ Standard patch

14: Ix ← Pxs + Pxoe + Pxue + Pxmd ▷ Combine
patches

15: Irecx ← ShiftImage(Ix , Shiftx) ▷ Reconst. image

16: return Irec⟨1...N ⟩
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FIGURE 5. The decompression pipeline of the patch-based CES algorithm.

closest to the main reference exposure, which is typically
the middle one. This is achieved by applying Equation 5 to
the non-stored patches. Here, Lrefx represents the linearized
version of the reference image for exposure x. This is
initially the main reference, but the process involves creating
each reference one-by-one until all images are reconstructed.
During this stage, it is important to note that certain patches
are already stored within the metadata, which do not undergo
the reconstruction process.

Lx = kxLrefx , where kx =
Ex
Erefx

. (5)

In this equation, Ex and Erefx denote the exposure times for
image x and its corresponding reference image, respectively,
and Lx is the estimated image x in linear domain.

It is important to note that the reconstructed pixels are
initially in the linear domain. In order to go back to their
original non-linear domain, we transform them using the
recorded CRF:

Ix = 255 f
(
Lx
255

)
, (6)

where f denotes the CRF.
In the final step, we use the pre-recorded shift amounts to

disalign the exposures to make them closely resemble their
original versions.

C. EFFECT OF CRF ON RECONSTRUCTION PROCESS
The importance of accurately recovering the CRF as close
as possible to the actual response of the camera cannot
be overstated. Any discrepancies or errors in the camera
response function can lead to noticeable artifacts and incon-
sistencies in the reconstructed images [65]. For this purpose,
we conducted a controlled evaluation of three CRF recovery
algorithms that are commonly used for HDR imaging [4],
[5], [6]. The process involved starting with an HDR image
and creating 5 exposures from this image, similar to how
multiple exposures are obtained from a real camera. However,
we specifically enforced our ‘‘virtual camera’’ to have sRGB
gamma [66]. We then fed the resulting exposures to each of
the aforementioned CRF recovery algorithms and compared
the similarity of the resulting curves with the ground-truth.

As can be seen from Figure 6, Robertson et al.’s [6] curve
better aligns with the true sRGB response.

In addition to this synthetic test, we evaluated the
performance of these three algorithms on real exposure
sequences. Figure 7 shows a sample result where we show
the PSNR values of the reconstructed exposures using the
original exposures as references. As can be seen from this
figure, images reconstructed using Robertson et al.’s CRF
have a higher PSNR value than the other two methods. Based
on this evaluation, we opted to use the Robertson et al.’s
method.

D. LIMITATIONS OF THE PATCH-BASED CES
Despite Robertson et al.’s approach was found to outperform
the other CRF recovery algorithms, it does not completely
prevent undesirable color distortions as shown in Figure 8.
This stems from the inherent limitations of the CRF
algorithms to perfectly estimate the camera response. Due
to the imperfections in the manufacturing process, it is also
possible that each pixel exhibits a slightly different response
and neighborhood effects may further cause deviations in
individual pixel values. To overcome this inherent limitation
in the patch-based approach, we leverage a learning based
algorithm as explained in the following section.

IV. RESIDUAL CES (ResCES)
ResCES uses a residual deep learning based neural network
to reconstruct the original exposures with improved fidelity.
While its operation is identical to patch-based CES for
the compression stage, it uses a modified decompression
workflow, as depicted in Figure 9 and detailed in Algorithm 3.
Following the primary patch-based reconstruction, each indi-
vidual patch undergoes a subsequent enhancement process
through integration with the ResCES network model.

