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ABSTRACT Artificial intelligence (AI) related to intelligent control in healthcare denotes using Al
techniques to enhance the management and control of healthcare processes and systems. Damage to the
inner and middle ear caused by accidents and diseases even causes hearing impairment in the ear that
has been harmed or injured. Traditional otoscopy devices were utilized to check the tympanic membrane
(TM) to identify OM in medical practice, and a conclusion is drawn depending on the outcomes of the
examination. While developing a computer-aided method to support the OM diagnosis, it is possible to
focus on methods like feature extraction, image pre-processing, classification, and image segmentation. The
existing methodology of detecting the ear infection experiences a reduction of accuracy due to the influence
of the noise in the input ear image. This presence of noise affects the feature extraction process, directly
influences the accuracy in detection process. To overcome this issue, in this manuscript, a Deep learning (DL)
is utilized to find biomedical ear infections by examining images of the eardrum and ear canal. The process
includes training a DL method with a large dataset of ear images, where the images were labeled as either
not infected or infected. With this motivation, this article emphasizes the design of Bayesian optimization
with a deep learning-based automated ear infection detection and classification (BODL-AEIDC) model. The
BODL-AEIDC technique exploits the DL model with a metaheuristic optimization algorithm for the ear
infection classification process. The BODL-AEIDC technique employs a Wiener filtering (WF) based noise
removal process to eliminate the noise data. In addition, the BODL-AEIDC technique exploits W-Net-based
segmentation and the EfficientNet model for feature extraction purposes. Moreover, the BODL-AEIDC
technique employs a fuzzy Restricted Boltzmann machine (FRBM) model for ear infection detection.
Furthermore, the BO algorithm is utilized to adjust the FRBM technique’s hyperparameter values effectively.
The BODL-AEIDC technique’s experimental outcomes occur using the medical dataset. The comprehensive
comparative study stated the enhanced performance of the BODL-AEIDC approach over other existing
methods.

INDEX TERMS Intelligent control, healthcare sector, deep learning, Bayesian optimization, segmentation,
artificial intelligence.

I. INTRODUCTION
Otitis media (OM), or ear infection, refers to an illness usually
found in children below the age of three years [1]. In the
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U.S., the medical expenses of ear infections are predicted
to be $ 3 to 5 billion annually. Three kinds of OM exist:
chronic otitis media with effusion, acute otitis media (AOM),
and otitis media with effusion (OME) [2]. Due to bacterial
infection, AOM may occur in the middle of the ear, bringing
about the build-up of fluid. OME leads to fluid build-up in
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the middle of the ear because of inflammation, which is much
more severe than AOM [3]. The standard diagnosis depends
on pneumatic otoscopy, the benchmark for distinguishing
AOM from OME [4]. A pneumatic otoscope can measure the
deflection of TM under pressure by constituting an airtight
seal. On top of the complex procedure of constituting an
airtight seal, the pneumatic otoscope neither finds bacteria
nor differentiates bacterial and viral infections [5]. Inefficacy
in distinguishing AOM from OME or bacterial and viral
infections may result in the prescription of antibiotics, leading
to drug-resistant microorganisms. Thus, precisely identifying
bacteria accountable for OM was a medically unfulfilled
demand [6].

An otoscope is acommonly utilized tool to detect the issues
connected with ear pain [7]. The primary variable inspected
in the middle of the ear is the presence of liquid in the
TN, transparency, and coloration. In many cases, victims are
recommended topical or oral antibiotics; though being ade-
quate for pain, infection persists because of the development
of antimicrobial-resistant bacteria [8]. The frequent usage
of bacterial biofilms and antibiotics can assist in the rise of
antimicrobial resistance. Currently, with the developments in
image processing technologies, it is possible to identify a
wider variety of diseases than was previously conceivable.
Above all, while evolving a computer-aided method to help in
the OM diagnosis, it will likely focus on methods like feature
extraction, picture pre-processing, classification, and image
segmentation.

Al has started to affect medicine. However, some applica-
tions are relevant to hearing, and Al is absent from hearing
healthcare [9]. Therefore, the chances are described here
to use prevailing technologies to develop medical applica-
tions that model the auditory system to allow fundamental
advancements in hearing research. Biological replication is
unnecessary [10]: many significant medical difficulties in
hearing are solved through methods with no relation to the
auditory system or methods that mimic only some aspects of
its function (like DNNs for sound source separation).

