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ABSTRACT There is a tendency for object detection systems using off-the-shelf algorithms to fail
when deployed in complex scenes. The present work describes a case for detecting facial expression in
post-surgical neonates (newborns) as a modality for predicting and classifying severe pain in the Neonatal
Intensive Care Unit (NICU). Our initial testing showed that both an off-the-shelf face detector and a
machine learning algorithm trained on adult faces failed to detect facial expression of neonates in the NICU.
We improved accuracy in this complex scene by training a state-of-the-art ‘‘You-Only-Look-Once’’ (YOLO)
face detection model using the USF-MNPAD-I dataset of neonate faces. At run-time our trained YOLO
model showed a difference of 8.6% mean Average Precision (mAP) and 21.2% Area under the ROC Curve
(AUC) for automatic classification of neonatal pain compared with manual pain scoring by NICU nurses.
Given the challenges, time and effort associated with collecting ground truth from the faces of post-surgical
neonates, here we share the weights from training our YOLOmodel with these facial expression data. These
weights can facilitate the further development of accurate strategies for detecting facial expression, which
can be used to predict the time to pain onset in combination with other sensory modalities (body movements,
crying frequency, vital signs). Reliable predictions of time to pain onset in turn create a therapeutic window
of time wherein NICU nurses and providers can implement safe and effective strategies to mitigate severe
pain in this vulnerable patient population.

INDEX TERMS Convolutional neural network, face detection, neonate, neonatal intensive care unit, pain
classification, recurrent neural network.

I. INTRODUCTION
Each year a large and increasing number of newborns
are admitted to Neonatal Intensive Care Units (NICUs)
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worldwide following life-saving or corrective surgery dur-
ing the immediate post-natal period. We propose that an
automatic early pain detection (EPD) system would allow
nurses and providers to implement ‘‘stay ahead of the pain’’
strategies for assessing and reducing post-surgical pain in
this highly vulnerable population [1], [2]. Currently there
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is a gap in the tools used in clinical care to asses Neonatal
pain [3]. One such tool which we will reference in this work
is the Neonatal Pain, Agitation, and Sedation scale(NPASS)
[5], a pain measurement system currently used in practice
by bedside caregivers for neonatal pain assessment. Effective
based on theory, NPASS has varied success in practice,
due to factors such as perceived bias by bedside nurses,
delayed detection, etc. Further, there is substantial support
for a priori pain avoidance strategies which could effectively
minimize short- and long-term damage from severe pain,
chronic pain sensitization and powerful analgesics exposure
on the developing newborn’s brain and their spinal cord [4],
[6], [7].

Automatic approaches for early pain detection focus on
the earliest evidence of pain expression in the faces of
neonates emerging from sedation in the NICU, starting with
face detection within the frame of an image or video [8],
[9], [10], [11]. Face detection is a long-standing field of
research in computer science with state-of-the-art algorithms
for automatic detection of acute and chronic [12], [13], [14]
pain in adult faces. Like adults, newborns perceive the full
range of pain associated with knives, (scalpels), needles
and other sharp objects passing through their tissues [15],
[16], [17], [18], [19]. Furthermore, neonatal pain is strongly
expressed through facial expressions [20], [21], [22], [23],
providing an important focal point for early pain detection.
As detailed in the following section, among the challenges in
neonatal pain detection is that state-of-the-art face detectors
for adults perform poorly or not at all as detectors of neonate
faces in the NICU. It has been shown in the research that
often facial expressions are of high importance to pain
classification [24]. Thus, a new class of facial detection tools
is needed for improving performance accuracy as part of an
overall pain/no-pain classification system for post-surgical
neonates.

There are notable differences between the composition of
neonate and adult human faces. In addition to smaller size,
neonate faces are truncated, resulting in pinched appearing
eyes and mouths. Furthermore, the neonate face is generally
lacking in contextual information, such as hair on the head
or face to outline features [25], [26]. Additional challenges
are associated with face detection within the clinical NICU
setting, a complex and uncontrolled environment with
variable ambient noise and lighting conditions. Neonates
often sleep with lights on and off for different intervals or in
isolettes covered by thick blankets for noise protection. Other
obstacles include occlusion of faces by wires, instruments
and devices required for medical care and complicated
background settings with soft and textured blankets leading
to unclear boundary distinctions. Finally, neonates are unable
to participate in their health care; unable to follow directions
(e.g., stay still or don’t move), which further complicates
face detection with extreme pose variations; and lack the
verbal fluency to rate their pain, complicating ground truth
determinations.