Algorithm 3 Decompression Process of ResCES
1: procedure ResCESDecompression(JPEGFile)
2: {Irecm ,Metadata} ← JPEGFile
3: {Cdata, f , Shift⟨1..N ⟩,E⟨1..N ⟩,N } ← Read(Metadata)
4: {P⟨1..N ⟩oe ,P⟨1..N ⟩ue ,P⟨1..N ⟩md } ← Decompress(Cdata)
5: for each index x in ⟨1 . . .m−1⟩ and ⟨m+1 . . .N ⟩ do
6: Irefx ← FindReference(Ix) ▷ Equation 2
7: Lrefx ← Linearize(Irefx ) ▷ Equation 3
8: kx =

Ex
Erefx

▷ Equation 5
9: Lx = kxLrefx ▷ Equation 5

10: Ix = ApplyCRF(Lx) ▷ Equation 6
11: for each patch p in Ix do
12: if p is not in Pxoe ,Pxue ,Pxmd then
13: p′← ApplyResCESModel(p)
14: Pxs ← Add(p′) ▷ Standard patch

15: Ix ← Pxs + Pxoe + Pxue + Pxmd ▷ Combine
patches

16: Irecx ← ShiftImage(Ix , Shiftx) ▷ Reconst. image

17: return Irec⟨1...N ⟩
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FIGURE 6. The results of Debevec and Malik’s [4], Robertson et al.’s [6], and Mitsunaga and Nayar’s [5] inverse CRF reconstructions. The response of each
color channel is shown in red, green, and blue. The reference sRGB curve is shown in pink.

FIGURE 7. The results of patch-based CES reconstructed with the
evaluated CRF recovery algorithms.

FIGURE 8. Block artifacts and color distortions may appear due to
imperfections in the CRF recovery. Left: Patch-based CES reconstruction.
Right: Original.

A. NETWORK ARCHITECTURE
The diagram presented in Figure 10 illustrates the architec-
ture of the proposed network model. This model follows a
residual learning approach, as introduced by He et al. [67],
and is primarily composed of residual blocks. These blocks
facilitate the addition of the input from one convolutional
layer to the output of the subsequent convolutional layer.

FIGURE 9. The decompression pipeline of the ResCES algorithm.

FIGURE 10. The proposed residual deep learning model.

By incorporating residual blocks, the network ensures the
injection of information from the preceding layer to the
subsequent layers, allowing for the training of deeper
networks.

The proposed network model consists of three main
components: the head, body, and tail. Notably, skip con-
nections are employed, connecting the outputs from the
head section to the outputs of each residual block. This
technique, inspired from two well-known super-resolution
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FIGURE 11. A subset of our dataset. Each image sequence is composed of nine exposures from the shortest exposure (−4EV ) to the longest one (+4EV )
with 1EV difference between each exposure.

reconstruction models, namely VDSR [68] and EDSR [69],
enables the integration of feature information from the input
layer to the output layer of each residual block. Consequently,
the long-distance skip connections coerce the residual block
modules to learn the disparity between the ground-truth and
input images.

The head section initiates with a single convolutional layer.
Considering the time-consuming nature of training, the body
section is comprised of N stacked residual blocks (we take N
as 12 in our case), arranged in the following sequence: [Conv-
BN-ReLU-Conv-BN-ReLU]. Subsequently, the tail section
encompasses another convolution layer. In total, the network
comprises of 2N + 2 convolution layers.
The original VDSRmodel and some other super-resolution

reconstruction models, such as EDSR, do not use batch
normalization (BN) layers. Since the BN layer normalizes the
features, it diminishes the network’s range flexibility. In the
image super-resolution reconstruction task, the output image
needs to be consistent with the input in color, contrast, and
brightness. When the image passes through the BN layer, its
color distribution is normalized, which amounts to contrast
stretching. This affects the original contrast information of
the image, so the BN layers reduce the quality of the output
image in the image super-resolution reconstruction task.
However, image enhancement, as we do in the current study,
is different from the super-resolution reconstruction task. Our
patch-based reconstructed images have color, brightness, and
contrast deviations that need to be corrected. Therefore, the
addition of the BN layers in our case improves convergence
and improves the overall quality of the reconstructed patches.

B. DATASET
While there are pre-existing multi-exposure image stacks
for HDR imaging, they are generally tailored for specific
research goals such as deghosting [8], [14], [70], [71], [72]
and have a limited number of bracketed exposures.