This article emphasizes the design of Bayesian optimiza-
tion with a deep learning-based automated ear infection
detection and classification (BODL-AEIDC) model. The
BODL-AEIDC technique employs a Wiener filtering (WF)
based noise removal process to eliminate the noise data.
Besides, the BODL-AEIDC technique exploits W-Net-based
segmentation and the EfficientNet model for feature extrac-
tion. In addition, the BODL-AEIDC technique employs a
fuzzy Restricted Boltzmann machine (FRBM) model for
ear infection detection. Finally, the BO algorithm is uti-
lized to adjust the FRBM method’s hyperparameter values
effectively. The experimental outcomes of the BODL-AEIDC
method take place using the medical dataset.

II. LITERATURE REVIEW
Huang et al. [11] focused on consuming polymeric nanopar-

ticles to cure common bacterial infections in humans. With
ML methods like CNNs and ANNS, this study assesses
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the efficiency of nanoparticle treatment. Unique usage of
advanced CNN, like Dense Net, was reported for the auto-
mated identification of middle ear infections. Binol et al. [12]
present a decision fusion system for combining estimations
gained from biophysical measurements and digital otoscopy
images for identifying eardrum abnormality. The author
trained an RF utilizing raw tympanometry attributes for
the tympanometry aspect. Utilizing the normal range of the
tympanogram values offered by clinical guides, the author
mimicked a clinician’s decision on tympanometry findings.
Likewise, to categorize TM images from all otoscopic videos,
the author re-trained Inception-ResNet-v2.

In [13], a low-cost, portable EEG headband is utilized to
find the absence of seizures in epilepsy patients—ML with
Tensorflow to forecast its confidence level and the SVM
technique for separating the initial limit. Next, to see its mea-
surement divergence, the author tried to test the technique on
two other patients. Moreover, one of the novelty methods in
this study is the Tensorflow library, which was developed and
implemented to classify and train the data. Pham et al. [14]
presented a technique for automated segmentation of TMs
from video-otoscopic imageries that depends on deep fully
CNN. Relies upon the UNet structure, the presented EAR
technique depends on three main paradigms: Residual blocks
for the decoder, EfficientNet for the encoder, and Attention
gate for the skip connection path. The study presents a novel
loss function term for NN to execute segmentation. Mainly,
the author devised to incorporate EfficientNet-B4 into the
UNet encoder part.

In [15], a CNN was utilized for feature extraction to diag-
nose different types of OM from middle ear otoscope images.
Such attributes have been extracted through ResNet-50,
AlexNet, GoogLeNet, and VGG-16 methods. The deep fea-
tures derived from such methods are integrated into novel
deep feature vectors. In this case, a potential feature set was
acquired, and the number of features was decreased. In the
next phase, this novel feature set has been implemented as
the input to the SVM. In [16], a new CAD support tech-
nique depends on the CNN was advanced. To enhance the
generalized capability of the presented technique, integra-
tion of channel and spatial model (CBAM), hypercolumn,
and residual blocks method is entrenched into the presented
technique. Bapi et al. [17] purpose is to define whether
a cat was afflicted with ear mites. This dataset was pre-
cisely collected, processed, and classified to stop conflicts.
A standard DL technique, the CNN, has been exploited for
a higher accuracy rate. This technique has 88 % precision.
The most complex image detection method was CNNs. Singh
and Dutta [18] devise a DL-related approach using CNN
for detecting ear infections. It classifies ear images into four
categories (Myringosclerosis, Chronic otitis media, Normal,
and Earwax plug).

Ill. THE PROPOSED MODEL
In this study, we have concentrated on developing the

BODL-AEIDC technique for intelligent control in the
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healthcare sector. The BODL-AEIDC technique exploits
the DL model with a metaheuristic optimization algorithm
for the ear infection classification process. To accomplish
this, the BODL-AEIDC technique comprises WF-based
noise removal, W-Net segmentation, EfficientNet feature
extraction, FRBM-based classification, and BO-based hyper-
parameter tuning. Fig. 1 demonstrates the overall flow of the
BODL-AEIDC algorithm.