Some current works have looked at methods to overcome
the difficulties associated with facial feature extraction of the
neonate. In [27] and [28], Dosso et al. utilize extracted facial
features via different intensity based approaches after the
neonate face region of interest has already been determined
by manual annotation. Dosso et al. extend this work by [29]
focusing on the neonate face detection while emphasizing
how the difficulty of the setting will largely impact final
detection results.

iCOPEvid [30] is one of the limited number available
of publicly accessible neonatal face datasets and is similar
to USF-MNPAD-I in terms of difficulties. Brahnam et al.
collect the iCOPEvid in [30], using it for procedural
pain classification with a Discriminative Response Map
Fitting [31] approach for face detection with results of this
algorithm on iCOPEvid not reported. Olmi et al [32] attempt
to detect neurological dysfunctions, such as seizure episodes
in the neonate in the NICU utilizing an Aggregate Channel
Feature algorithm achieving an average precision recall of
0.61 ± 0.05 for neonate face detection on the iCOPEvid
dataset. Grooby et al. [33] further reinforce the problem of
current off-the-shelf solutions being insufficient for neonatal
face detection by fine-tuningYOLOv7 on 3 publicly available
datasets including the iCOPEvid [30], but achieved only 86%
accuracy which our work shows will still result in decreased
performance on an automated system which relies on face
detection as the first pre-processing step.

In this work, we propose a neonatal face detector that
attempts to overcome the aforementioned difficulties by
training on model with data containing real-world conditions.
With initial results showing high accuracy, we compare
the performance upon multiple datasets to demonstrate the
need for a generalized neonatal face detector. To this end,
we emphasis that off-the-shelf solutions used for adult face
detection are insufficient for use in a neonatal intensive care
setting. We enforce this hypothesis by also investigating the
overall impact of differing face detectors on neonatal pain/no-
pain classification using a state-of-the-art spatial temporal
deep learning system. Pain classification of the neonate is
only one application that would benefit from the use of an
accurate neonate face detector. Other applications that could
benefit from a robust neonatal face detector include facial
recognition and surveillance [34], [35], [36], with further
extensions being any automated computing system utilizing
a dataset which exemplifies large data distribution shift, i.e.
many differences between examples in the same class.

Contrary to current neonatal face detectors [37], [38], the
proposed detector requires little pre-processing operations,
allowing real-time monitoring of pain in a clinical setting.
An additional strength of our algorithm is that it can achieve
real-time detection performance by detecting neonatal faces
with the same or similar rate (∼15 fps) as current real-time
methods [39], [40]. In practice, a detection rate of 15 fps is
sufficient speed for the neonatal face detection application as
well as neonatal pain assessment. This work demonstrates a
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FIGURE 1. Examples of images in the USF-MNPAD-I dataset. From these
images, we can notice the challenging conditions (e.g., low-light and
occlusion) of this dataset.

framework which could be followed for additional automated
systems.

The rest of this paper is organized as follows. Section II.
presents the datasets used within this work, as well
as describes the scientific methodology used upon those
datasets. This includes any data preparation, evaluation
protocols, and deep learning models. Section III. elaborates
on the various experiments performed, including results of
face detection, how face detection accuracy effects the results
of an overall pain classification system, and further analysis
of those experiments. Section IV. provides a discussion on
the importance of the work presented here and Section V.
concludes this work.

II. MATERIALS AND METHODS
A. DATASETS
This work utilizes three different datasets discussed in
further detail below. These datasets are the WIDER FACE
dataset [41], USF-MNPAD-I dataset [42] and the USF-
MNPAD-II dataset for which data collection is still currently
ongoing. All of the clinical data associated with the
USF-MNPAD-I and II datasets were properly collected and
monitored by the University of South Florida Ethics Internal

ReviewBoard (IRB #Pro00014318).We have chosen an adult
face’s in-the-wild dataset to compare with a neonate face
in-the-wild as there are lacking available neonate datasets
publicly available. Additionally, by both datasets being in-
the-wild, they are able to capture similar difficulties such as
pose variations, lighting concerns, etc which are traditional
roadblocks for accurate computer vision algorithms.

