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ABSTRACT Training Deep Learning (DL) models require large, high-quality datasets, often assembled
with data from different institutions. Federated Learning (FL) has been emerging as a method for
privacy-preserving pooling of datasets employing collaborative training from different institutions by
iteratively globally aggregating locally trainedmodels. One critical performance challenge of FL is operating
on datasets not independently and identically distributed (non-IID) among the federation participants. Even
though this fragility cannot be eliminated, it can be debunked by a suitable optimization of two hyper-
parameters: layer normalization methods and collaboration frequency selection. In this work, we benchmark
five different normalization layers for training Neural Networks (NNs), two families of non-IID data skew,
and two datasets. Results show that Batch Normalization, widely employed for centralized DL, is not the
best choice for FL, whereas Group and Layer Normalization consistently outperform Batch Normalization,
with a performance gain of up to about 15 % in the most challenging non-IID scenario. Similarly, frequent
model aggregation decreases convergence speed and mode quality.

INDEX TERMS Batch normalization, epochs per round, federated averaging, federated learning, neural
networks, non-IID data, normalization layers.

I. INTRODUCTION
The constant development of Information and Communica-
tion Technologies has boosted the availability of computa-
tional resources and data, leading us to the Big Data era,
where data-driven approaches have become a fundamental
aspect of everyday decisions. Both computational resources
and data are ubiquitous and inherently distributed. All public
and private sectors, from scientific research to companies,
take benefit from a vast amount of diverse data to support
the growth of their business and to develop more accurate
Artificial Intelligence (AI) systems.

Data is often spread and segregated in silos across different
institutions and even different business units of the same
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organization. It is essential to make data accessible to all
the partners to train high-quality models and exploit the
entire data’s value [1]. Many recent open science works
have encouraged data sharing between institutions in order
to improve research possibilities, create collaborations, and
publish reproducible results. For example, data sharing across
countries has been a crucial information tool during the
COVID-19 pandemic [2].

However, data is often not shareable due to issues like
privacy, security, ownership, trust, and economic reasons.
For instance, the European regulation GDPR [3] places
stringent constraints on the possibility of sharing sensitive
data between parties; industrial companies do not share their
data because leveraging it is seen as a competitive advantage.
Also, exposing data to other institutions can raise concerns
like lack of ownership and lack of trust.
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To address these problems, model-sharing strategies
(MSS) have emerged as an alternative to data sharing.
In MSS, the idea is to share AI models between the involved
parties in order to achieve collaboration without sharing
raw data. In these approaches, the AI model can range
from simpler Machine Learning (ML) algorithms like linear
regression to more complex models such as those learned
by Deep Learning techniques using Neural Networks (NNs).
Recent years have seen the growth of different model-sharing
approaches ranging from the ‘‘model-to-data remote access’’
approaches to Federated Learning [4]. In ‘‘model-to-data
remote access’’ approaches, AI models are run remotely
directly on the machines that hold the data, and security
is enforced by leveraging secure remote connections and
Trusted Execution Environments (TEEs) enclaves. Federated
Learning has also emerged as a popular approach. In FL, the
involved parties collaborate by aggregating locally trained
models into a globally shared one. The process is usually
iterative and based on NNs (FedAvg) [4], even if recently
methods based on non-NN distributed boosting algorithms
have been proposed [24]. These algorithms allow parties to
aggregate any kind of model without making assumptions
about the kind of model being aggregated or assuming a
training procedure based on gradient descent [29].
FL is a distributed ML technique originally proposed