A. IMAGE PRE-PROCESSING

The WF technique is applied in this study for the noise
removal process. WF is a signal processing method that
decreases signal noise [19]. A linear filter depends on the
statistical properties of the noise and signal. WF aims to
predict the signal from its noisy observation by considering
the noise and signal features. The WF is designed between
the noise and signal’s power spectral density (PSD) and the
cross-power spectral density (CPSD). The filter was devised
in the frequency domain and implemented to the noisy signal
to acquire a prediction of the original signal. The WF possess
two dimensions and is analogy to the equation 1.

W (u,v) = F (u, v) * B(u, v) (1)

where, the W(u,v) is the wiener filtering function which is
analogy to the ideal fourier function F(u,v) and the blurring
function b(u,v). In this particular scenario, B takes the form of
a sinc function: if three pixels within a line harbor information
originating from a common point on an image, the resultant
digital image will appear to have undergone convolution with
a three-point boxcar in the temporal domain. In an ideal
situation, it would be possible to deduce a Fest, or F estimate,
provided that the values of W and B are already known. The
fourier function F(u,v) shall be computed using the relation
between the Wiener and the blurring function as defined in
equation 2.

F o = 1B P
0 = G, B

where K(u,v) is the constant function chosen for the purpose
of optimizing the estimated fourier function.

The WF operates by implementing a weighting function to
noisy signals in the frequency domain, where the weighting
function is devised to reduce the mean squared error between
the original signal and its prediction. The weighting function
was a function of the CPSD and PSD of noise and signal and
can be calculated through the Wiener-Hopf equation.

+ K(u,v) (2)

B. W-NET BASED SEGMENTATION

The W-Net model is applied to segment the images. After-
ward, pre-processing and W-net-based segmentation were
performed to obtain a map [20]. This system retains local-
ization and content data utilizing the decoded and encoded
paths. Additionally, edge data was preserved to maintain
consistency and sharpen the image in segmentation. This
network was planned as a progression of the U-Net. Next, one
AE was executed by linking two U-Net topologies. In all the
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u-net, an expansive path (decoder) and a contracting
(encoder) based architecture were performed.

The initial W-net model is a contracting path encompassing
several blocks. The BN and three-stage convolution layers
interspersed with ReLU were the key components. To con-
struct a single convolution block, this essential element was
considered twice. By applying 2 x 2 layers of max-pooling,
the block was joined. The crucial target data could be main-
tained, and the number of variables could be reduced using
max pooling. In the expanding path, the convolution layer
count was 8, increasing from 8 to 128 in the contracting path.

The decoded part was a second-wide path. Convolution
layer and upsampling made up its structures. The input
was upscaled four times in the decoder’s portion, and in
the encoder part, it was downscaled once. To recover lost
information at the time of the convolution and max-pooling
procedures, the feature map from the corresponding feature
map from the decoder module has a concatenated encoder
path. The second part is corresponding to the first; however,
in the first U-Net section, the outcomes of the unit were
positioned at similar levels, and the outcomes of the topmost
pooling layer were merged.

After upsampling the decoder’s final component and the
last amalgamation of the encoder’s primary unit, there is a
further block similar to all others. In that block, an 11 con-
volutional layer, the final layer, and a softmax activation
function were exploited to match feature maps and the desired
number of classes. This technique integrated cross-entropy
loss (CEL) and total-variation loss (CT-loss).

Loss = Lcr—etrp ~+ Liotal—var (3)
K

Ley—erp =L (Srr/z’ pc") == chilog (sri/) @)
i

Liotal—var = L({Sr});;
W—-1H-1

= Z Z ||Sré+1,n =1y
&

STt — st 1
§+1n &

&)

Here, H and W denote the height and width of input
images. The pixel value at that position in standard seg-
mentation map {PC} signifies the pseudo segmentation mask
created by index that maximized the measured segmentation
maps value; {sr;,} specifies the sample n’s normal segmenta-
tion maps. Owing to the features of total-variation loss, the
CT loss support in reducing time and utilizing memory, the
segmentation mask is compressed, negating the necessity for
post processing.