1) WIDER FACE
WIDER FACE is a large scale dataset with 32,203 total
images containing one or more adult faces which have been
identified and labeled [41]. This dataset has a variety of
depths, face postures, resolutions, backgrounds, and subjects
making it ideal for training a generalized adult face detector.
However, this dataset is insufficient for training a neonatal
face detector as will be demonstrated in our experiments.
In previous works, Salekin et al. [10], [11] usedYOLOv3 face
detector trained onWIDER FACE [41] for pain classification
which is why we will consider this to be our baseline.

2) USF-MNPAD-I
USF-MNPAD-I [42] is a partially available multi-modal
dataset, containing videos of neonates’ responses to different
procedural pain (36 neonates) and postoperative pain (9
neonates) stimuli. With a total of 45 subjects, this dataset
will have two subsets used during our experimentation.
Procedural pain can be defined as the initial and often
intense pain felt directly after an unwelcome stimuli, where
postoperative pain is characterized by lingering pain felt as
the body heals from surgery, a more drastic negative stimuli.
Figure 1 shows examples of images extracted from videos
comprising USF-MNPAD-I.The ground truth pain/no-pain
labels are derived from the Neonatal Pain, Agitation, and
Sedation scale(NPASS) [5], which is a standard of care
measurement.

USF-MNPAD-I dataset was collected in the Neonatal
Intensive Care Unit (NICU) of Tampa General Hospital as
a part of a collaborative study between USF’s Computer
Science and Engineering Department, USF Health, and
Tampa General Hospital (TGH). Please refer to the project1

for more information about accessing this dataset.

3) USF-MNPAD-II
USF-MNPAD-II is the second iteration of data collection
at TGH after USF-MNPAD-I. As research progressed,
postoperative pain of the neonate and its management became
more important, and thus USF-MNPAD-II is comprised
solely of postoperative pain subjects. We modified the data
collection set-up for USF-MNPAD-II after observing initial
difficulties faced when collecting videos for USF-MNPAD-I.
For example, one such modification was utilizing more
compact hardware to remove interference with hospital
staff. In addition to physical difficulties, there are many
privacy concerns associated with neonate healthcare data that

1https://rpal.cse.usf.edu/project_neonatal_pain/dataset.html
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contributes towards the challenges of data collection of this
vulnerable population. We recognize the lacking availability
of public datasets and will be releasing the weights associated
with the model’s described in this work for benefit of the
research community. The NPASS scale was used for ground
truth labeling. Instead of short video segments as was done for
USF-MNPAD-I, all of the data collected for USF-MNPAD-II
consists of long continuous videos ranging from one to
twenty hours. We then extracted smaller segments from the
longer videos for experimentation. As data collection is still
ongoing (60 subjects collected to date), we processed the
initial 15 subjects for preliminary analysis.

B. METHOD
This section presents the proposed face detectors followed by
the method used for neonatal pain expression classification.
Finally, we describe our evaluation protocol as well as
training and testing splits.

1) YOU-ONLY-LOOK-ONCE (YOLO) FOR FACE DETECTION
You-Only-Look-Once (YOLO) [43] is a popular detection
algorithm developed by Joseph Redmon in 2012. In this
study, we utilize recent versions of YOLOv3 [44], YOLOv5
[40], and YOLOv6 [46] for our neonate face detectors, all
of which are open-sourced. There are many competing face
detection algorithms, some of which we mentioned in the
introduction. However, YOLO was chosen for this work due
to its competing accuracy and superior ability in computing
speed during test time which is key for a real world clinical
application. While there are many additional versions of the
YOLO algorithm being released, of which we will keep in
consideration for future work, this work limits its use to
the mentioned versions at this time. Due to only limited
modifications between versions after YOLOv6, most likely
minuscule improvements in speed and accuracy would have
resulted for using newer algorithms and balanced this notion
with time constraints required to retrain & test additional
models.