by Google in 2016 to deal with sensitive data of mobile
devices [4]. FL is an iterative version of model-sharing:
clients (the data owners) create a federation (hence the name)
together with the server and build a shared model based on
the following steps: 1) clients send their metadata, like the
number of classes, training set size, test set size and shape of
the input features, to the server, that initializes a model based
on the received metadata characteristics; 2) the server sends
the initialized model to all the participants of the federation;
3) after performing one or more steps of gradient descent,
clients send the trained model back to the server; 4) server
acts as an aggregator performing a combination (a function
like average, sum, maximum, minimum and so on) of the
received models. The aggregated model is now sent to the
clients, and steps 3) and 4) are repeated until a specified
number of rounds are performed or a convergence criterion
is met. The first proposed FL algorithm is the FedAvg [4]
algorithm, where the aggregation function used to combine
models is the average. In this way, all datasets are kept within
the proprietary organizations, and the only information that
gets exchanged is the model parameters, which, in the case
of NN, are matrices of floating point numbers representing
the weights and the biases associated with the neurons.

Federated Learning performs well when the data is
independently and identically distributed (IID) among the
involved institutions. Unfortunately, real-world data is often
non-IID, and it is well known that this scenario poses critical
issues to FL [1]. In a non-IID setting, the data statistics of a
single client may be unrepresentative of the global statistics
and make the model diverge from the intended solution.
Interestingly, Huang et al. show that if the loss surface of the

optimization problem is both smooth and convex (which is
hardly true in a real scenario), then FedAvgwill also converge
when the data is non-IID [5].

Recent works have proposed several FL algorithms to
cope with non-IIDness problems, such as FedProx [6],
FedNova [7], SCAFFOLD [8], and FedCurv [9], which has
been tested in [10] and [11]. Notice that all these algorithms
are modified versions of FedAvg, and they preserve the
principle underneath FedAvg: to average the weights in all
the layers of the NN. Most of the common NN architectures
employ Batch Normalization (BN) [12], a technique for
improving the training of NNs to make them converge faster
and to a more stable solution. BN works by standardizing the
layers’ input for each mini-batch.

In this work, we investigate two aspects of the training FL
models, which, differently from the centralized case, happen
to be hyper-parameters that can be optimized: the normaliza-
tion layers and the frequency of model aggregation (epochs
per round). We show that the most popular normalization
layer (BN) does not couple well with FL for non-IID data
and that by substituting BN with alternative normalization
FL, a better model can be produced for both the non-IID
and IID cases. We also show that building a global model
aggregating local models at each epoch is not a good strategy,
neither for the quality of the model nor for the execution
time. We experiment with two network architectures and five
different normalization layers on two public image datasets:
MNIST [18] and CIFAR-10 [19].
Results show that the performance of the networks is

strictly related to the type of normalization layer adopted.
The main contributions of this work are:

• We provide benchmarks for five different normalization
layers: BN, GN, LN, IN, BRN;

• We provide results of experiments on FedAvg on two
non-IID settings considering a feature distribution skew
and a label distribution skew (in addition to the IID
case). To the best of our knowledge, this is the first work
providing empirical evidence on the behavior of these
normalization layers in common non-IID cases;

• for the most promising normalization layers, we ran
extensive tests to discuss how performances are affected
by the following factors:

1) Batch size.
2) Number of epochs per round (E).
3) Number of clients.

• We show that choosing the right normalization layer
and a suitable number of local gradient descent steps is
crucial for obtaining good performances.

This work extends the typical search for optimization of
machine learning parameters to federated learning.

The rest of the paper is organized as follows. In Section II,
we introduce and discuss recent related works. In Section III,
the most used normalization layers are reviewed. In Sec-
tion IV, the most typical non-IID scenarios are described.
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Section V shows and discusses experimental results. Finally,
Section VI concludes the paper.