C. EFFICIENTNet FEATURE EXTRACTION

In this stage, the EfficientNet model is utilized to derive
feature vectors. EfficientNet is a set of CNN methods that
attain accuracy on image classification tasks [21] while also
being computationally scalable and efficient. EfficientNet
methods utilize an integration of methods to attain their
efficacy. Compound scaling includes scaling up the width,
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FIGURE 1. Overall flow of BODL-AEIDC algorithm.

depth, and resolution of the network concurrently while pre-
serving a balance between the three. It allows the network to
be more powerful and more efficient. It uses an amalgamation
of mobile inverted bottleneck (MBConv) blocks, convolu-
tional layers, and squeeze-and-excitation (SE) blocks for
reducing computations and requires several parameters. It is
developed through an automated ML (AutoML) technique,
which searches an ample space of possible architectures and
hyperparameters to find the optimum method combination.
Such techniques have attained accuracy on a wide range of
image classifier tasks while being highly efficient regarding
memory usage and computing resources.

D. EAR INFECTION DETECTION USING THE FRBM MODEL
For the ear infection detection process, the FRBM model
is used. FRBM is beneficial and related to the typical
RBM. FRBM proposes higher extraction feature abilities
than classic RBM, as the set-up parameters are fuzzy [22].
If the projected with noisy data, FRBM’s resilience can be
enhanced. The visible layer (VL) and hidden layer (HL)
exist in FRBM. No connections exist among neurons in
similar layers, and every connection occurs among neurons
in other layers. Input data can be transferred to ‘m’ visible
units(v, v, ..., VP), and input data features are extracted
utilizing n’ HLs (hy, hy, ..., HQ).

The fuzzy energy function, E(v, h, 8), is demonstrated by
Eq. (4).
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whereas 0 = {a, b, wg.1} denotes the fuzzy parameters, a, b,
and Wy ; implies fuzzy numbers. a and b signify the biases of
VL and HL; correspondingly, wy ; represents the connection
weighted between the k* visible and /" hidden units. The
fuzzy free energy function can be represented as Eq. (7).

. p
GO = —ane_E(V'h’g) =— Z&vk
k=1

h

_ iln (1 + e(i’+2£=1®"”k)) @)

=1

In which G(v) represents the fuzzy energy function.

Utilizing membership function (MF) can be needed, taking
superior sensitivity and resolution because of smaller param-
eters and the required short fluctuation interval. The fuzzy
number a is defined by Eq. (8).

O,vfaé
L
V—a
i kLa£<v<a£4
a, —a
8a (V) = 1 Z v" (®)
Rk Maﬁ/l<v<ak
Q — a
O,vZaf

whereas ar, a;., and agu signifies right bound, left bound,
and center of connection weight correspondingly. b and Wy
are even attained by the same approaches. Fig. 2 shows the
structure of FRBM.

FRBMs contain VL and HL, which act together optimally
if the parameter can be optimally tuned. The primary function
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develops non-linear as the optimal solution can be turned
into maximal probability questions about fuzzy numbers.
When the primary function is defuzzified, the problem can
be decreased to a predictable maximal probability method.
Some defuzzification systems were obtainable: area bisec-
tor, maximal membership, the center of centroid, and crisp
possibilistic mean value (CPMV). Eq. (9) determines the
defuzzified free energy function once the MF is symmetric.

1
G(v) = / a(G* (@) + GR(a))da
0

o +af
L $did,
k=
Zq: In(1 + ebz +2_ Wivio
= Zak"k — Zln(l + bR+ Wigve)

- Zam - Zln(l + e®REL Wi

-3 [G (v W ) + G (v WE a 5F) ] )

k=11=1

=
LS}

whereas G(V) denotes the defuzzified G(v), Gt (), and
GR(e) implies left and right boundaries of interval
[GE(@), GR(a)] that written the a-cut of fuzzy number
G(a)V.

The probability function of free energy, (v|6) is offered in
Eq. (10).

- =G5
P (v | 9) = (10)
Eve_Gs(V)

The purpose of negative log probability was determined by
Eq. 9).
qr qr
InN(a,6) = —In [ [ POF16) = = > lnP((vk | é) (11)
k=1 k=1
To develop the optimum solution for parameters based on
Eq. (10), the stochastic gradient descent (SGD) method can
be executed in Eq. (9).

mén(—ZInP((wé)) (12)

The partial derivative of In((v|#) can be calculated. The
contrastive divergence can be utilized for approximating par-
tial derivatives of the maximal log probability gradient to
shorten the computation complexity.