YOLO is a one-stage anchor-based object detector that
divides the entire image into a grid of size S*S, where each
cell in the grid will produce B bounding boxes, each with
confidence of C , class, x, y, w, and h. YOLOv3 [44] and later
versions utilized 53 convolutional neural net layers, garnering
the backbone of the architecture the name Darknet-53 (pre-
trained on ImageNet [45]) to produce these B bounding
boxes. YOLOv4, v5, & v6 contain an added neck and head
component to the architecture [39], [40], [46]. After passing
through the convolutional layers, the final reduced tensor is
passed through two fully connected dense layers resulting in
the final parameterized space of S*S*(B ∗ 5 + C), which
is then thresholded by a confidence level via non-maximal
suppression to help eliminate incorrect detections and capture
correct detections.

In this work, we train a YOLOv5 and YOLOv6 face
detector using the images of 36 neonates collected during

procedural painful stimuli (see Section II-A.2) and a
YOLOv3 face detector using the images of WIDER FACE
(Section II-A.1). All face detectors are then evaluated using
the images of 9 neonates collected during postoperative pain
(see Section II-A.2). Additionally, we compare the highest
performing face detector for USF-MNPAD-I postoperative
(YOLOv6 trained onUSF-MNPAD-I procedural vs YOLOv3
on WIDER FACE) by further testing on the initial subjects
fromUSF-MNPAD-II. Finally, we then integrate each trained
face detector into a neonatal pain expression classification
system and evaluate the impact of each detector in said
system.

2) Bi-LINEAR VGG16 & LSTM FOR PAIN CLASSIFICATION
To evaluate the impact of a robust neonate face detector on
a useful automated system which can be used in the NICU,
we integrate our face detector with the following system for
pain expression classification [9].

Our pain expression classification network has two stages:
(1) a bi-linear convolution neural network and (2) a long-short
term memory (LSTM) network. The bi-linear network of
this system uses two branches or streams of VGGFace [37],
a derivative of the VGG16 model [47]. This model has
13 convolution blocks, composed of convolution layers with
3 × 3 kernel filter size and subsequent pooling layer. After
the convolutional layers, the model has 2 dense layers each
followed by a dropout layer with a relu activation function.
The final dense layer has a linear activation with a size
equal the number of classes (pain and no-pain). Each of
these VGGFace streams (or branches) are applied to various
locations of the input image in order to extract differing sets
of spatial features. These separate feature vectors are then
combined through the use of sum pooling resulting in a final
feature vector u. This process is described mathematically in
the following equations, where I is input image, L is location
in the image, and Fx , Fy are the feature vectors.

b = (I ,L,Fx ,Fy) → Fx(I ,L)⊺Fy(I ,L) (1)

u =

∑
b(I ,L) (2)

We train the bi-linear network for 100 epochs with
early stopping and a mean square error loss function.
To enlarge the training data, we use augmentation on
the fly and perform random rotations of 30◦, horizontal
flipping, and brightness intensity modification in the range of
[0.75,1.25]. After the bi-linear network stage, a Long-Short
Term Memory (LSTM) [48] network is used to model the
temporal representation of pain. LSTM is a common type
of Recurrent Neural Network (RNN) [49], which has seen
success maintaining long-term dependencies while resolving
the vanishing gradient problem. This is done through the use
of 3 gates: input, output, and forget gates. The input gate
maintains saved information over time, the forget gate ignores
unimportant information, and the output gate controls what is
passed to the next node in the stream. This network outputs
a value of 1 (pain expression) or 0 (no pain expression). The
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FIGURE 2. Figure giving examples from USF-MNPAD-II of cropped face images. This is passed as input to the face modality. From left to
right, each of the columns is an individual subject. Top to bottom shows different complexity of images where top is a easier example
(‘‘Level 1’’), and bottom is more complex (‘‘Level 2’’, e.g. darker, more extreme pose variations and obstructions).

FIGURE 3. Figure of full system pipeline. An input set of images are provided to the face detection layer, which then determines the
corresponding images passed to the bi-linear CNN & LSTM layers. Different subsets resulting from the use of differing face detection models
are outlined in Section II-B.3.

