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ABSTRACT Residential energy consumption is rapidly increasing every year due to demographic and
behavioral changes, such as the rising population and the adoption of work-from-home post-COVID-19.
High energy consumption emits a substantial amount of carbon dioxide and other Greenhouse Gases,
contributing to global warming. It becomes crucial to accurately predict residential load. To enable smart
home electricity consumption control, as well as efficient generation, planning, and usage, we predict
household energy consumption at very short-term, short-term, and medium-term forecast levels using
univariate andmultivariate time series data. This study assesses the impact of different household units (water
heater and air conditioning), areas (kitchen, laundry, office, living room, bathroom, ironing room, teenager
room, and parents’ room), and time (i.e., hour, day, andmonth) on energy consumption. Comparative analysis
and numerical experimental results between the most used approaches, Support Vector Regression and
Long Short-Term Memory, reveal that the former outperforms the latter across all forecast levels using
different datasets. The findings of this paper will be useful to energy companies and household owners
in enhancing energy efficiency and earning carbon credits by reducing the emission of carbon dioxide and
other Greenhouse Gases.

INDEX TERMS Carbon credit, carbon emission, deep learning, energy consumption prediction, energy
efficiency, forecast levels, Jensen-Shannon divergence, load forecasting, greenhouse gases (GHGs), long
short-term memory (LSTM), machine learning, residential building energy consumption, root mean square
error (RMSE), support vector regression (SVR), symmetric mean absolute percentage error (sMAPE), time
series forecasting.

I. INTRODUCTION
A large proportion of global energy consumption comes
from residential buildings. A report by the International
Energy Agency shows that worldwide residential energy con-
sumption has increased from 1203 Terawatt-hours (TWh) in
1974 to 6072 TWh in 2019, an increase of 404.74% [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Christos Anagnostopoulos .

In 2021, the residential sector accounted for 27% of the final
energy consumption in the EuropeanUnion, with themajority
being used for space heating (i.e., 64.4%) followed by water
heating (14.5%), lighting and electrical appliances (13.6%),
cooking (6.0%), other uses (1.1%), and space cooling (0.5%)
[2]. According to the Australian Government Department
of Climate Change, Energy, the Environment, and Water,
residential buildings in Australia account for 24% of overall
electricity use and over 10% of the total carbon emission
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in the country [3]. Household electric energy demand and
usage are significantly influenced by three factors: 1) envi-
ronmental considerations (i.e., global warming and climatic
change) [4], 2) technological and economic development
(i.e., energy-efficient lighting and cooling equipment), and
3) social and demographic behaviors (i.e., work from home
post-pandemic [5] and population growth [6]).

The daily household energy consumption is not constant
and exhibits peaks and valleys depending on the time of
day, day of the week, and month of the year [7]. These
irregular demand curves do not align well with energy gen-
eration. Disproportionate generation of energy compared to
the actual demand might result in blackouts if generated
energy is less than the demand, or energy leaks if gen-
erated energy exceeds the demand [6], [7]. Furthermore,
inefficient energy consumption leads to the accumulation
of carbon dioxide and other Greenhouse Gases (GHGs) in
the atmosphere, contributing to global warming and climate
change [8]. To reduce global warming, the Kyoto Protocol [9]
includes provisions that limit the emission of carbon diox-
ide and other GHGs using carbon credits, where one credit
permits one ton of emission [10]. Businesses exceeding their
carbon credit quotas should purchase extra credits for excess
emissions, whereas those below can exchange or sell their
credits [11].

Consequently, energy load forecasting becomes crucial for
efficient energy generation and reducing carbon emissions.
It aids the electricity-generating companies in predicting the
required amount of energy to achieve a dynamic demand-
supply equilibrium, plan for energy storage alternatives, and
reduce energy costs [12]. In addition, forecasting at the
sub-meter or appliances level can inform household owners
about the areas of the house or appliances that will consume
the most energy. This enables owners to proactively man-
age the use of areas or appliances in the home for energy
efficiency [13]. Furthermore, accurate predictions will allow
companies and household owners to earn carbon credits by
improving energy efficiency.

Based on the time horizon of prediction, load forecast-
ing can be classified into five different levels [14], [15],
[16], [17]. (1) Very Short-Term Load Forecasting (VSTLF)
focusing on a few minutes to an hour ahead prediction for
production and management of daily electric load demand,
as well as the prevention of blackouts. (2) Short-Term Load
Forecasting (STLF) focusing on hourly, daily, or weekly
ahead prediction for planning the production, transmission,
and distribution of electric power. (3) Medium-Term Load
Forecasting (MTLF) focusing on a few months to one
year ahead prediction for planning major tests and mainte-
nance schedules. (4) Long-Term Load Forecasting (LTLF)
focusing on one year up to five years ahead prediction
for national planning, investment, and the evaluation of
energy contract prices. (5) Very Long-Term Load Forecasting
(VLTLF) focusing on more than five years ahead predic-
tion for scheduling the construction of new electric load

generating units and planning environmental policies (such
as looking up for renewable sources in case of high load
forecast).

Energy consumption of a residential building can be fore-
casted either based on the previous timestamped energy
consumption values (i.e., univariate time series) or based on
other timestamped variables such as power, voltage, current,
and weather conditions (i.e., multivariate time series) [18],
[19]. The time series data is recorded over a fixed time
interval (i.e., every minute, hour, day, week, month, year,
etc.). Several works in literature have used different machine
learning and deep learning approaches to forecast residential
energy load by identifying energy consumption patterns in the
time series data [6], [7], [8], [12], [13], [20], [21], [22], [23],
[24], [25], [26], [27]. However, most of these works focus
on a single forecast level [6], [7], [12], [13], [20], [21], [24],
[25], [26], [27]. In this paper, we compare the performance
of the two most used forecasting approaches in the literature,
LSTM [28] and SVR [29], for three forecast levels, i.e.,
VSTLF, STLF, and MTLF. This is done by using publicly
available Individual Household Electric Power Consump-
tion (IHEPC) [30] and Appliances Energy Prediction (AEP)
[21] datasets. The main contributions of this paper are as
follows.

• We provide insights into the most consuming units and
areas in the household based on the energy temporal
distribution, trend, and seasonality.

• We evaluate the performance of the most used fore-
cast approaches for VSTLF (every hour), STLF (every
day and week), and MTLF (every month and quarter)
forecast levels using the IHEPC dataset and for VSTLF
(every 10 minutes and hour) and STLF (every day and
week) forecast levels using the AEP dataset.

• We analyze the impact of global and household area-
wise (i.e., kitchen, laundry, and heating and cooling)
forecasts on the performance of learning algorithms
under study with different forecast granularity for the
IHEPC dataset.

• We analyze the impact of appliances’ energy consump-
tion forecast on the performance of learning algorithms
with different forecast granularity for the AEP dataset.

• The performance of the algorithms is evaluated in
terms of Symmetric Mean Absolute Percentage Error
(sMAPE), Root Mean Square Error (RMSE), and
Jensen-Shannon divergence.

The rest of the paper is organized as follows. Section II
overviews the related work. The datasets, forecasting lev-
els, and the learning algorithms employed in this study are
described in Section III. Section IV presents the correlation
among dataset features, their temporal dispersion, trends,
and seasonality for each dataset. Numerical experiments and
comparative performance results are provided in Section V.
Finally, Section VI concludes the paper with future research
directions.
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TABLE 1. Work on residential energy load forecasting in the literature.