In recognition of this limitation, we decided to create a new
multi-exposure image dataset that encapsulates a diverse
array of scenes and lighting conditions. Our dataset contains
images of natural, urban, and indoor environments with
both natural and artificial lighting. We tried to meticulously
balance the inclusion of both static and dynamic scenes with
varying degrees ofmotion, simultaneously paying attention to
the visual appeal of the captured environments. This resulted
in a total of 50 scenes, 5 of which are depicted in Figure 11.
For capturing the bracketed sequences, we used a Canon
EOS 600d dSLR camera with Magic Lantern firmware.1 The
camera was configured to capture images in the sRGB color
space at a resolution of 5184 × 3456 pixels (18 MPs). Each
scene was captured using 9 exposures with 1EV increments
from −4EV to +4EV .

C. NETWORK TRAINING
1) DATA PARTITIONING
For training our proposed network model, we adopted a
10-fold cross-validation strategy. We divided the 50 images
into 10 subsets, each consisting of 5 scenes. Then, in an
iterative manner, 8 subsets were used for training the model,
while the remaining two were used for validation and testing.
By utilizing this k-fold cross-validation approach, we aimed
to ensure that our model is trainable and robust under a
diverse set of training and testing scenes.

2) DATA AUGMENTATION
Our training data consists of pairs of RGB input patches of
size 64 × 64 and their corresponding ground-truth patches.
The RGB input patches are obtained from patch-based
reconstructed exposures, which are generated using the
patch-based CES algorithm (Section III). The ground-truth

1https://magiclantern.fm/
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patches are the corresponding patches in the original
exposures.

To simulate the inherent noise present in real-world
images and improve the generalization capabilities of the
network, we intentionally corrupted the RGB input patches
by adding Gaussian noise, which is a common choice due
to its statistical properties that mimic natural image noise.
Specifically, we add Gaussian noise with a zero mean
and random standard deviation uniformly sampled from the
interval [0, 0.02] assuming that the input pixel value range
is [0, 1]. This range yields a controlled level of noise that
is perceptually realistic while also allowing the network to
learn patterns and features that are robust to noise variations.
In addition to noise, we augment our dataset by randomly
rotating the input and ground-truth patches by 0◦, 90◦, 180◦,
and 270◦. This yields a total of approximately 6.3 million
patches for each cross-validation iteration.

3) LOSS FUNCTION
In this study, we used the L1 loss function defined by the
following formula:

L(2) =
1
N

N∑
p=1

∥∥∥I ′p − Ip∥∥∥ . (7)

In this equation, I ′p represents the reconstructed patch
obtained through the ResCES algorithm, while Ip corre-
sponds to the ground-truth patch. The variable 2 represents
the network parameters that need to be learned. Thus,
the objective of our training process is to minimize the
average difference between the reconstructed patches and the
corresponding ground-truth patches.

4) IMPLEMENTATION DETAILS
For the implementation of our proposed networks, we used
Keras [73] as the deep learning framework, with TensorFlow
as the underlying backend. The training process was con-
ducted on a single NVIDIA Tesla P100 GPU. As hyper-
parameter optimization plays a crucial role in fine-tuning
the performance of deep learning models, we used Keras
Tuner [74] to automate this process. These experiments
explored various factors such as the effects of different
training epochs, batch sizes, number of layers, and learning
rates. We aimed to find the combination of these factors that
resulted in the best performance. Our experiments with this
tuner revealed the following hyper-parameter settings as the
ones with the smallest validation loss:
• Initial learning rate: 10−4 (explored the [10−5, 10−3]
range)

• Batch size: 64 (explored {32, 64, 128})
• Convolutional layer count: 26 (explored 20 to 30 layers)
It is important to note that the tuning process incorporated

all variable parameters collectively, rather than individually.
This implies that the tuner simultaneously explored various
combinations of learning rates, batch sizes, and layers.