LSTM model used in this work utilized 2 LSTM layers of
unit 16, one layer returning all hidden states with the other
not. The LSTM layers are followed by two dense layers with
dropout of 30%, and a final single node dense layer with
sigmoid activation. Training was done for 100 epochs (early
stopping based on validation data), with an Adam optimizer
(initial learning rate of 1e−4 with learning rate reduced on
plateau) and a binary cross entropy loss function.

Fig. 3 shows a visual representation of the pain classi-
fication system with its two networks: bi-linear CNN and
LSTM and the added neonatal face detector performing face
detection at run-time. It is worth noting that due to the need
for a set segment length in the LSTM stage any missed
detections will still provide the original image to the bi-linear
CNN. How to handlemissing detections is something that can
be explored further in future works.

3) DATA PREPARATION & EVALUATION PROTOCOL
For the training of our face detector the procedural pain subset
of USF-MNPAD-I subjects were used. As these subjects

were filmed during short procedures, video segments ranged
from 1 min to 6 minutes in length. The key frames of
these video segments were extracted to obtain a total of
8,826 images in the full training set. During experimentation,
we utilized a subject-wise 10-fold cross-validation approach
to test face detection accuracy on the procedural subset, with
a full neonate face detector used for subsequent testing on
the postoperative subset of USF-MNPAD-I being trained on
all 36 procedural subjects. We further experiment as to the
generalization of this trained face detector by testing it on
the initial 15 (face data missing from one subject, 14 subjects
total) subjects of the USF-MNPAD-II dataset.

For initial neonate face detection testing purposes, the
postoperative portion (9 subjects) of USF-MNPAD-I was
utilized. This subset consists of 218 video segments of a
minimum of 9 seconds in length. Initially, all key frames
are extracted from each of the 218 video segments resulting
in a full testing set of 12,416 images (slightly reduced
to the largest multiple of 32 images per video segment).
Being a much larger and more complex dataset, for the
USF-MNPAD-II testing we used 14 subjects consisting of
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TABLE 1. Distribution of training and testing across datasets. This table displays the training and testing split of subsequent results. ∗ Results using this
test set are in Table 2 & Table 4. ⊙ results using this test set are in Table 3.

2,486 segments of exactly 30 seconds in length. We extracted
frames at a rate of 15 fps.

For pain classification experimentation purposes, the
USF-MNPAD-I postoperative test set was split into further
subsets. Neonate face detection was applied to the 12,416
images using differing versions of a face detector. Then for
each video segment, the correctly detected key frame images
were further limited by a set length, taking images in order
until the set length requirement was met. For the YOLOv5
Max Multiple subset, we took the largest grouping of found
detections in a multiple of 32, allowing for multiple bi-linear
vectors per video to be passed to the LSTM network. The
set segment lengths are required for LSTM training, which is
used in the pain/no-pain classification algorithm [9]. To note,
not all of the video segments had enough correctly detected
neonate faces to fulfill the set length requirement and thus this
video segment is excluded for the pain/no-pain classification
testing subset.

1) YOLOv3-SEG16: Set Length 16; 3,072 images from
192 video segments

2) YOLOv3-SEG32: Set Length 32; 5,920 images from
185 video segments

3) YOLOv5-SEG32: Set Length 32; 6,880 images from
215 video segments

4) YOLOv5-MM:MaxMultiple of 32; 9,856 images from
215 video segments

After initial experimentation, two final subsets were
created for equal comparison purposes. Instead of taking
the first sequentially correctly detected images which met
the defined set length, we equally distributed the key frame
images which were correctly detected across the entire
video segment. Initially, frames per segment were kept in
an increase order over time, however for a more even
comparison if a segment was able to detect more than the
LSTM segment length, frames were utilized in an equally
distributed temporal order. While still maintaining temporal
order, this equal distribution saw an increase in accuracy
for pain/no-pain classification most likely due to a more
complete expression of pain being represented across the
entire segment as compared to the initial images. Segments
which did not have enough correctly detected faces to satisfy
the 32 minimum were discarded.