II. RELATED WORK
Table 1 summarizes the works on machine learning and deep
learning-based energy load forecasting [6], [7], [8], [12],
[13], [20], [21], [22], [23], [24], [25], [26], [27]. It presents
the dataset(s) used by these works, the forecast level (i.e.,
VSTLF, STLF, MTLF, LTLF, and VLTLF), the implemented
algorithms, and the considered evaluation metrics. As stated
in the table, most works perform a single forecast level [6],
[7], [12], [13], [20], [21], [24], [25], [26], [27]. In particular,
[6], [7], [13], [21], [24], [26], [27] focus on VSTLF, [12],
[25] on STLF, and [20] on MTLF. In contrast, [22] imple-
ments different learning algorithms for VSTLF and STLF,
whereas [23] evaluated the performance of learning algo-
rithms for VSTLF, STLF, and LTLF. Table 2 describes the
datasets used by the works in literature, along with the data
collection period, number of records, and considered features.
As presented in the table, works [8], [12], [13], [20], [25],
[26] use a private/customized dataset for load forecasting,

whereas [6], [7], [21], [22], [23], [24], [27] use publicly
available datasets.

Based on Table 1, it is evident that LSTM and SVR are
the most used learning algorithms for all forecast levels.
However, these two algorithms are compared in a unified
setup for only VSTLF [24]. Furthermore, the dataset used
to evaluate these algorithms is relatively small (>10,000
records) compared to the other publicly available datasets
(Table 2). In this paper, we address this void by comparing
the performances of LSTM and SVR for VSTLF, STLF,
and MTLF using publicly available IHEPC (with the highest
number of records) and AEP (with the highest number of
records including appliances’ energy consumption) datasets.

III. METHODOLOGY
A. DATASETS
The Individual Household Electric Power Consumption
(IHEPC) dataset [30] by Hebrail and Berard and the

55634 VOLUME 12, 2024



L. Ismail et al.: Machine Learning Data-Driven Residential Load Multi-Level Forecasting

TABLE 2. Datasets used for energy load forecasting in the literature.
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TABLE 2. (Continued.) Datasets used for energy load forecasting in the literature.

TABLE 3. Characteristics of the datasets used in the experiments.

TABLE 4. IHEPC dataset features and their description.
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TABLE 5. AEP dataset features and their description.

Appliances Energy Prediction (AEP) dataset [21] are used to
evaluate the performance of electric load forecasting models.
The IHEPC dataset is selected because it contains the highest
number of records with sub metering energy consumption
data, while the AEP dataset is selected because it contains
the highest number of records with appliances’ energy con-
sumption data (Table 2). The characteristics of the datasets
are described in Table 3. Tables 4 and 5 present the description
and statistical information of the IHEPC and AEP datasets
respectively. As depicted in the tables, both datasets are mul-
tivariate time series. Before preprocessing, each record in the
IHEPC dataset consists of 9 features, whereas each record in
the AEP dataset consists of 29 features. We preprocessed the
IHEPC dataset by combining the ‘Date’ and ‘Time’ features
into a ‘Timestamp’ and removing the records with missing
values. In total, we removed 25,797, i.e., 1.25% of the total
records. The AEP dataset has no missing values. The ‘Sub

metering 1’, ‘Sub metering 2’, ‘Sub metering 3’, and ‘Global
active power’ are predicted for the IHEPC dataset, whereas
the ‘Appliances’ energy consumption is predicted for theAEP
dataset.

B. FORECASTING LEVEL
The IHEPC dataset is used to forecast electricity load for
three different forecast levels: 1) VSTLF, 2) STLF, and
3) MTLF. This is through downsampling the dataset by
decreasing the frequency of the recordings. In particular, for
VSTLF level, IHEPChour dataset is created by downsampling
the IHEPC dataset fromminutes to hours sampling frequency.
This is done by aggregating the recordings sampled every
minute in the dataset for each hour. Similarly, for STLF,
IHEPCday and IHEPCweek datasets are created by downsam-
pling the IHEPC dataset to days and weeks sampling frequen-
cies respectively. For MTLF, IHEPCmonth and IHEPCquarter
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FIGURE 1. Frequency of learning algorithms used in literature for energy load forecasting (ANN: Artificial Neural Network; CNN: Convolutional
Neural Network; CRBM: Conditional Restricted Boltzmann Machines; DT: Decision tree; EMD: Empirical Mode Decomposition; EWT: Empirical
Wavelet Transform; FCNN: Fully Connected Neural Network; GBM: Gradient Boosting Machine; LR: Linear Regression; LSSVR: Least Square Support
Vector Regression; LSTM: Long Short-Term Memory; MetaFA: Meta Firefly Algorithm; MLP: Multilayer Perceptron; MLR: Multiple Linear Regression;
NN: Neural Network; RF: Random Forest; RKF: Recontextualized Kalman Filter; RNN: Recurrent Neural Network; SARIMA: Seasonal Autoregressive
Integrated Moving Average; SSA-PLSTM: Singular Spectrum Analysis - Parallel LSTM; SVR: Support Vector Regression; SWT: Stationary Wavelet
Transform; VMD: Variational Mode Decomposition.

datasets are created by downsampling the IHEPC dataset to
months and quarters sampling frequencies respectively. The
resulting IHEPChour , IHEPCday, IHEPCweek , IHEPCmonth,
and IHEPCquarter datasets consist of 34589, 1442, 207, 48,
and 17 records respectively. In this study, LTLF for the
IHEPC dataset is not considered as downsampling the dataset
to yearly sampling frequency would result in a dataset con-
taining only 5 records, with 4 records allocated for training
and 1 for validation. Having only 1 record for validation leads
to unreliable performance evaluation of a forecasting model.
Furthermore, VLTLF for the IHEPC dataset is not considered

as the dataset collected over 4 years cannot be downsampled
to a frequency greater than 5 years.

The AEP dataset is used to forecast appliances’ energy
for two forecast levels: 1) VSTLF and 2) STLF. VSTLF
level involves both minute and hourly predictions. For minute
predictions, the AEP dataset is used as it is, while for hourly
predictions, AEPhour dataset is created by downsampling the
AEP dataset from minutes to hours sampling frequency. This
is done by aggregating the recordings sampled every 10 min-
utes in the dataset for each hour. Similarly, for STLF, AEPday
and AEPweek datasets are created by downsampling the AEP
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dataset to days and weeks sampling frequencies respectively.
The resulting AEPhour , AEPday, and AEPweek datasets consist
of 3290, 138, and 20 records respectively. In this study,
MTLF, LTLF, and VLTLF levels for the AEP dataset are not
considered as the dataset collected over 4.5 months cannot be
downsampled to quarterly or yearly frequencies.

C. ENERGY LOAD FORECASTING ALGORITHMS
In this section, we explain machine learning and deep algo-
rithms under study for energy load forecasting. We evaluate
the performance of LSTM and SVR algorithms as they are the
most used approaches for VSTLF, STLF, MTLF, and LTLF
in literature as shown in Figure 1.

1) LONG SHORT-TERM MEMORY (LSTM)
Long Short-Term Memory (LSTM) is a type of recurrent
neural network model [28] that consists of gate structures and
memory blocks to recognize temporal dependency between
time-series load forecasting datasets. It solves the issue
of vanishing or exploding gradient problems [36] while
updating the weights to effectively learn long-term temporal
structures. The main components of the LSTM network are
the memory cell (also referred to as cell state) and the gates
as depicted in Figure 2.

FIGURE 2. Structure of Long Short-Term Memory (LSTM) network.