II. RELATED WORK
The main challenges in FL are statistical heterogeneity (non-
iidness) and systems heterogeneity (variability of the devices
of the federation). In this work, we address the former. In [1],
the most common non-IID data settings, that are quantity
skew, labels quantity skew (prior shift), feature distribution
skew (covariate shift), same label but different features,
and same features but different labels, are reviewed. To the
best of our knowledge, there are only a few benchmarks
for FL dealing with non-IID data. Li et al. in [10] report
the analysis of FedAvg [4], FedNova [7], FedProx [6] and
SCAFFOLD [8] on nine public image datasets, including
MNIST [18] and CIFAR10 [19], split according to three
of the previous mentioned non-IID partition strategies, i.e.
quantity skew, labels quantity skew and three different
versions of feature distribution skew: noise-based, synthetic
and real-world feature imbalance. FedAvg [4] is the first
proposed FL algorithm. It performs a weighted average of
the local models trained on the client’s local data. When the
batch size is equal to the full local dataset, and the number
of epochs per round is equal to one, then FedAvg is better
known as FederatedSGD (FedSGD). FedNova adopts the
paradigm of FedAvg, but it also normalizes and scales the
model’s local updates based on the number of local steps.
It aims to overcome the problem of objective inconsistency
while preserving fast error convergence. FedProx is a
re-parametrization of FedAvg in which the size of local
updates is restricted by adding an L2 regularization term in
the cost function, compelling the local model to stay close
to the global model. SCAFFOLD (Stochastic Controlled
Averaging for FL) introduces an additional term to the
local updates to eliminate the drift caused by local data
differences, and it randomly samples a subset of clients
to reduce communication overhead. Li et al. [10] show
that none of those algorithms outperforms others in all the
cases and that non-iidness degrades the performance of FL
systems in terms of accuracy, especially in the case of label
quantity skew. Another recent work [11] reports an empirical
assessment of the behavior of FedAvg and FedCurv [9] on
MNIST, CIFAR10 and MedMNIST [20]. Datasets are split
according to the same non-IID settings of [10]. FedCurv is
an algorithm built on the idea of Continual Learning. It adds
the Elastic Weight Consolidation [35] penalty term to the loss
function, to minimize the model disparity across the clients of
a federation. Authors show that aggregating models at each
epoch is not necessarily a good strategy: performing local
training for multiple epochs before the aggregation phase
can significantly improve performance while also reducing
communication costs. FedAvg produced better models in
most non-IID settings despite competing with an algorithm
explicitly developed to deal with these scenarios (FedCurv).

Results in [11] also confirmed literature sentiment: labels
quantity skew and its pathological variant are the most

detrimental ones for the algorithms. The same non-IID
partitions have already been tested in [24], which proposes
a novel technique of non-gradient-descent FL on tabular
datasets. Our paper extends [11], deepening the experiments
about the number of epochs per round, a hyper-parameter
that, if tuned appropriately, can lead to large performance
gains. Moreover, we aim to investigate which type of
normalization layer better fits FL on non-IID data. Indeed,
when data are non-IID, batch statistics do not represent the
global statistics, leading NNs equipped with BN to poor
results. The most common alternatives to BN are: Group
Normalization (GN) [14], Layer Normalization (LN) [15],
Instance Normalization (IN) [16] and Batch Renormalization
(BRN) [17]. While BN is the most employed normalization
method in SOTA algorithms, LN is a fundamental part of
the recently proposed Transformer architectures [31] that
are becoming widely adopted for solving several learning
tasks, such as remote sensing [32], [33] and computer
vision [34]. To the best of our knowledge, there are no works
benchmarking normalization layers for FL on non-IID data.
A previous work [21], proposing a novel form of Transfer
Learning through test-time parameters’ aggregation, shows
that a NN with Batch Normalization [12] does not learn
at all, while performance improves only when using Group
Normalization [14]. Andreaux et al. propose a novel FL
approach by introducing local-statistic BN layers [22]. Their
method, called SiloBN, consists in only sharing the learned
BN parameters γ and β across clients, while BN statistics µ

and σ 2 remain local, allowing the training of a model robust
to the heterogeneity of the different centers. SiloBN showed
better intra-center generalization capabilities than existing FL
methods. FedBN [23] is an FL algorithm that excludes BN
layers from the averaging step, outperforming both FedAvg
and FedProx in a feature distribution skew setting.