5) YOLOv3-Equal: Equal Distribution of Set Length 32,
5920 images from 185 video segments

6) YOLOv5-Equal: Equal Distribution of Set Length 32,
6880 images from 215 video segments

All of these different subsets are then used as input to the
bi-Linear CNN-LSTM to demonstrate how the performance

of different face detection algorithmswill impact pain/no pain
classification accuracy, as shown in Table 4.

III. EXPERIMENTS
A. EVALUATION METRICS
To quantify the similarities between the predicted and ground
truth samples, we used the Sørensen-Dice Coefficient (SDC)
[50] which quantifies the amount of correct overlap between
the predicted and found bounding boxes. This allows for us
to have a metric determine not only if a neonate’s face was
detected within the frame but how well the detector was
able to determine where in the image the face was located.
Mathematically, SDC can be represented in the context of the
bounding box problem by four metrics: True Positive (TP),
True Negative (TN ), False Positive (FP), and False Negative
(FN ).

SDC =
2 · TP

2 · TP+ FP+ FN
(3)

To accept the output of the detector as accurate, the SDC
value must be higher than 0.5; otherwise, the detection
was deemed inaccurate. We only considered the bounding
boxes that have a class confidence score higher than 40%.
At runtime, any detection which had a confidence of 40%
or lower was automatically discarded. These thresholds were
empirically derived metrics. While in practice our system is
able to remove the step of manual annotation, for this work
we used human-defined bounding boxes for our ground truth.
These are the same bounding boxes provided to the model
during training.

B. FACE DETECTION RESULTS
We have included Table 1 in order to illustrate the different
distribution of training and testing splits that were utilized
to calculate the results in Table 2 and Table 3. Table 2
shows the performance of differing face detectors (v3, v5,
v6) on the USF-MNPAD-I postoperative dataset. Recall that
these detectors were trained on the procedural subset of
USF-MNPAD-I, so no training data was seen at test time.
We used the bounding boxes manually annotated by a human
to provide our ground truth labels, and all of the labels were
the same for each of the individual models.

When evaluated on the training set, YOLOv5 completely
off-the-shelf achieved an average of 24.0% across USF-
MNPAD-I procedural folds, with YOLOv3 trained on
WIDER-FACE achieving an average of 68.96%, YOLOv5
achieves an average of 98.12% and YOLOv6 achieved
an average of 99.92% for the same folds. This indicates
that YOLOv5 or YOLOv6 trained on the USF-MNPAD-I
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TABLE 2. Performance of face detection on USF-MNPAD-I postoperative subjects, subject-wise.

FIGURE 4. Comparison of not trained (Left Column) and trained YOLO
output (Right Column).

procedural should yield respectable results on USF-MNPAD-
I postoperative test set. An SDC of 0.5 was allowed, while
maintaining a threshold confidence score of 0.4. As shown
in Table 2, there is notable increase in accuracy between
YOLOv3-WIDER FACE and the trained YOLOv5, with
trained YOLOv6 achieving near perfect accuracy.

Table 3 shows the performance on YOLOv3 trained
on WIDER-FACE, YOLOv5 trained on USF-MNPAD-I
and YOLOv6 trained on USF-MNPAD-I, then tested on
the full USF-MNPAD-II dataset. As will be analyzed in
Section III-D.2, USF-MNPAD-II is a much more complex
and challenging dataset than USF-MNPAD-I. Therefore,
while YOLOv6 trained on USF-MNPAD-I procedural

achieves near perfect accuracy on the USF-MNPAD-I
post-operative subset, we see diminished results on USF-
MNPAD-II with a mean of 62.7% accuracy, 76.1% AUC.
Yolov5 trained on USF-MNPAD-I is also able to achieve a
slightly diminished AUC of 64.2%. In comparison however,
YOLOv3 trained on WIDER-FACE only achieves 26.4% on
USF-MNPAD-II, ACU of 49.5 supporting our overarching
assertion that off-shelf-solutions and solutions trained on
adult faces are insufficient for neonate face detection. We can
see these results additionally respresented as a confusion
matrix and a ploted ROC curve in Table 5.