The cell state transfers relevant information to the chain
of neural networks while gates aid in removing or adding
specific information to the internal state by controlling the
update of the cell state. There are three different types
of gates in an LSTM cell; 1) Forget gate that decides on
which information should be removed, 2) Input gate that
selects values from the input to update the memory state, and
3) Output gate that decides on the output or next hidden state
value.

2) SUPPORT VECTOR REGRESSION (SVR)
Support Vector Regression (SVR) [29] is an extension of Sup-
port Vector Machine (SVM) to solve regression problems.
It uses support vectors to define a hyperplane (i.e., the best-fit
line) that includes the maximum number of recordings from
the dataset. Support vectors are the recordings in the dataset
that are closest to the hyperplane and removing them from
the dataset will change the position of the hyperplane. For
datasets with non-linearity, SVR uses a kernel function that
transforms the dataset space into a higher dimension, without
increasing the computational cost, to find a hyperplane. Dif-
ferent types of kernel functions are linear, polynomial, and
Radial Basis Functions (RBF).

IV. DATA EXPLORATION
In this section, for each dataset under study, we analyze
the correlations between the dataset features and examine
the temporal distribution of these features for different time
horizons. In addition, we decompose each feature to identify
the underlying data trend and seasonality.

A. IHEPC DATASET
1) FEATURES CORRELATION
Figure 3 illustrates the Pearson correlation coefficients [37]
between the features in the dataset under study. As depicted,
global active power is tightly correlated with global current
intensity. This relationship is intuitive, given that higher cur-
rent intensity corresponds to increased power consumption.
Compared to the kitchen area (Sub_metering_1) and the laun-
dry area (Sub_metering_2), the energy consumption of the
air conditioner and electric water heater (Sub_metering_3)
exhibits a stronger correlation with global active power con-
sumption. No systematic association is found between the
energy consumption of the kitchen area, laundry area, and air
conditioning and water heater.

FIGURE 3. Pearson correlation between features in the IHEPC dataset.
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FIGURE 4. Hourly, weekly, and monthly variations in global active power.

FIGURE 5. Hourly, weekly, and monthly variations in global intensity.

FIGURE 6. Hourly, weekly, and monthly variations in global reactive power.

2) TEMPORAL DISPERSION OF DATASET FEATURES
Figures 4 – 10 show the temporal variation of the features
in the IHEPC dataset across three different time horizons:
(i) intra-day variations over hours, (ii) weekly variations over
days of the week, and (iii) seasonal variations over months.
As depicted in Figure 4, the distribution of global active
power consumption is positively skewed. Power consumption
remains constant with the least median between 01:00 a.m.
and 05:00 a.m., corresponding to the sleeping hours of the

individuals in the house from which the data is collected.
As the day begins, the power consumption slightly increases
at 06:00 a.m. and spikes at 07:00 a.m., potentially due to
the use of the kitchen area during breakfast. Throughout
the day (office/school hours), power consumption gradually
decreases until 03:00 p.m. As people return home from
work or school, power consumption gradually increases after
04:00 p.m. with the maximum median at 08:00 p.m. and
09:00 p.m. (i.e., dinner time). Consumption then decreases
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FIGURE 7. Hourly, weekly, and monthly variations in voltage.

FIGURE 8. Hourly, weekly, and monthly variations in sub metering 1 (i.e., kitchen area).

FIGURE 9. Hourly, weekly, and monthly variations in sub metering 2 (i.e., laundry area).

until midnight. Concerning the days of the week, the median
power consumption is almost the same for all the days,
with a slightly higher value on Saturdays, likely due to
the weekend. On a seasonal basis, the median power con-
sumption decreases from January, reaching its minimum in
August, after which it increases. High power consumption in
November, December, January, February, andMarch is due to
the end of fall and the entire winter season in France, leading

to increased use of water heaters. A similar temporal variation
is observed for global intensity as shown in Figure 5. This is
because global active power and global intensity are highly
correlated (Figure 3).

As shown in Figure 6, the distribution of global reac-
tive power consumption is positively skewed. The median
global reactive power remains constant from midnight until
06:00 p.m., increases to the maximum at 07:00 p.m., and
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FIGURE 10. Hourly, weekly, and monthly variations in sub metering 3 (i.e., air conditioner and electric water heater).

then decreases until 11:00 p.m. It remains nearly constant
throughout the week. The median global reactive power
almost remains constant over months, with a slightly higher
median in July, August, and September. Figure 7 reveals
that voltage follows a normal distribution with almost equal
whisker lengths on both sides of each box. The voltage main-
tains a constant median between midnight and 03:00 a.m.,
with a slight dip at 01:00 a.m. It slightly decreases until
05:00 a.m., remains steady at 06:00 a.m., and then drops
at 7 a.m. during breakfast time. From 08:00 – 11:00 a.m.,
the median voltage remains constant, increases in the after-
noon until 03:00 p.m., and then decreases to the lowest
median at 07:00 p.m. The median voltage is the highest
at 11:00 p.m. During the days of the week, the median
voltage remains almost constant. Regarding seasonal vari-
ations, the median voltage is highest in December and
January, lowest in May, and remains constant from June
to September (i.e., summer season and the beginning of
fall).

Figures 8 –10 reveal the positively skewed variation distri-
butions for sub metering 1 (i.e., kitchen area), sub metering 2
(i.e., laundry area), and sub metering 3 (i.e., air conditioner
and electric water heater) respectively. As shown in Figure 8,
the median energy consumption for the kitchen area remains
almost zero throughout the day. Moreover, the median for
every hour, except at 09:00 p.m., coincides with the first and
third quartiles of the box plot, indicating consistently low
and identical energy consumption values. On the other hand,
at 09:00 p.m., the median energy consumption aligns with
the first quartile, revealing that a large proportion of energy
consumption values is low and identical, with a few data
points representing higher energy consumption. This might
be due to the use of a dishwasher after dinner. The median
energy consumption remains near zero throughout the week
and over the months. Regarding the laundry area (Figure 9),
a significant proportion of energy consumption data points
are low and likely identical throughout the day, except from
05:00 a.m. – 07:00 a.m., where all data points are low and
probably identical. The median energy consumption for sub
metering 2 remains constant over the weeks and months.

However, compared to the rest of the months, all energy
consumption data points are low for December, January, and
February. A smaller proportion of energy consumption data
with higher values from March – November might be due to
the use of a refrigerator and washing machine during spring,
summer, and fall, which might not be the case in winter.
As shown in Figure 10, for sub metering 3, the median energy
consumption is near zero from midnight till 06:00 a.m. due
to the electric water heater being idle during the nighttime.
Energy consumption increases from 07:00 a.m. – 11:00 a.m.
due to the use of a water heater. From noon till 11:00 p.m., the
median energy decreases. Concerning days of the week, the
median energy consumption remains constant. The median
energy consumption over the months remains constant. For
July and August, a large proportion of energy consumption
data points are high and probably identical. However, for
the remaining months, a large proportion of energy con-
sumption data points are low and probably identical. This is
because of the use of air conditioning during July and August
(i.e., summer in France).

3) TRENDS AND SEASONALITY OF THE FEATURES DATA
DISTRIBUTION
We decompose each feature of the IHEPC dataset to identify
trends and seasonality in the time series data. For each fea-
ture, the data is decomposed into 4 components: 1) observed
data representing the average values of the data series,
2) trend, indicating an increasing or decreasing behavior of
data series over time, 3) seasonality representing repeating
cycles or patterns of behavior over time, and 4) residual show-
ing random variation in the time series. The dataset under
study contains more than 2 million data points sampled every
minute. For better visualization of decomposed components,
we resampled the dataset with monthly frequency by adding
minutely sampled data for each month. We then performed
data decomposition on the resampled dataset.