III. NORMALIZATION LAYERS
The majority of the FL algorithms simply apply an aggre-
gation function (like averaging) to all the components of
a NN, including weights and biases of the normalization
layers. Most of the common NN architectures, like residual
networks [13], adopt BN [12] as the normalization layer.
However, in contexts like Federated or Transfer Learning,
BN may not be the optimal choice, especially when dealing
with non-IID data. In this chapter will be reviewed the main
characteristics of Batch Normalization and several possible
alternatives like Group Normalization (GN) [14], Layer
Normalization (LN) [15], Instance Normalization (IN) [16]
and Batch Renormalization (BRN) [17].

A. BATCH NORMALIZATION
Batch normalization has recently been extensively adopted
by neural networks for their training. The key issue that
BN tackles is Internal Covariate Shift (ICS), which is the
change in the distribution of the data (or network activations),
i.e. the input variables of training and test sets. Informally,
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at each epoch of training, weights are updated, input data
are different, and the algorithm faces difficulties. This results
in a slower and more difficult training process because
lower learning rates and careful parameter initialization are
then required. BN attempts to reduce ICS by normalizing
activations to stabilize the mean and variance of the layer’s
inputs. This accelerates training by allowing the use of higher
learning rates and reduces the impact of the initialization.
During training, BN normalizes the output of the previous
layers along the batch size, height, and width axes to have
zero mean and unit variance:

x̂i =
xi − µm√
σ 2
m + ϵ

where x, µm and σ 2
m are respectively the input, the mean, and

the variance of a minibatch m, and ϵ is arbitrarily constant
greater than zero used for stability in case the denominator is
zero. BN also adds two learnable parameters, γ and β that
are a scaling and a shifting step, to fix the representation
in case the normalization alters what the layer represents:
yi = γ x̂i+β. Normalized activations will depend on the other
samples contained in the minibatch. In the test phase, BN can
not calculate statistics; otherwise, it will learn from the test
dataset, so it uses the moving averages of minibatch means
and variances of the training set. In the case of IID mini-
batches, statistical estimations will be accurate if the batch
size is large; otherwise, inaccuracies will be compounded
with depth, reducing the quality of the models. Non-IID data
can have a more detrimental effect on models equipped with
BN because batch statistics do not represent global statistics,
leading to even worse results. Therefore there is a need to
investigate alternatives to BN that canworkwell with non-IID
data and small batch sizes.

B. GROUP NORMALIZATION
Group Normalization is a simple alternative to BN. It divides
the channels into different groups and computes within each
group the mean µi and the variance σi along the height
and width axes. GN overcomes the constraint on the batch
size because it is completely independent of the other input
features in the batch, and its accuracy is stable in a wide range
of batch size. Indeed, GN has a 10.6% lower error than BN
on ResNet-50 [13] trained on ImageNet [14]. The number
of groups G is a pre-defined hyperparameter that needs to
divide the number of channels C. When G = C, it means
that each group contains one channel, and GN becomes
Instance Normalization, while when G = 1, it means that
one group contains all the channels, and GN becomes Layer
Normalization. Both Instance and Layer Normalizations are
described below.

C. INSTANCE NORMALIZATION
Instance Normalization is another alternative to BN, firstly
proposed for improving NN performances in image genera-
tion. It can be seen as a Group Normalization with G = C or
as a BN with a batch size of one, so applying the BN formula

to each input feature individually. Indeed, IN computes the
mean µi and the variance σi along the height and width axes.
As stated before, BN suffers from small batch sizes, so we
expect that experiments made with IN will produce worse
results than the ones with BN or GN, which can exploit the
dependence across the channels.

D. LAYER NORMALIZATION
Layer Normalization was first proposed to stabilize hidden
state dynamics on Recurrent Neural Networks (RNNs) [15].
It computes the mean and the variance along the channel,
height, and width axes. LN overcomes the constraint on
the batch size because it is completely independent of the
other input features in the batch. LN performs the same
computation both at training and inference times. It can
be seen as a GN with G = 1, so with only one group
controlling all the channels. As a result, when there are
several distributions to be learned among the group of
channels, it can perform worse than GN.