E. HYPERPARAMETER TUNING USING BO ALGORITHM

Finally, the BO approach is utilized to adjust the hyperpa-
rameter values of the FRBM method. The BO technique is a
hyperparameter optimization technique [23]. Compared with
the grid and random search process, the BO algorithm finds
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the fittest model parameter more rapidly. All the parameters
are in a specific interval, constituting hyperparameter space.
The predictive accuracy of the model is different for the vari-
ous hyperparameter combinations. The accuracy of the model
gets increased by the optimizer technique, and the estimated
outcome is nearer to the actual value:

num
fx) = M (13)
num
In Eq. (13), num indicates the length of the input time
series. y; denotes the true value, and y(x) shows the forecasted
value. The BO algorithm attains the optimum parameter,
making the target reach a minimal value.
The objective function of the BO algorithm is given by:

x* =arg mi}r(lf (x) (14)

In Eq. (14), x shows the set of hyperparameter
combinations.X denotes the parameter combination, and x*
refers to the better parameter.

The BO algorithm finds new assessment points by increas-
ing the acquisition for weighing the dispersal of evaluation
points and the expansion of predictive accuracy; then, it
re-imports them as input in the method for obtaining novel
output such that it continuously updates and finds model
parameters. Then, the Gaussian function is selected as a
distribution hypothesis, and later, the acquisition function
is used for selecting the next point in the posterior func-
tion. The Gaussian process (GP) was an expansion of
multi-dimensional Gaussian distribution determined by the
mean and covariance. The covariance function of GP was
its kernel function k(x, x’). The kernel function evaluates
distance between, x and x’.

f ) ~GP (,u x),k (x, x/)) (15)
wx)=E[f ()] (16)
E(rr) = E[(F 00— ) ( () — i (¥)] - 17)

Generally, the mean function is fixed to 0; after, the fol-
lowing equation formulates the abovementioned Gaussian
method:

k(x1, x1) ... k(x1, x,) k  k(xx)

Ke=| | as)
k(x,, x1) ... kK(xpxp) k(xx)

The covariance matrix equation can be updated once the

novel set of assessment samples is added to each assessment
point as:

k kT
K1 = (kn ke ) 19
n (Xn+l,xn+1) ( )

kn=[k(Xp41,%1),k(Xn41,X2), « « o, K(Xpg1720)]

By applying the updated covariance matrix, the posterior
probability can be obtained:

P (futt [Pcrtns) ~N (i @).02,0)  (20)
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FIGURE 2. Architecture of FRBM.

FIGURE 3. a) Normal images b) Earwax images.

In Eq. (20), wiy1(x) and ‘71'2+1 (x) represent the variance and
mean of f(x) at i + 1 steps, and D denotes the observation
data.

The function value is sampled from joint posterior distri-
bution via estimating the covariance matrix and mean value.
The sampling function determines the next point that needs
to be estimated to reduce resource consumption and find the
optimum value faster. The UCB function was selected as a
sampling function, and the formula is given below:

1
xiy1 = argmaxH (x| D) = argmaxp (x) + ¢, 01 (x) (21)
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1

In Eq. (21), +1, §i2+1 represent the constant, x;+; denotes
the selected hyperparameter of step i, and H(XD) shows the
UCB acquisition function.

IV. RESULTS AND DISCUSSION
In this section, the ear infection detection and classifica-

tion results of the BODL-AEIDC technique are examined in
detail. Fig. 3 represents the average and earwax images.
Table 1 and Fig. 4 provide the PSNR analysis of the
WF with other pre-processing techniques. The results imply
that the WF reaches increasing PSNR values over other
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TABLE 1. PSNR analysis of WF with other pre-processing approaches.

Samples (%) Wt. Median Filter Adpt. Median Filter HE-ACWM Wiener Filter
30 21.17 20.83 22.49 24.21
IMG-1 40 17.82 22.08 21.89 23.21
50 19.58 22.78 22.09 24.00
30 21.86 24.09 27.01 28.90
IMG-2 40 25.58 23.49 27.33 28.90
50 23.66 25.37 24.04 26.95
30 22.46 23.16 27.10 28.31
IMG-3 40 27.13 25.48 26.10 28.74
50 24.87 25.05 24 .47 26.94
30 21.08 23.84 24.45 26.23
IMG-4 40 2491 29.09 28.52 30.54
50 23.70 23.40 26.28 27.70
30 24.79 26.16 27.07 28.93
IMG-5 40 24.97 27.67 28.30 29.78
50 29.25 28.25 29.68 31.49
30 25.27 25.70 27.20 28.71
IMG-6 40 23.34 29.81 27.69 31.63
50 29.87 30.30 28.93 31.80
TABLE 2. RI analysis of the W-NET model with other segmentation approaches.
Rand Index (RI)