Figure 11 shows the decomposed data for global active
power. Active power consumption has an increasing trend
until January 2008, followed by a decrease until July 2008,
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FIGURE 11. Data decomposition of global active power.

FIGURE 12. Data decomposition of global intensity.

FIGURE 13. Data decomposition of global reactive power.

after which it becomes almost constant. Furthermore, global
active power shows a strong component of seasonality. At the
beginning of each year, power consumption decreases until
August and then increases until December. The decrease in
power consumption towards August is due to the weather
in France, with spring occurring from March to May, fol-
lowed by summer from June to August. Consequently, every
year during these months the use of an electric water heater
is reduced, leading to low power consumption. Similar
data trend and seasonality are observed for global intensity
(Figure 12) as active power and intensity are highly correlated
(Figure 3). Global reactive power, depicted in Figure 13,
exhibits an increasing trend with seasonality similar to that of
global active power. Figure 14 shows the decomposed com-
ponents for voltage, with a near-constant trend with strong
seasonality.

Figures 15 –17 present the decomposed component for sub
metering 1 (i.e., kitchen area), sub metering 2 (i.e., laundry
area), and sub metering 3 (i.e., air conditioner and electric

FIGURE 14. Data decomposition of voltage.

FIGURE 15. Data decomposition of sub metering 1.

FIGURE 16. Data decomposition of sub metering 2.

FIGURE 17. Data decomposition of sub metering 3.

water heater) respectively. As shown in Figure 15, the energy
consumption of the kitchen area displays a decreasing trend
over time, possibly due to the reduced use of dishwashers and
microwaves over the years or the adoption of energy-efficient
electrical equipment. The consumption, however, demon-
strates a strong seasonality. The energy consumption of the
laundry area exhibits a decreasing trend until 2008 and
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FIGURE 18. Pearson correlation between features in the AEP dataset.

then becomes constant for the remaining period as shown
in Figure 16. Regarding air conditioning and electric water
heater (i.e., sub metering 3), energy consumption shows an
increasing trend (Figure 17), possibly due to global warming
leading to increased use of air conditioning in summer and
electric water heaters inwinter. Submetering 3 shows a strong
seasonality with a fixed period, i.e., January – December.

B. AEP DATASET
1) FEATURES CORRELATION WITH APPLIANCES’ ENERGY
CONSUMPTION
Figure 18 shows the Pearson correlation coefficients [37]
between the features in the AEP dataset. As depicted, the
temperatures in the kitchen area (T1), living room area (T2),
laundry room area (T3), office room (T4), bathroom (T5),
outside the building on the north side (T6), ironing room
(T7), teenager room 2 (T8), parents’ room (T9), outside

from the weather station (To), and dew point temperature
(Tdewpoint) have significant positive correlations with each
other. Temperatures ‘T6’ and ‘To’ display a total positive
correlation of 1, which is intuitive as both represent the
temperature outside the house. Furthermore, the humidities in
kitchen area (RH_1), living room area (RH_2), laundry room
area (RH_3), office room (RH_4), ironing room (RH_7),
teenager room 2 (RH_8), and parents’ room (RH_9) show
significant positive correlations with each other and weak
positive correlations with the humidities in bathroom (RH_5),
outside the building on north side (RH_6). Humidity outside
the house (RH_out) represents strong positive correlations
with ‘RH_2’, ‘RH_6’, and ‘RH_8’, whereas weak positive
correlations with ‘RH_1’, ‘RH_3’, ‘RH_4’, ‘RH_5’, ‘RH_7’,
and ‘RH_9’.

Regarding the correlation between humidities and temper-
atures, the following observations can be made: (i) ‘RH_1’
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FIGURE 19. Hourly, weekly, and monthly variations in appliances’ energy.

FIGURE 20. Hourly, weekly, and monthly variations in light fixtures energy.

FIGURE 21. Hourly, weekly, and monthly variations in T1 (i.e., kitchen area).

has weak positive correlations with ‘T1’, ‘T2’, ‘T3’, ‘T5’,
‘T6’, and ‘To’, (ii) ‘RH_4’ and ‘RH_9’ both have weak
positive correlations with ‘T1’, ‘T6’, and ‘To’, (iii) ‘RH_7’
has weak positive correlations with ‘T2’, ‘T3’, ‘T6’, and ‘To’.
Moreover, appliances and light fixtures energy consumptions
show a weak positive correlation, and random variables ‘rv1’
and ‘rv2’ have a correlation of 1. On the other hand, outside
humidities (RH_6 and RH_out) demonstrate a strong neg-
ative correlation with the temperatures in the kitchen area,

living room area, laundry room area, office room, bathroom,
north side of the house, teenager room 2, parents’ room, and
outside the weather station. This is because when the humid-
ity outside the house increases, the temperature decreases due
to an increase in moisture content in the air.

2) TEMPORAL DISPERSION OF DATASET FEATURES
Figures 19 – 46 provide insights into the temporal variations
of the AEP dataset features for three different time horizons:
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FIGURE 22. Hourly, weekly, and monthly variations in RH_1 (i.e., kitchen area).

FIGURE 23. Hourly, weekly, and monthly variations in T2 (i.e., living room area).

FIGURE 24. Hourly, weekly, and monthly variations in RH_2 (i.e., living room area).

(i) intra-day variations over hours, (ii) weekly variations over
days of the week, and (iii) seasonal variations over months.
As shown in Figure 19, the appliances’ energy consumption
from 08:00 p.m. till 07:00 a.m. follows a normal distribution,
with nearly equal whisker lengths on both sides of each box.
Conversely, from 08:00 a.m. to 07:00 p.m. the distribution is
positively skewed. The energy consumption remains constant
with the lowest median between 11:00 p.m. and 06:00 a.m.,
corresponding to the sleeping hours. As the day progresses,

energy usage rises from 07:00 a.m. to 01:00 p.m., potentially
due to increased appliance use. A slight dip in consumption
is observed at 02:00 p.m. during office hours. As people
return from work/school, consumption gradually increases
after 04:00 p.m. and peaks at 06:00 p.m. (i.e., preparation
of dinner), and then decreases till 11:00 p.m. Concerning
the days of the week, the median power consumption is
relatively constant, with slight increases on Wednesday and
Saturday. On a seasonal basis, median power consumption
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FIGURE 25. Hourly, weekly, and monthly variations in T3 (i.e., laundry room area).

FIGURE 26. Hourly, weekly, and monthly variations in RH_3 (i.e., laundry room area).

FIGURE 27. Hourly, weekly, and monthly variations in T4 (i.e., office room).

remains constant throughout the data collection period from
January to May. The median energy consumption of light
fixtures (Figure 20) is almost zero, with increased usage
observed in the morning from 8 – 10 a.m. and evening from
5 – 11 p.m. This is because of the use of light fixtures during
the morning time and evening time. Energy consumption
between 11:00 a.m. and 04:00 p.m. is lower, likely due to
reduced occupancy during office/school hours. Throughout
the week and over the months, median energy consumption

remains stable. However, higher consumption in January and
February is observed due to the shorter duration of sunlight
during these months in the city of Mons.

The temperature in the kitchen area, depicted in Figure 21,
exhibits a normal distribution with the mean temperature
decreasing from midnight until 06:00 a.m. This decline
is likely attributed to the absence of occupants in the
kitchen during these early hours. The temperature then
remains relatively constant from 07:00 – 10:00 a.m.,
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FIGURE 28. Hourly, weekly, and monthly variations in RH_4 (i.e., office room).