E. BATCH RENORMALIZATION
Batch Renormalization [17] is an extension of BN that
ensures training and inference models generate the same
outputs that depend on individual examples rather than the
entire minibatch. BRN is an augmentation of a network that
contains batch normalization layers with a per-dimension
affine transformation applied to the normalized activations
to ensure the match between training and inference models.
Reducing the dependence of activation of each sample with
other samples in the minibatch can result in a performance
increase when data are non-IID.

IV. NON-IID DATA
The most common non-IID data settings are reviewed
in [1] that lists five different partitioning strategies: 1)
quantity skew, 2) labels quantity skew (prior shift), 3) feature
distribution skew (covariate shift), 4) same labels but different
features and 5) same features but different labels. In this
paper, we consider the same distributions tested in [10]
and [11] apart from quantity skew, which is not treated.
Indeed, [10] and [11] showed that quantity skew does not hurt
the performance of FL models, probably because it results in
a different quantity of samples per client, but the distribution
of samples is uniform, which is easy to deal with. In this
paper, label quantity skew, which is the most detrimental to
the FL models’ performance, has been extensively tested in a
lot of scenarios to show how it is possible to overcome its
difficulties. The cases adopted (both IID and non-IID) are
briefly described.

• Uniform Distribution (IID): each client of the federa-
tion holds the same amount of data, and the distribution
is uniform among parties. This is the simplest case for
FL algorithms because the distribution is IID.

• Labels Quantity Skew: the marginal distributions of
labels P(yi) vary across parties, even if P(xi|yi) is the
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same. This especially happens when dealing with real
FL applications where clients of the federation are
distributed among different world regions. Certain data
are present only in some countries, leading to the label
quantity skew. In this work, we adopted the simplest
version of label quantity skew, where each client holds
samples belonging to only a fixed amount of classes.
In our experiments, we used two as the number of classes
per client. Other versions of labels quantity skew can be
the Dirichlet labels skew (each client holds samples such
that classes are distributed according to the Dirichlet
function) and the Pathological labels skew (data are
firstly sorted by label and then divided in shards). Some
recent works [10], [11] show that the label quantity
skew decreases the FL performance by about 15% with
respect to the uniform distribution (results onCIFAR10).

• Feature Distribution Skew: the marginal distributions
P(xi) vary across parties, even if P(y|x) is shared. This
can happen in a lot of ML scenarios; for example,
in handwriting recognition, the same words can be
written with different styles, stroke widths, and slants.
The covariate shift was obtained according to the
procedure described in [24]: samples are distributed
among clients according to the results of a Principal
Component Analysis (PCA) performed on the data.
Some recent works [10], [11] show that the covariate
shift decreases the FL performance by about 5% with
respect to the uniform distribution (results onCIFAR10).

V. EXPERIMENTS
Our experiments have been realized using OpenFL [25],
the new framework for FL developed by Intel Internet of
Things Group and Intel Labs. OpenFL is a Python 3 library
for FL that enables organizations to collaboratively train
a model without sharing sensitive information. OpenFL
is DL framework-agnostic. Training of statistical models
may be done with any deep learning framework, such as
TensorFlow or PyTorch, via a plugin mechanism. OpenFL is
based on a Director-Envoy workflow which uses long-lived
components in a federation to distribute more experiments
in the federation. The Director is the central node of the
federation. It starts an Aggregator for each experiment, sends
data to connected collaborator nodes, and provides updates on
the status. The Envoy runs on Collaborator nodes connected
to the Director. When the Director starts an experiment, the
Envoy starts the Collaborator to train the global model. All
the experiments were computed in a distributed environment
with ten collaborators. Each collaborator is run on an Intel
Xeon CPU (8 cores per CPU), and 1 Tesla T4 GPU. The
code used for experimental evaluation is publicly available
at https://doi.org/10.5281/zenodo.10380819.
Dataset: We tested FedAvg on MNIST [18] and

CIFAR10 [19], that are default benchmarks in ML literature.
The details of the datasets are summarized in Table 1. MNIST
(Mixed National Institute of Standards and Technology)
is a well-known dataset of hand-written digits, including

TABLE 1. Statistics of the datasets.