No. of Images ACM GC DWT W-Net

IMG-1 63.36 65.21 71.86 74.79

IMG-2 81.55 87.13 93.02 94.84

IMG-3 48.32 42.29 58.18 60.53

IMG-4 71.61 78.29 82.02 84.19

IMG-5 91.13 90.98 97.66 98.53

IMG-6 79.65 87.39 98.09 98.86

IMG-7 14.02 12.36 26.01 28.60

IMG-8 21.60 24.10 40.52 43.44

IMG-9 77.17 71.99 87.69 90.33

IMG-10 31.96 48.44 50.02 52.07

models. For instance, on IMG-1 with 30% of noise, the WF
obtains an increasing PSNR of 24.21dB while the WME,
AMF, and HE-ACWM models offer decreasing PSNR of
21.17dB, 20.83dB, and 22.49dB, respectively. Concurrently,
on IMG-3 with 30% of noise, the WF gains an increasing
PSNR of 28.31dB while the WMF, AMF, and HE-ACWM
methods offer to decrease PSNR of 22.46dB, 23.16dB, and
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27.10dB correspondingly. Simultaneously, on IMG-6 with
30% of noise, the WF acquires an increasing PSNR of
28.71dB while the WMF, AMF, and HE-ACWM approaches
offer decreasing PSNR of 25.27dB, 25.70dB, and 27.20dB
correspondingly.

The rand index (RI) investigation of the W-Net method
with other segmentation approaches is given in Table 2 and
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FIGURE 4. PSNR analysis of WF with other pre-processing approaches (a-f) IMG 1-6.

Fig. 5. The results demonstrated the effectual performance
of the W-Net model with increasing RI values. For instance,
on IMG-1, the W-Net model offers a higher RI of 74.79.
Meanwhile, on IMG-5, the W-Net model offers a higher RI
of 98.53. Additionally, on IMG-7, the W-Net model offers
a higher RI of 28.60. At last, on IMG-10, the W-Net model
offers a higher RI of 52.07

The segmentation results of the W-Net approach with exist-
ing methods are compared in terms of global consistency
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error (GCE) in Table 3 and Fig. 6. The figure highlights
the improved performance of the W-Net approach over
other segmentation methods. For example, on IMG-1, the
W-NET method obtains a decreased GCE of 43.76%, whereas
the ACM, GC, and DWT models attain increased GCE of
84.67%, 61.61%, and 44.90%, respectively. Followed by
IMG-5, the W-NET approach obtains decreased GCE of
65.38%, whereas the ACM, GC, and DWT models attain
increased GCE of 81.48%, 84.86%, and 66.27%, respectively.
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TABLE 3. GCE analysis of the W-NET model with other existing approaches.

Global Consistency Error (%)

No. of Images ACM GC DWT W-Net
IMG-1 84.67 61.61 44.90 4376
IMG-2 52.54 51.09 40.56 39.78
IMG-3 7.95 10.76 5.65 5.02
IMG-4 72.66 64.23 50.45 49.61
IMG-5 81.48 84.86 66.27 65.38
IMG-6 75.61 55.39 34.49 33.75
IMG-7 38.29 29.77 11.38 10.74
IMG-8 30.94 51.04 40.34 29.80
IMG-9 11.37 30.68 21.31 10.84
IMG-10 39.36 21.44 13.07 12.01
1
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FIGURE 5. RI analysis of the W-Net model with other segmentation
approaches.
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FIGURE 6. GCE analysis of the W-Net model with other existing
approaches.

In addition, on IMG-7, the W-NET method obtains a
decreased GCE of 10.74%, whereas the ACM, GC, and DWT
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FIGURE 7. VI analysis of the W-Net model with other existing approaches.

approaches attain increased GCE of 38.29%, 29.77%, and
11.38%. Lastly, on IMG-10, the W-NET approach obtains
a decreased GCE of 12.01%, whereas the ACM, GC, and
DWT methods attain increased GCE of 39.36%, 21.44%, and
13.07%.