FIGURE 29. Hourly, weekly, and monthly variations in T5 (i.e., bathroom).

FIGURE 30. Hourly, weekly, and monthly variations in RH_5 (i.e., bathroom).

possibly indicating the influence of a thermostat that reg-
ulates the kitchen temperature during breakfast time. The
median temperature then increases throughout the day,
peaking at 09:00 p.m. and subsequently decreasing. The
median temperature remains nearly constant during the week,
while an increase is observed from January to May due to
the transition from the cool to warm season in Belgium.
Figure 22 illustrates the median humidity in the kitchen
area, showing a slight increase until 11:00 a.m. This trend

may be linked to the inverse relationship between tem-
perature and humidity, given the decreasing kitchen area
temperature during this period (Figure 21). From noon the
median humidity decreases until 04:00 p.m., followed by
an increase until 07:00 p.m. Regarding the variations across
the week, the median humidity remains almost constant.
Over months, the highest median humidity is observed in
January, decreasing until March, and then increasing in April
and May.
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FIGURE 31. Hourly, weekly, and monthly variations in T6 (i.e., north side outside the building).

FIGURE 32. Hourly, weekly, and monthly variations in RH_6 (i.e., north side outside the building).

FIGURE 33. Hourly, weekly, and monthly variations in T7 (i.e., ironing room).

Figures 23 and 24 illustrate the temporal variations in
the living room area temperature (T2) and humidity (RH_2)
respectively. The median temperature, depicted in Figure 23,
decreases until 07:00 a.m. and then increases and becomes
constant at noon. This can be due to the presence of occu-
pants in the living room during the morning. The temperature
further increases after 01:00 p.m. and then remains almost
constant with slight fluctuations. The median temperature in
the living room decreases after 09:00 p.m. as the occupants

might go to their bedrooms from the living room. The weekly
analysis reveals a marginal increase in median temperature on
Sundays, possibly attributable to weekend activities. More-
over, the temperature displays a rising trend from January to
May, aligning with the onset of the warm season in Belgium.
In contrast, the humidity in the living room area increases till
08:00 a.m., decreases until 04:00 p.m., and then experiences
a subsequent increase (Figure 24). These variations may be
influenced by different factors, such as morning activities,

VOLUME 12, 2024 55649



L. Ismail et al.: Machine Learning Data-Driven Residential Load Multi-Level Forecasting

FIGURE 34. Hourly, weekly, and monthly variations in RH_7 (i.e., ironing room).

FIGURE 35. Hourly, weekly, and monthly variations in T8 (i.e., teenager room 2).

FIGURE 36. Hourly, weekly, and monthly variations in RH_8 (i.e., teenager room 2).

ventilation, and/or external weather conditions. Despite these
fluctuations throughout the day, the median humidity remains
relatively constant across the week and over months.

Figure 25 presents the temperature variations in the laun-
dry room area. The corresponding humidity variations are
presented in Figure 26, providing insights into the inverse
relationship between temperature and humidity. As depicted
in Figure 25, the temperature variations within a day exhibit
a normal distribution with a nearly constant median value,

possibly due to limited occupancy during the day. Themedian
temperature remains constant throughout the week, with
increased temperature dispersions on Fridays and Saturdays.
Thismay be indicative of heightened laundry room usage dur-
ing the weekend. Furthermore, the monthly analysis reveals a
gradual increase in the temperature from January toMay. This
shift aligns with seasonal changes, potentially influenced by
the warmer weather and increased demand for laundry ser-
vices in the Spring. In contrast, the variations in the laundry
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FIGURE 37. Hourly, weekly, and monthly variations in T9 (i.e., parents room).

FIGURE 38. Hourly, weekly, and monthly variations in RH_9 (i.e., parents room).

FIGURE 39. Hourly, weekly, and monthly variations in T_out (i.e., outside).

room’s humidity (Figure 26) depict opposite trends compared
to the temperature (Figure 25). As the temperature decreases,
humidity tends to rise, and vice versa. This is due to the
inverse relationship between temperature and humidity.

As depicted in Figure 27, the median temperature in the
office room decreases from midnight until 07:00 a.m. Later,
as work begins, the median temperature increases until noon
and then remains constant till 05:00 p.m. After office hours,
the median temperature rises, possibly because there might

be no one in the office room. The median temperature in
the office room remains almost constant from Monday to
Thursday. However, on Friday, Saturday, and Sunday, the
median temperature is relatively lower compared to other
days, reflecting the influence of weekends. The median tem-
perature increases from January to May due to the transition
from colder to warmer season in Belgium. On the other hand,
relative humidity in the office room (Figure 28) exhibits
opposite variations compared to the temperature (Figure 27).
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FIGURE 40. Hourly, weekly, and monthly variations in pressure.

FIGURE 41. Hourly, weekly, and monthly variations in RH_out (i.e., outside).

FIGURE 42. Hourly, weekly, and monthly variations in windspeed.

Figure 29 shows the variations in bathroom temperature.
It reveals that the temperature follows a normal distribu-
tion with a constant median from 08:00 a.m. to 06:00 p.m.
The temperature increases in the evening from 07:00 p.m.
to 09:00 p.m. This increase might be attributed to the hot
water shower taken by the occupants at night before sleeping.
The temperature variations remain almost constant during
the week but exhibit an upward trend over the months from
January to May. Additionally, the relative humidity in the

bathroom increases with the rising temperature, as shown in
Figure 30. This unusual relationship between temperature and
humidity is due to the hot water shower, which contributes to
an increase in both temperature and humidity in the bathroom.

The variations in temperature and relative humidity out-
side the house (north side) depict opposite trends as shown
in Figures 31 and 32 respectively. The outside temperature
increases during the day and decreases during the night, while
the humidity is higher during the night and lower during the
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FIGURE 43. Hourly, weekly, and monthly variations in visibility.

FIGURE 44. Hourly, weekly, and monthly variations in Tdewpoint.

FIGURE 45. Hourly, weekly, and monthly variations in rv1.

day, which is intuitive given the higher temperatures during
the day. Both temperature and humidity remain almost con-
stant throughout the week. Over the months, from January to
May, the temperature increases due to the arrival of the warm
season, and the humidity decreases as the weather becomes
dry. Similarly, the temperature and humidity variations in the
ironing room present opposing trends (Figures 33 and 34).

The temperature variations in teenager room 2 present a
normal distribution, as shown in Figure 35. The temperature

decreases during the day, possibly because occupants are
attending school or college. The median temperature starts
increasing in the afternoon as the occupants return home.
Due to the weekend, the median temperature in the teenager
room 2 is higher on Sunday compared to other days. The tem-
perature increases over the months due to seasonal changes.
In contrast, the relative humidity variations in teenager
room 2 show opposite trends (Figure 36). The temperature
variations in the parents’ room exhibit a normal distribution,
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FIGURE 46. Hourly, weekly, and monthly variations in rv2.

as presented in Figure 37. The temperature remains constant
throughout the day and across the week. However, due to
seasonal changes, the temperature increases from January to
May. The relative humidity in the parents’ room as depicted
in Figure 38, is high during the night and lower during the
day. This is because, at night, the wind is generally cooler,
leading to an increase in humidity. The variations across the
week remain almost constant. The median humidity in the
parents’ room is the highest in January and the least in April.