C. PAIN CLASSIFICATION RESULTS
Table 4 shows pain/no-pain classification on the full post-
operative USF-MNPAD-I subset, a total of 12,416 images
extracted from the 218 video segments. Differing face
detection models resulted in differing images passed to the
bi-linear CNN for feature extraction, where correctly detected
neonates’ faces are cropped by the found bounding box.
To avoid missing the set LSTM length, any missed detections
are supplemented by passing the full original image to
the networks. How the different subsets were created is
explained more in-depth in Section II-B.3. The metrics from
the YOLOv6 subset indicate what the accuracy would be with
100% neonate face detection accuracy as reported in [9] by
manual annotation. We see that YOLOv3-Equal (what can be
considered our baseline) compared to the superior performing
YOLOv5-Equal & YOLOv6 face detectors will result in a
significant improvement in both mean Average Precision
(mAP) and Area under the ROC Curve (AUC). Specifically,
there was an increase of 8.6%meanAverage Precision (mAP)
and 21.2% Area under the ROC Curve (AUC) between using
the baseline YOLOv3-Equal to the superior YOLOv6 face
detection.

To back our claim that these results are statistically
significant, we used the students paired t-test [51] to compare
YOLOv3-Equal and YOLOv5-Equal [40], [44] detector
versions which result in a t − score = 1.4561, at degree’s
freedom of 388, p−value = 0.073087 indicating significance
at p < 0.10.
For repeatability reasons, the trained weights used in this

paper are available at github.2

2https://github.com/ja05haus/trained_neonate_face
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TABLE 3. Performance of face detection on USF-MNPAD-II with differing face detectors; YOLOv3 (trained on WIDERFACE), YOLOv5 (trained on
USF-MNPAD-I), and YOLOv6 (trained on USF-MNPAD-I).

FIGURE 5. This figure includes the confusion matrix as well as the ROC curve for each YOLOv3 (trained on WIDERFACE), YOLOv5 (trained on
USF-MNPAD-I), and YOLOv6 (trained on USF-MNPAD-I) while tested on USF-MNPAD-II. These results are also presented numerically in
Table 3.

D. ANALYSIS OF RESULTS ACROSS SUBJECTS
1) YOLOv3-WIDER-FACE AND YOLOv5 COMPARISON ON
USF-MNPAD-I
Table 2 shows that while the trained YOLOv5 demonstrates
a large overall increase in accuracy, there are individual
outlier subjects contradictory to these results. Figure 6
shows example images taken from a procedural and a
postoperative subject, specifically instances where YOLOv3
was able to detect the neonate face slightly more often
than YOLOv5. Conversely, Figure 6 also shows instances
where YOLOv5 greatly outperforms YOLOv3. It can be
reasoned that a weakness in YOLOv5 presents itself in cases

of low resolution, where the neonate’s face is small in scale
compared to the full image and especially with added extreme
pose variations. As demonstrated with the example images
in Figure 6 exhibiting where YOLOv5 greatly outperforms
YOLOv3, a major strength of YOLOv5 is the ability to detect
the neonate’s face with large obstructions blocking one or
more key facial features.

2) COMPLEXITY OF USF-MNPAD-II
While the images in USF-MNPAD-I pose a variety of issues
to current neonate face detectors, such as extreme pose
variation and dark pixel values, images in USF-MNPAD-II
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TABLE 4. Pain classification accuracy using different face detectors.

TABLE 5. This table presents an analysis of images misclassified by different detectors.

TABLE 6. This table presents an analysis of images in USF-MNPAD-II.

FIGURE 6. Top: Example images of correctly detected neonates face by
YOLOv3, incorrectly by YOLOv5. Bottom: Example images of subjects with
large increase in accuracy with YOLOv5 detector. Columns: procedural
subject example and postoperative subject example, left to right
respectively.

contain the same issues exacerbated. Even within the same
subject, due to the length of recording, there will be
discrepancies between frames in terms of the difficulty of

neonate facial recognition. We have given visual examples
of various levels of difficulties between subjects in Figure 2.
We can observe in Table 6 that most of the subjects have
a lower API, in the [40-80] range which indicates that the
images are going to be very dark and thus posing a challenge
to any face detector. If we look at subject L which is one
subject which sees’ very low accuracy (reported in Table 3)
in face detection results, its API for the input images is
as low as 35. During the course of our experimentation,
we have determined that even to the human an average pixel
intensity of 25 or lower renders images too dark for ground
truth labeling, and thus we would not expect a computer
algorithm to improve upon the human eye. Further, while the
original images have a high resolution, due to the distance of
recordingmany of the bounding box sizes are small in relation
to the original image another complication when attempting
to accurately detect a neonatal face.