The segmentation results of the W-Net model with existing
techniques are compared in terms of variation of information
(VI) in Table 4 and Fig. 7.

The figure showcased the improved performance of the
W-Net model over other segmentation approaches. For
instance, on IMG-1, the W-NET model obtains a decreased
VI of 3.5245, whereas the ACM, GC, and DWT models
attain increased VI of 5.4044, 5.3364, and 4.2965, respec-
tively. Followed by, on IMG-5, the W-NET approach gains
decreased VI of 4.0581 whereas the ACM, GC, and DWT
techniques attain increased VI of 6.4182, 6.4491, and 4.5611
correspondingly. In addition, on IMG-7, the W-NET tech-
nique obtains a decreased VI of 1.5022, whereas the ACM,
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TABLE 4. VI analysis of the W-NET model with other existing approaches.

Variation of Information (VI)

No. of Images ACM GC DWT ‘W-Net
IMG-1 5.4044 5.3364 42965 3.5245
IMG-2 9.1727 6.5313 3.6129 2.8859
IMG-3 6.3235 6.5067 5.5734 4.4244
IMG-4 8.8174 7.4397 2.9853 2.4263
IMG-5 6.4182 6.4491 4.5611 4.0581
IMG-6 6.1507 73133 3.9414 3.0164
IMG-7 8.4553 6.9978 2.6412 1.5022
IMG-8 8.7956 5.9202 3.6194 2.7584
IMG-9 7.9241 7.5572 47665 3.8075
IMG-10 8.7836 6.5992 4.0505 3.4885
TABLE 5. Details of the dataset.
Class No. of Instances
Normal (Class-0) 100
AOM (Class-1) 100
Total Number of Instances 200
TABLE 6. Classifier outcome of BODL-AEIDC Approach on 70:30 of TRP/TSP.
Class Accu, Prec, Reca,; Ficore MCC SSIM Cii?;ggnt Co%?ggaent
Training Phase (70%)
Class-0 88.89 84.85 88.89 86.82 75.65 79.21 33.21 34.24
Class-1 87.01 90.54 87.01 88.74 75.65 7825 34.02 3328
Average 87.95 87.69 87.95 87.78 75.65 78.73 33.61 33.76
Testing Phase (30%)
Class-0 97.30 100.00 97.30 98.63 96.56 83.25 34.74 34.26
Class-1 100.00 95.83 100.00 97.87 96.56 9176 33.48 32.85
Average 98.65 97.92 98.65 98.25 96.56 87.50 35.69 34.85

GC, and DWT models attain increased VI of 8.4553, 6.9978,
and 2.6412, respectively. Finally, on IMG-10, the W-NET
algorithm gains decreased VI of 3.4885, whereas the ACM,
GC, and DWT methods attain increased VI of 8.7836, 6.5992,
and 4.0505 correspondingly. The classification outcomes of
the BODL-AEIDC technique are determined with the dataset,
comprising 200 samples and two classes, as represented in
Table 5.
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In Fig. 8, the confusion matrices of the BODL-AEIDC
technique is illustrated. On 70% of TRP, the BODL-AEIDC
technique recognizes 56 instances into class-0 and
67 instances into class-1. Meanwhile, on 30% of TSP, the
BODL-AEIDC method recognizes 36 instances into class-0
and 23 instances into class-1. Moreover, on 80% of TRP,
the BODL-AEIDC algorithm recognizes 73 instances into
class-0 and 79 instances into class-1.
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FIGURE 8. Confusion matrices of BODL-AEIDC approach (a-b) 70:30 of TRP/TSP and (c-d) 80:20 of

TRP/TSP.

TABLE 7. Classifier outcome of BODL-AEIDC approach on 80:20 of TRP/TSP.

Clas decu,  preg, Reca For Mee B eient Cosfhmient
Training Phase (80%)
Class-0 92.41 97.33 92.41 94.81 90.11 88.68 34.69 36.48
Class-1 97.53 92.94 97.53 95.18 90.11 89.59 35.95 35.74
Average 94.97 95.14 94.97 94.99 90.11 89.13 3532 36.11
Testing Phase (20%)
Class-0 95.24 100.00 95.24 97.56 95.12 90.58 36.44 39.48
Class-1 100.00 95.00 100.00 97.44 95.12 91.65 37.29 36.75
Average 97.62 97.50 97.62 97.50 95.12 9L11 36.86 38.11
In Table 6, the overall classifier results of the Concurrently, on 30% of TSP, the BODL-AEIDC method

BODL-AEIDC technique are shown. The results indicate
that the BODL-AEIDC technique classified two classes effi-
ciently. For instance, on 70% of TRP, the BODL-AEIDC
technique gains average accuy of 87.95%, prec,, of 87.69%,
reca; of 87.95%, Fycore of 87.78%, and MCC of 75.65%.
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gains average accuy of 98.65%, prec, of 97.92%, reca; of
98.65%, Fcore 0f 98.25%, and MCC of 96.56%.