The variations in outside temperature follow a normal dis-
tribution, with higher temperatures during the day due to the
presence of sunlight and lower during the night (Figure 39).
The median outside temperature remains almost constant
across the week but increases from January to May due to
seasonal changes. As shown in Figure 40, the pressure varia-
tions also follow a normal distribution, with almost constant
median values throughout the day and across the week. How-
ever, the median pressure decreases from January to May.
This is because in Belgium, being a mid-latitude country, the
warmer temperature in May compared to January can con-
tribute to lower pressure. Another reason is that in January,
the temperature difference between the cold continental air
masses over Europe and the warmer oceanic air masses can
create stronger pressure. However, in May, these tempera-
ture differences are significantly less, resulting in weaker
pressure. The normal distribution of the variations in outside
humidity (Figure 41) exhibits opposite trends compared to
the outside temperature (Figure 39). Figure 42 represents the
variations in windspeed. The median windspeed is higher in
the noon and evening compared to the late evening and early
morning. It remains almost constant throughout the week.
The median windspeed decreases from January to May. This
is because windspeed depends on pressure, and the lower
pressure in May compared to January (Figure 40) results in
lower windspeed (Figure 42).

Figure 43 shows that variations in visibility are negatively
skewed, with almost constant median values throughout the
day, across the week, and over months. Figure 44 reveals that
variations in dewpoint temperature follow a normal distribu-
tion with almost constant median values throughout the day.

FIGURE 47. Data decomposition of appliances energy.

The median dewpoint temperature increases from January to
May as the outside temperature is higher in May. Figures 45
and 46 present the variations for random variables ‘rv1’ and
‘rv2’. As depicted, the random variables exhibit a normal dis-
tribution with the median values almost constant throughout
the day, across the week, and over months.

3) TRENDS AND SEASONALITY OF THE FEATURES DATA
DISTRIBUTION
We decompose each feature of the AEP dataset to identify a
trend and seasonality in the time series data. The dataset con-
tains 19735 data points sampled every 10minutes. For a better
visualization of decomposed components, we resampled the
dataset with daily frequency by addingminutely sampled data
for each day. We then performed data decomposition on the
resampled dataset.

Figure 47 shows the decomposed data for appliances’
energy consumption. As depicted, energy consumption
exhibits a fluctuating trend with the least energy around mid-
January. Furthermore, energy consumption displays a strong
component of seasonality. At the beginning of each week,
energy consumption is at its highest. It then decreases from
Monday to Wednesday and then increases again on Thursday
and Friday. The energy then decreases on Saturday and rises
to the maximum again on Sunday. The energy consumption
of light fixtures shows a decreasing trend (Figure 48). This is
because of the increase in sunlight presence from January to
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FIGURE 48. Data decomposition of light fixtures energy.

FIGURE 49. Data decomposition of T1.

FIGURE 50. Data decomposition of RH_1.

May. The light fixtures’ energy consumption exhibits weekly
seasonality, decreasing during the week and increasing on
the weekends. Figure 49 presents the decomposed data for
the kitchen area temperature. Due to seasonal changes, the
temperature follows an increasing trend from January toMay.
The temperature also exhibits a strong seasonality, with the
highest temperature every weekend. The trend for kitchen
area humidity exhibits no trend with seasonality as depicted
in Figure 50.
The temperature in the living room area demonstrates

an increasing trend, as shown in Figure 51. The tempera-
ture has a strong seasonality component, with fluctuating
temperatures on weekdays and higher temperatures on the
weekends. The humidity in the living room area shows no
trend but has seasonality, with decreasing humidity at the
beginning of each week and increasing humidity towards the
end (Figure 52). Figure 53 presents the decomposition of
temperature in the laundry room. As shown, the temperature
has an increasing trend with a strong seasonality. In contrast,

FIGURE 51. Data decomposition of T2.

FIGURE 52. Data decomposition of RH_2.

FIGURE 53. Data decomposition of T3.

FIGURE 54. Data decomposition of RH_3.

humidity in the laundry room exhibits a decreasing trend
with seasonality (Figure 54). The humidity decreases dur-
ing the week and increases as the weekend approaches.
Similarly, the temperature and humidity in the office room
exhibit an increasing and decreasing trend respectively
(Figures 55 and 56). Both temperature and humidity have
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FIGURE 55. Data decomposition of T4.

FIGURE 56. Data decomposition of RH_4.

FIGURE 57. Data decomposition of T5.

FIGURE 58. Data decomposition of RH_5.

strong seasonality components, with high temperatures every
weekend and low humidity.

Figure 57 depicts the decomposed data for bathroom tem-
perature. It shows that the temperature has an increasing
trend with seasonality, representing higher temperatures on
weekends compared to weekdays. The decomposition for
bathroom humidity shows a decreasing trend with season-
ality (Figure 58). The temperature and humidity on the

FIGURE 59. Data decomposition of T6.

FIGURE 60. Data decomposition of RH_6.

FIGURE 61. Data decomposition of T7.

FIGURE 62. Data decomposition of RH_7.

north side of the house exhibit increasing and decreasing
trends respectively (Figures 59 and 60). They show a strong
seasonality. Similarly, the temperatures in ironing room
(Figure 61), teenager room 2 (Figure 63), and parents’ room
(Figure 65) have increasing trends, whereas the humidities
in ironing room (Figure 62), teenager room 2 (Figure 64),
and parents’ room (Figure 66) have decreasing trends. These
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FIGURE 63. Data decomposition of T8.

FIGURE 64. Data decomposition of RH_8.

FIGURE 65. Data decomposition of T9.

FIGURE 66. Data decomposition of RH_9.

temperatures and humidities demonstrate strong seasonal-
ity. Furthermore, the outside temperature and humidity have
increasing and decreasing trends, respectively, with seasonal-
ity (Figures 67 and 69).

Figure 68 reveals that pressure has a near-constant trend
with strong seasonality. In contrast, windspeed (Figure 70)
and visibility (Figure 71) demonstrate a decreasing trend
with seasonality. Figure 72 represents the decomposed data

FIGURE 67. Data decomposition of T_out.

FIGURE 68. Data decomposition of pressure.

FIGURE 69. Data decomposition of RH_out.

FIGURE 70. Data decomposition of windspeed.

for dewpoint temperature. As shown, the temperature has an
increasing trend with seasonality. The random variables ‘rv1’
and ‘rv2’ have fluctuating trends with seasonality as shown
in Figures 73 and 74.

V. PERFORMANCE ANALYSIS
In this section, we analyze and compare the performance of
LSTM and SVR for forecasting sub metering energy and

VOLUME 12, 2024 55657



L. Ismail et al.: Machine Learning Data-Driven Residential Load Multi-Level Forecasting

FIGURE 71. Data decomposition of visibility.

FIGURE 72. Data decomposition of Tdewpoint.

FIGURE 73. Data decomposition of rv1.

FIGURE 74. Data decomposition of rv2.

global power consumption (using the IHEPC dataset) and
appliances’ energy consumption (using the AEP dataset) at
different forecast levels.

A. EXPERIMENTAL ENVIRONMENT
To evaluate the performance of themost used LSTMand SVR
algorithms for different forecast levels, we use the IHPEC

and AEP datasets. All the experiments are performed using
Python 3.8 on a workstation with AMD Epyc 7552 48-core
processor (dual CPU), 1.0 TiB memory, 8.7 TB disk capacity,
2 x NVIDIA RTX A6000 graphics processor with 48 GB
memory each, and Ubuntu 22.04.1 LTS operating system.

B. EXPERIMENTS
For each forecast level considered in the IHEPC dataset,
i.e., VSTLF (hourly sampling), STLF (daily and weekly
samplings), and MTLF (monthly and quarterly samplings),
we performed 5 sets of experiments as follows.