IV. DISCUSSION
An important consideration is how to effectively translate
this work into a range of clinical ICU settings, as well as
home environments including both affluent and impoverished
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neighborhoods. To facilitate this transition we have devel-
oped a computationally lightweight algorithm with run-times
consistent with hardware devices and cameras currently
available in the NICU environment. For example, input
data from a range of available RGB cameras, including
those used by parents to remotely monitor neonates, and
output to vital sign monitors capable of displaying algorithm
results to clinicians both at the bedside and via remote
alarms carried by busy NICU nurses. The emphasis in
recent years on increasing accuracy [28], [29] is somewhat
limited by testing systems in isolation, leading to a gap
between what nurses and doctors can implement into their
daily monitoring activities verses what developers envision
using computationally heavy prototypes used for technology
development. Other practical considerations are that pain
assessment and avoidance systems are needed not only
by well funded, state-of-the-art facilities with technically
well-trained personnel and large equipment budgets, but also
by smaller local NICUs whose staffing limitations could be
bolstered by the additional support. Bio-medical applications
are also most successful when they are not restricted to highly
technically trained individuals.

The applications of this work extend beyond the run-time
of an accurate neonatal face detector for simple pain/no-
pain classification. A substantial body of evidence from
human and animal research shows that early pain detection
and mitigation with interventions such as non-opioids (e.g.,
acetominophen, ibuprofen) prior to severe pain onset can
also prevent central sensitization (CS), the body’s inherent
defense strategy for avoidance of further pain. Severe pain
and CS, if left unabated, can cause long-term damage to the
newborn’s developing nervous system [1], [2], [6]. Moreover,
the onset of severe pain and CS elevates the potency to
achieve pain relief using powerful narcotics, e.g., fentanyl,
morphine, which have significantly more potential for side
effects and complications, including the need for prolonged
stays in the NICU for withdrawal. Thus, automatic face
detection of neonatal pain using other modalities could
prevent multiple traumas from severe pain, CS and reduce
narcotic dependence/withdrawal that can cause long-term
neurological damage to neonates during recovery in the
NICU.

The challenges associated with collecting data for
USF-MNPAD-I [42] highlight the need for a generalized
system of accurate neonatal face detection at run-time. The
acquisition of video and audio has takenmany iterations, even
with the most durable and compact camera solutions on the
market. Prior to uploading data into deep neural network,
human effort is required for supervision of pre-processing
that includes ‘‘cleaning the data,’’ a time-consuming process
that effectively interferes with a systems ability to perform
classification at real time. A reliable and accurate neonatal
face detector would allow for full automation of these steps.

Many computer vision applications [8], [9], [10], [11],
[27], [28], [30], [33] require detection as the first step
in the data processing pipeline. This demonstrates the

need for an accurate solution, but accuracy must not be
sacrificed for efficiency. Currently, many approaches rely on
lengthy human-supervised manual annotation for detection.
Automating this process through the use of the proposed
framework would help begin to bridge the gap between theo-
retical solutions and solutions to real-life clinical problems.

V. CONCLUSION
We used a proprietary multi-modal facial image dataset
from post-surgical neonates in the NICU to develop an
automated pain/no-pain classifier. We compared 3 different
face detectors, an off-the-shelf model, a second model
trained by adult faces, and our customized YOLOv6 models
trained on the faces of post-surgical neonate in multiple
datasets. Only our automatic face detector trained on the
faces of post-surgical infants was able to increase the
accuracy of an automated pain/no-pain classifier. We share
weights from our trained YOLOv6 models to encourage
further enhancements in the accuracy of face detectors and
integration of other modalities in automated systems for
assessment and prediction of neonatal pain.
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