Table 7 shows the overall classifier results of the
BODL-AEIDC technique. The results indicate that the
BODL-AEIDC method classified two classes efficiently. For
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FIGURE 9. (a-c) Accuracy curve on 70:30 and 80:20 and (b-d) Loss curve on 70:30 and 80:20.

TABLE 8. Comparative outcome of BODL-AEIDC approach with other existing techniques.

Methods Accu,, Prec, Reca, Fscore
BODL-AEIDC 98.65 97.92 98.65 98.25
SVM 96.75 95.40 96.77 95.60
XGBoost 96.14 96.19 96.35 95.47
ELM 95.90 95.60 95.88 96.49
AlexNet 96.05 96.32 96.76 95.69
KNN 96.74 96.97 95.91 96.29

instance, on 80% of TRP, the BODL-AEIDC approach gains TSP, the BODL-AEIDC approach acquires average accuy, of
average accuy of 94.97%, prec,, of 95.14%, reca; of 94.97%, 97.62%, precy, of 97.50%, reca; of 97.62%, Fscore of 97.50%,
Fscore 0 94.99%, and MCC of 90.11%. In parallel, on 20% of and MCC of 95.12%.
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FIGURE 10. Comparative outcome of BODL-AEIDC approach with other
existing techniques.

Fig. 9 reveals the classifier results of the method on 70:30
and 80:20. Figs. 9a-9c reveals the accuracy analysis of the
BODL-AEIDC technique under 70:30 and 80:20. The figure
shows that the BODL-AEIDC approach reaches increasing
accuracy values over increasing epochs. Also, the increas-
ing validation accuracy over training accuracy displays that
the BODL-AEIDC approach learns efficiently on the test
dataset. Lastly, Figs. 9b-9d exemplifies the loss study of the
BODL-AEIDC method under 70:30 and 80:20. The results
specify that the BODL-AEIDC method reaches closer train-
ing and validation loss values. The BODL-AEIDC approach
learns efficiently on the test dataset.

A comparative result analysis of the BODL-AEIDC
method with other existing models is given in Table 8 and
Fig. 10 [24]. The figure indicates that the ELM approach
reaches lower performance over other models. At the same
time, the SVM, XGBoost, AlexNet, and KNN models obtain
slightly increasing outcomes. However, the BODL-AEIDC
technique outperforms the existing ones with maximum
accu_y of 98.65%, prec_n of 97.92%, reca_l of 98.65%,
and F_score of 98.25%. These results stated the improved
performance of the BODL-AEIDC technique.

V. CONCLUSION

In this article, we have concentrated on developing the
BODL-AEIDC technique for intelligent control in the health-
care sector. The presented BODL-AEIDC technique exploits
the DL model with a metaheuristic optimization algorithm
for the ear infection classification process. To accomplish
this, the BODL-AEIDC technique comprises WF-based noise
removal, W-Net segmentation, EfficientNet feature extrac-
tion, FRBM-based classification, and BO-based hyperparam-
eter tuning. The BO algorithm is utilized to effectively adjust
the hyperparameter values of the FRBM method, which in
turn improves the classification results. The experimental
outcomes of the BODL-AEIDC algorithm take place using
the medical dataset. The comprehensive comparison study
stated the enhanced performance of the BODL-AEIDC tech-
nique over other methods. The performance of the proposed
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work yields a better level of accuracy with 98.65%, 97.92%
of precision, 98.65% of recall and 98.25% of F score.
In the upcoming years, the performance of the BODL-AEIDC
algorithm can be enhanced with the feature fusion-based DL
models. In addition, the performance of the proposed work
shall further be enhanced with the inclusion of fuzzy logic or
Artificial Intelligence algorithms for classification with better
level of accuracy.
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