FIGURE 12. In the case of a 64 × 64 input patch, only the central 48 × 48
region is deemed a valid output, as shown in the right image. This overlap
among the patches alleviates potential tiling artifacts, which could occur
had the patches been disjoint, as illustrated in the left image.

As for the optimizer we used ADAM [75] for faster
convergence. ADAM blends Momentum and RMSProp
optimizers, adapting learning rates for each parameter,
enhancing stability, and accommodating various gradient
scales. Key hyper-parameters include the learning rate, β1,
β2, and ε. We set them to the following values that were
experimentally found to be good default settings [75]:
β1 = 0.9, β2 = 0.99, and ε = 10−7.
The initial learning rate of 10−4 was automatically halved

after 20 epochs if the validation loss stagnated. If there
was no improvement after 40 epochs, the training was
early-terminated instead of waiting for the previously fixed
count of 100 epochs. With this chosen setup and training
configuration, the total training time for the proposed network
took approximately 30 hours per fold. This time includes the
processing of all the training samples and the adjustment of
the network parameters to minimize the objective function.

During inference, we applied the ResCES algorithm to
64×64 patches. However, to avoid patch artifacts, we used the
center 48× 48 region in each patch. This allows neighboring
patches to share a common border and produce coherent
results, eliminating tiling artifacts (Figure 12).

V. RESULTS
In this section, we provide a comprehensive analysis of our
experimental results, aiming to assess the effectiveness of
our methodology using a diverse test dataset including both
dynamic and static scenes. A sample selection from the test
scenes for which we provide per-image results is shown in
Figure 11. These scenes correspond to the test scenes of
fold-1 in our 10-fold cross-validation.

In evaluating the reconstructed image quality, we utilized
two widely used objective image quality metrics, namely the
structural similarity index (SSIM) [76] and the peak signal-to-
noise ratio (PSNR) [77], enabling us to make both perceptual
and numerical assessments of the similarity between the
recovered and original images. We also conducted a user
study to investigate whether our reconstructions are visually
distinguishable from the originals.

A. HYPER-PARAMETERS AND CONVERGENCE
As explained in Section IV-C, our first aimwas to discover the
network hyper-parameters that yield the best reconstruction
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FIGURE 13. By comparing model outputs with different hyper-parameters
we aimed to find the optimal configuration for the network. Three
examples are shown above, together with the ground-truth image. Batch
size (BS) was 64 in all cases. The insets show a detailed view of the
marked region in the main image.

FIGURE 14. Convergence performance of our network: Learning rate,
training, and validation loss as a function of epoch.

results. The search space comprised of the learning rate,
batch size, and the number of convolutional layers. Three
examples that are obtained during the process are depicted in
Figure 13. As can be seen from this figure, the final network
with an initial learning rate of 10−4, a batch size of 64,
and a convolutional layer count of 26 provided better results
compared to the other alternatives that were explored.

An important criterion that determines the quality of the
trained network is its convergence behaviour. We show this
result in Figure 14, where from left-to-right the plots show the
learning rate, training loss, and validation loss as a function
of epoch. These plots, which are obtained from fold-1 of the
training process, show that a plausible convergence behavior
is achieved.

B. IMAGE QUALITY VS. COMPRESSION RATIO
The image qualitymetrics for the five fold-1 scenes are shown
in Figure 15. Here, we compare our ResCES results with two
versions of the CES algorithm, namely the difference-based
CES [62] and patch-based CES (Section III). It can be seen
that the ResCES algorithm consistently outperforms the other
algorithms with respect to both PSNR and SSIM metrics.

Furthermore, upon visual comparison of the results, it was
observed that the reconstructed exposures obtained through
the ResCES technique display significant improvement over
the patch-based CES method (Figure 16). As mentioned
earlier, the primary limitation of the patch-based approach
is the occurrence of color shifts and block artifacts along
the borders where the originally stored patches and the
reconstructed patches from the reference exposure are

FIGURE 15. The difference-based CES, patch-based CES, and the ResCES
outcomes are evaluated across the fold-1 test set (15, 26, 40, 43, and 50)
using the SSIM and PSNR metrics. The proposed ResCES algorithm shows
noticeable improvement in all cases.