1) Sub metering 1: The energy consumption of sub meter-
ing 1 (i.e., kitchen area consisting of a dishwasher,
an oven, and a microwave) is forecasted using previous
sub metering 1 energy consumption values. This is
by considering univariate sub metering 1 data from
IHEPChour , IHEPCday, IHEPCweek , IHEPCmonth, and
IHEPCquarter datasets.

2) Sub metering 2: The energy consumption of sub
metering 2 (i.e., laundry area consisting of a wash-
ing machine, a tumble-drier, refrigerator, and a light)
is forecasted using previous sub metering 2 energy
consumption values. This is by considering univari-
ate sub metering 2 data from IHEPChour , IHEPCday,
IHEPCweek , IHEPCmonth, and IHEPCquarter datasets.

3) Sub metering 3: The energy consumption of sub
metering 3 (i.e., an electric water heater and an air-
conditioner) is forecasted using previous sub metering
3 energy consumption values. This is by consider-
ing univariate sub metering 3 data from IHEPChour ,
IHEPCday, IHEPCweek , IHEPCmonth, and IHEPCquarter
datasets.

4) Univariate global active power: The global active
power consumption is forecasted using previous global
active power consumption values. This is by consid-
ering univariate global active power consumption data
from IHEPChour , IHEPCday, IHEPCweek , IHEPCmonth,
and IHEPCquarter datasets.

5) Multivariate global active power: The global active
power consumption is forecasted using global reactive
power, voltage, global intensity, sub metering 1, sub
metering 2, and sub metering 3 values. This is by con-
sidering multivariate data from IHEPChour , IHEPCday,
IHEPCweek , IHEPCmonth, and IHEPCquarter datasets.

For each forecast level considered in the AEP dataset, i.e.,
VSTLF (minute and hourly sampling) and STLF (daily and
weekly sampling), we performed the following experiments.

• Multivariate appliances’ energy: The appliances’ energy
consumption is forecasted using light fixtures’ energy,
temperatures (T1 – T9, To, and Tdewpoint), humidities
(RH_1 – RH_9 and RH_out), pressure, windspeed, vis-
ibility, and random variables (rv1 and rv2). This is by
considering the multivariate data from AEP, AEPhour ,
AEPday, and AEPweek datasets.
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TABLE 6. Value(s) of hyperparameters used in literature and our experiments for the algorithms under study.

For each set of experiments and each forecast level,
we obtained the optimal parameters for LSTM and SVR
algorithms by performing a grid search over different values
of hyperparameters. Table 6 presents the hyperparameters
for LSTM and SVR, and their corresponding ranges used in
literature and our experiments. Tables 7 and 8 show the opti-
mal values of hyperparameters obtained in our experiments
for LSTM and SVR for IHEPC and AEP datasets respec-
tively. For each set of experiments, we divided IHEPChour ,
IHEPCday, IHEPCweek , IHEPCmonth, IHEPCquarter , AEP,
AEPhour , AEPday, and AEPweek datasets each into 70% for
training the LSTM and SVR models (i.e., model develop-
ment) and 30% for validating the developed models (i.e.,
model validation). We evaluate the forecast performance
of the developed models in terms of sMAPE, RMSE, and
Jensen-Shannon divergence. The sMAPE and RMSE val-
ues are calculated using Equations (1) and (2) respectively.
Jensen-Shannon divergence measures the similarity between
two probability distributions by computing the average of
Kullback-Leibler divergences between the distribution of
actual energy values and the distribution of predicted energy
values, and between the distribution of predicted values and

FIGURE 75. Sub metering 1 energy consumption forecast using SVR and
LSTM for IHEPChour dataset.

the distribution of actual values [38].

sMAPE

=

(
1
n

n∑
t=1

∣∣∣∣∣ Actual loadt − Forecasted loadt
(|Actual loadt | + |Forecasted loadt |)

/
2

∣∣∣∣∣
)

×100

(1)
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TABLE 7. Optimal values of hyperparameters obtained in our experiments for the IHEPC dataset.

RMSE

=

√∑n
t=1 (Actual loadt − Forecasted loadt)2

n
(2)

where n is the total number of records in the validation
dataset.

C. EXPERIMENTAL RESULTS ANALYSIS
Figures 75 – 79 present the sub metering 1 energy pre-
diction using SVR and LSTM for IHEPChour , IHEPCday,
IHEPCweek , IHEPCmonth, and IHEPCquarter validation
datasets respectively. As depicted in the figures, overall SVR
outperforms LSTM by predicting the energy consumption
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TABLE 8. Optimal values of hyperparameters obtained in our
experiments for the AEP dataset.

FIGURE 76. Sub metering 1 energy consumption forecast using SVR and
LSTM for IHEPCday dataset.

accurately. This is because submetering 1 is a non-linear time
series (Figure 15). SVR when used with RBF kernel captures
this non-linearity while generating the best-fit regression line,
leading to accurate predictions. Comparing the performance
of LSTM for different forecast levels (Figures 75 – 79), the
model has the best prediction result for the weekly forecast
level (Figure 77). This is because compared to IHEPCweek ,
most of the values in the training dataset for IHEPChour is 0.

FIGURE 77. Sub metering 1 energy consumption forecast using SVR and
LSTM for IHEPCweek dataset.

FIGURE 78. Sub metering 1 energy consumption forecast using SVR and
LSTM for IHEPCmonth dataset.

FIGURE 79. Sub metering 1 energy consumption forecast using SVR and
LSTM for IHEPCquarter dataset.

Consequently, most of the predictions by LSTM for hourly
forecast level are near 0 as shown in Figure 75. Compared to
IHEPCweek dataset from which we use 133 records for train-
ing, we use 30 and 11 records for training from IHEPCmonth
and IHEPCquarter datasets respectively. Our results reveal
that these training dataset sizes are not sufficient enough to
train an LSTM model, resulting in poor LSTM predictions
for IHEPCquarter (Figure 79) and IHEPCmonth (Figure 78),
compared to IHEPCweek (Figure 77). On the other hand, SVR
predicts the energy consumption accurately for all the dataset
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FIGURE 80. Sub metering 2 energy consumption forecast using SVR and
LSTM for IHEPChour dataset.

FIGURE 81. Sub metering 2 energy consumption forecast using SVR and
LSTM for IHEPCday dataset.

FIGURE 82. Sub metering 2 energy consumption forecast using SVR and
LSTM for IHEPCweek dataset.

sizes under study. In summary, LSTM requires larger training
dataset for accurate predictions.

Figures 80 – 84 present the sub metering 2 energy pre-
diction using SVR and LSTM for IHEPChour , IHEPCday,
IHEPCweek , IHEPCmonth, and IHEPCquarter validation
datasets respectively. For all forecast levels, i.e., hourly,
daily, weekly, monthly, and quarterly, SVR outperforms
LSTM. This is because sub metering 2 time series data
trend is non-linear (Figure 16) which is accurately modeled

FIGURE 83. Sub metering 2 energy consumption forecast using SVR and
LSTM for IHEPCmonth dataset.

FIGURE 84. Sub metering 2 energy consumption forecast using SVR and
LSTM for IHEPCquarter dataset.

FIGURE 85. Sub metering 3 energy consumption forecast using SVR and
LSTM for IHEPChour dataset.

by SVR. Comparing the performances of LSTM for different
forecast levels, LSTM has the best performance for hourly
(Figure 80), daily (Figure 81), and weekly (Figure 82) fore-
casts due to a sufficient training dataset size. Poor prediction
performance of LSTM for monthly (Figure 83) and quarterly
(Figure 84) levels is due to a smaller training dataset size.

Figures 85 – 89 present the sub metering 3 energy pre-
diction using SVR and LSTM for IHEPChour , IHEPCday,
IHEPCweek , IHEPCmonth, and IHEPCquarter validation
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FIGURE 86. Sub metering 3 energy consumption forecast using SVR and
LSTM for IHEPCday dataset.

FIGURE 87. Sub metering 3 energy consumption forecast using SVR and
LSTM for IHEPCweek dataset.

FIGURE 88. Sub metering 3 energy consumption forecast using SVR and
LSTM for IHEPCmonth dataset.

datasets respectively. Figures show that SVR has the most
accurate predictions compared to LSTM for all forecast
levels. This is because SVR can model the non-linearity that
prevails in the data trend for sub metering 3 (Figure 17).
Furthermore, comparing the performances of LSTM for
different forecast levels, quarterly (Figure 89) depicts high
error as the model is trained using small training datasets.
Similarly, for univariate global active power consumption,
SVR outperforms LSTM (Figures 90 – 94). For each forecast
level; i.e., hourly, daily, weekly, monthly, and quarterly, the

FIGURE 89. Sub metering 3 energy consumption forecast using SVR and
LSTM for IHEPCquarter dataset.

FIGURE 90. Univariate global active power consumption forecast using
SVR and LSTM for IHEPChour dataset.

FIGURE 91. Univariate global active power consumption forecast using
SVR and LSTM for IHEPCday dataset.

prediction performance of SVR for sub metering 3 is almost
equal to that for univariate global active power as shown
in Figures 85 – 89 and 90 – 94 respectively. Similarly, for
each forecast level, the prediction performance of LSTM for
sub metering 3 is almost equal to that for univariate global
active power as shown in Figures 85 – 89 and 90 – 94
respectively. This is because sub metering 3 and global active
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FIGURE 92. Univariate global active power consumption forecast using
SVR and LSTM for IHEPCweek dataset.

FIGURE 93. Univariate global active power consumption forecast using
SVR and LSTM for IHEPCmonth dataset.

FIGURE 94. Univariate global active power consumption forecast using
SVR and LSTM for IHEPCquarter dataset.

power are highly correlated as depicted in Figure 3. This
is also confirmed by the similar spatial distribution of sub
metering 3 data and global active power data for different
forecast levels as shown in Figures 95 –99.

Figures 100 – 104 present the multivariate global active
power prediction using SVR and LSTM for IHEPChour ,
IHEPCday, IHEPCweek , IHEPCmonth, and IHEPCquarter val-
idation datasets respectively. As depicted in the figures, SVR
outperforms LSTM as it can capture the non-linear data
trend for global active power (Figure 11). Comparing the

FIGURE 95. Distribution of sub metering 3 and global active power for
IHEPChour dataset.

FIGURE 96. Distribution of sub metering 3 and global active power for
IHEPCday dataset.

FIGURE 97. Distribution of sub metering 3 and global active power for
IHEPCweek dataset.

FIGURE 98. Distribution of sub metering 3 and global active power for
IHEPCmonth dataset.

performances of SVR and LSTM for univariate global active
power prediction (Figures 90 –94) and multivariate global
active power prediction (Figures 100 –104), both the algo-
rithms provide more accurate predictions for multivariate
time series. This is because multivariate prediction consid-
ers the relationship between all dataset features (i.e., global
reactive power, voltage, global intensity, sub metering 1, sub
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TABLE 9. Comparison between SVR and LSTM forecast models for the IHECP dataset.

FIGURE 99. Distribution of sub metering 3 and global active power for
IHEPCquarter dataset.

FIGURE 100. Multivariate global active power consumption forecast
using SVR and LSTM for IHEPChour dataset.

metering 2, and sub metering 3) and global active power,
leading to more accurate predictions.

Figures 105 – 108 present the appliances’ energy
consumption prediction using SVR and LSTM for
AEP, AEPhour , AEPday, and AEPweek validation datasets

FIGURE 101. Multivariate global active power consumption forecast
using SVR and LSTM for IHEPCday dataset.

FIGURE 102. Multivariate global active power consumption forecast
using SVR and LSTM for IHEPCweek dataset.

respectively. As revealed, overall SVR outperforms LSTM
by accurately predicting the energy consumption. This is
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TABLE 10. Comparison between SVR and LSTM forecast models for the AEP dataset.

FIGURE 103. Multivariate global active power consumption forecast
using SVR and LSTM for IHEPCmonth dataset.

FIGURE 104. Multivariate global active power consumption forecast
using SVR and LSTM for IHEPCquarter dataset.

FIGURE 105. Multivariate appliances’ energy consumption forecast using
SVR and LSTM for AEP dataset.

because SVR when used with RBF kernel captures the
non-linear relationship between appliances’ energy and other

FIGURE 106. Multivariate appliances’ energy consumption forecast using
SVR and LSTM for AEPhour dataset.

FIGURE 107. Multivariate appliances’ energy consumption forecast using
SVR and LSTM for AEPday dataset.

FIGURE 108. Multivariate appliances’ energy consumption forecast using
SVR and LSTM for AEPweek dataset.

variables, such as temperatures, humidities, pressure, wind-
speed, and visibility. Tables 9 and 10 present the RMSE,
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sMAPE, and Jensen-Shannon divergence values for the
IHEPC and AEP datasets respectively, obtained by SVR and
LSTM for different forecast levels. They show that the SVR
models outperform the LSTMmodels for each forecast level.

VI. CONCLUSION AND FUTURE WORK
Residential energy consumption is increasing at an alarming
rate due to several factors, such as a growing population,
remote work from home post-pandemic, extreme climatic
changes, and economic development. High consumption pro-
duces a huge amount of carbon dioxide and other GHGs,
causing global warming. Consequently, it becomes impor-
tant to consume energy efficiently. High energy efficiency
and reduced GHG emissions can be achieved by accurately
forecasting household load and accordingly planning energy
generation and usage. Electricity load forecasting at different
levels, i.e., hourly, daily, weekly, monthly, and quarterly, can
aid energy companies in effectively and efficiently reducing
blackouts and planning production, tests, maintenance sched-
ules, investments, constructions, and environmental policies.
On the other hand, unit-wise and global load prediction
can give household owners insight into the most energy-
consuming units/appliances that should be considered for
energy savings. Reducing residential energy consumption
can help both companies and household owners earn car-
bon credits, an emerging initiative launched by the Kyoto
Protocol, an international agreement linked to the United
Nations Framework Convention on Climate Change to reduce
emissions of GHGs.

In this paper, we explained the correlation of different
energy-consuming units (i.e., kitchen area, laundry area,
water heater, and air conditioning) with global household
power consumption. Furthermore, we provided insights into
the most energy-consuming units based on temporal distribu-
tion. Later, we implemented the most used SVR and LSTM
models for forecasting electricity load at different levels using
univariate and multivariate time series data. We evaluate the
prediction performance of submetering and global household
load for different forecasting levels. The dataset used in this
study is the largest publicly available household energy con-
sumption dataset. Our experimental result reveals that SVR
outperforms LSTM for all forecast levels for both univariate
and multivariate data.

For future research work, a larger spectrum of forecast
models will be evaluated. In addition, more datasets will be
considered that involve appliance-level load forecasting. This
will allow household owners to manage energy consumption
more efficiently. Furthermore, lightweight forecast models
will be implemented in mobile phones for remote energy
management in sustainable smart homes.
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