FIGURE 16. ResCES decreases the color shifts and block artifacts that
appear in the patch-based CES algorithm. In these examples, the
difference-based CES also produces good results, albeit at a much higher
storage cost as can be seen in Table 1. The insets are taken from the
corresponding test images.

merged. However, the ResCES approach effectivelymitigates
these problems, leading to visually improved reconstructed
images. Although the difference-based CES results also look
plausible in this figure, its total storage cost is significantly
higher than the ResCES method as discussed below.
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TABLE 1. Compression ratios for five test scenes. The original size is the
total storage size required for the 9 bracketed exposures. The compressed
size is the size of the single JPEG file created by using our algorithm.

TABLE 2. Stored and non-stored patch percentages for each exposure of
the test image set. Note that the majority of the patches are not stored
yielding a significant reduction in the overall file size.

Table 1 reports the original and compressed sizes of the
exposure sequences used for testing purposes. The original
size corresponds to the total size of 9 exposures in each
sequence, whereas the compressed size is the size of the
single JPEG file that contains the reference image and the
necessary reconstructive information. It is worth noting that
the ResCES method achieved compression ratios ranging
from 3.51 to 5.26. This ratio largely depends on how many
patches from each exposure are stored due to being a
dynamic, under-, or over-exposed patch. We provide this
analysis in Table 2 in which we show the percentage of patch
categories for each exposure of the test sequences. It can be
seen from this table that the large majority of the patches are
not stored; that is they are reconstructed from the reference
image and the patches stored in its metadata.

Finally, in Table 3 we share our results for all folds
of the 10-fold cross validation evaluation. As can be seen
from this table, the proposed ResCES algorithm consistently

FIGURE 17. A sample test stimulus from the subjective experiment.
In this case, the left image is obtained from our reconstructed exposures
and the right image from the original exposures. This information was
withheld from the participants.

outperforms the other approaches, yields high SSIM and
PSNR scores, and on average achieves a storage reduction
ratio of approximately 4.5 times.

C. SUBJECTIVE EVALUATION
To validate whether our algorithm produces visually indis-
tinguishable results compared to the original exposures,
we conducted a subjective evaluation. To this end, we selected
the images from the fold-1 of our experiment and cre-
ated tone-mapped HDR images [4], [78]. This process
was repeated using both the original exposures and our
ResCES-based reconstructed exposures after they were
stored in a compressed form in the single JPEG file. The
resulting images are placed side-by-side on a neutral gray
background with full-HD resolution (see Figure 17). The
positions of the original and reconstructed images were
randomized. The participants’ task was to indicate whether
the left or the right image was better. We also allowed for
the visually indistinguishable option to avoid forcing users
to make decision when they could not notice a difference.
In total, 40 voluntary participants with informed consent
between the ages of 20-50 attended the experiment. The
results are summarized in Table 4.

According to these results, 34% of the participants found
our reconstructions better, 37.5% found the originals better,
and 28.5% found them to be indistinguishable. To understand
whether these differences are statistically significant, we con-
ducted a two-tailed z-test [79] by equally distributing the
indistinguishable votes between the other two groups. This
resulted in a z-value of 0.22, which is significantly lower than
the critical z-value of 1.96 at a significance level of α = 0.05.
This indicates that the preference between the original and
reconstructed images is not statistically significant.

D. RUN-TIME ANALYSIS
A detailed run-time analysis of our compression and
decompression pipelines is shared in Table 5. To obtain
these results, we used a system with an Intel i7-11850H
processor running at 2.50 GHz, 64 GBs of system memory,
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TABLE 3. Our overall cross-validation results that include all folds. Each row shows the mean result of the 5 exposure sequences within each fold. The
last row shows the overall average across all folds.

TABLE 4. Summary of the subjective evaluation, which was conducted for
the first fold of our image set. The figures indicate the number of times
the participants preferred the original image and our ResCES-based
reconstruction or found them to be indistinguishable.

and an NVIDIA Geforce RTX 3070 GPU. Among the steps
in the compression pipeline, the computation of the camera
response function takes the longest time. In practice, the CRF
for a camera can be recovered once and reused for subsequent
image sequences unless critical camera parameters such
as the color space or post-processing effects are changed.
As for the decompression pipeline, the application of our
residual network model takes the longest time. We note that
these timing results are obtained for a bracketed exposure
sequence of 9 images with each exposure captured at
5184× 3456 resolution (18 MPs).

VI. USE-CASE: FORWARD COMPATIBLE DEGHOSTING
To illustrate one of the motivating features of our algorithm,
we incorporate it into the HDR deghosting workflow, which
deals with one of the main challenges of HDR photography:
handling moving objects and/or camera viewpoint changes
between exposures. Here, we showcase the usage of two
distinct HDR deghosting algorithms, both of which leverage
the ResCES reconstruction. The first algorithm follows the
approach of Silk and Lang [80] by employing optimal expo-
sures during the deghosting process. The second algorithm
adopts a patch-based deghosting method by Sen et al. [81].

In particular, Silk and Lang’s algorithm employs a
technique termed pairwise down-weighting (PWD), which
is effective when motion affects only a small portion
of the input image stack. However, situations involving
dynamic elements such as foliage, flags, and fluids can lead
to certain super-pixels displaying motion across all input
images. This specific motion, referred to as fluid motion

FIGURE 18. Visualizing the effects of deghosting algorithms on both the
original and ResCES reconstructed exposures. The original exposures are
shown at the top. The middle row shows the algorithm results obtained
from the original exposures and the bottom row shows the same for the
reconstructed ones using our algorithm. Note the high degree of similarity
between the two. The figure also shows that the ability to reconstruct the
original exposures from our compact form allows the application of
different and possibly better deghosting algorithms as they emerge.

(FM), proves challenging for the PWD approach’s accuracy.
In such cases, the algorithm generates an alternative output
by relying exclusively on the best exposure, optimizing
cumulative pixel weights within the motion-affected region.
On the other hand, the approach presented by Sen et al.
incorporates a patch-based deghosting method that employs
image patches and matching strategies to mitigate ghost-
ing artifacts. The patch-based algorithm has demonstrated
robustness in accommodating scene content variations and
diverse manifestations of ghosting artifacts.

Figure 18 illustrates the results achieved by employing
deghosting algorithms in this context. These algorithms
have been employed for both the original and reconstructed
exposures generated through ResCES. The HDR images are
then reconstructed using Equation 1 and the results are tone-
mapped [78]. It can be noted that the results obtained from the
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TABLE 5. Run-time analysis of ResCES. The reported results are obtained for a sequence of 9 exposures 18 megapixels each.

original exposures and the reconstructed ones resemble each
other. Upon scrutinizing the results, it becomes evident that
the patch-based deghostingmethod surpasses Silk and Lang’s
algorithm in performance, highlighting that the dynamic
nature of this process introduces the possibility of better
algorithms emerging over time. Consequently, the forward
compatibility of the proposed storage system may prove to
be worthwhile in such evolving scenarios.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel multi-exposure file format
based on JPEG to address the challenges associated with
storing and managing exposure sequences commonly used
in HDR photography. By employing a selective patch-based
storage scheme and utilizing a deep residual network for
minimizing reconstruction artifacts, the proposed method
offers a significant reduction in storage requirements without
compromising image quality. We believe that by allowing
an entire bracketed sequence to be stored within a single
file in a compact manner, our method simplifies the
management of bracketed exposure sequences. Furthermore,
it allows a compactly stored exposure sequence to benefit
from emerging algorithms in the field, making it forward
compatible.

Future work in this area can focus on refining the deep
residual network, exploring alternative storage schemes,
and incorporating additional optimizations to the overall
workflow to further enhance the efficiency and usability of
multi-exposure sequences for HDR photography.
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