70.000 grayscale images. Digits, spanning from 0 to 9,
have a resolution of 28 × 28 pixels. CIFAR10 (Canadian
Institute For Advanced Research) is a widely known dataset
in the field of image recognition, encompassing 60.000 RGB
images categorized into ten different classes representing
real-world objects (like trucks, cars, and aeroplanes). The
mage resolution is 32 × 32 pixels. These datasets have been
chosen for their popularity in the fields of pattern recognition
and computer vision so that the collected results can be
compared with the findings of other researchers.
Preprocessing: both datasets were not rescaled: MNIST

images are 28×28 while CIFAR10 images are 32×32. As for
data augmentation, we performed randomhorizontal flips and
random crops with a probability of 50%. All the datasets were
normalized according to their mean and standard deviation.
Model: We employed ResNet-18 [13] and EfficientNet-

B0 [26] as classification models, trained by minimizing the
cross-entropy loss with mini-batch gradient descent using the
Adam optimizer with learning rate 10−3. The local batch
size was 128. Both ResNet-18 and EfficientNet-B0 were
downloaded from the torchvision.models module. They were
originally equipped with BatchNorm. The other different
normalization techniques have been hard coded by employing
the PyTorch version present in the torch.nn module, adapting
them to the number of classes and input channels and
substituting them to the original BN layer. We used two
networks to show that the results are not model-dependent
(See VI for the EfficientNet-B0’s results). The scores of
baseline models and federated experiments on the uniform
and non-IID settings (section. V-A, Tables 2, 4 and 5) are
the average (± standard deviation) over five runs. For the
extensive experiments on batch size, number of local training
steps, and number of clients, we tested only ResNet-18 for
only one run.
Normalization Layers: All the normalization layers

described before, i.e. Batch Norm, Group Norm, Instance
Norm, Layer Norm, and Batch Renormalization, have been
applied to the classificationmodel in each experiment. For the
most promising normalization, layers have been run to study
the impact of the batch size, the number of epochs per round,
and the number of clients. For BN, we set the momentum,
i.e. the importance given to the previous moving average,
to 0.9, according to the SOTA [27] for ResNet-18. For GN,
the number of channels must be divisible by the number of
groups, so we set the number of groups to 32 for ResNet-18
(one of the possible divisors) and 8 for EfficientNet-B0 (the
only possible divisor). All the other normalization layers have
been used with their standard PyTorch configuration.
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Top-1 accuracy has been employed as a classification
metric to compare the performance. Results show the best
aggregated model’s accuracy. The learning curve of all the
experiments can be studied from Figure 1 to Figure 5. Table 2
reports about a non-federated baseline, i.e., the typical AI
scenario where the data are centralized. The remaining tables
show the performance of FedAvg in different data partitioning
scenarios and for different values of some hyperparameters
such as batch size, number of epochs per round and number
of clients.

A. NORMALIZATION LAYERS AND NON-IID DATA
This subsection presents the results of the three data
partitioning scenarios presented: uniform, label quantity
skew, and covariate shift. Table 3 shows that normalization
levels have a huge impact on the performance of a NN,
ranging from very poor levels to almost reaching the level
of accuracy in the centralized case. ResNet-18-LN performs
slightly better than BN and GN while outperforming IN
and BRN in the uniform setting (fig. 1a). In both the labels
quantity skew and the covariate shift scenarios, both GN and
LN outperform all the other normalization layers; however,
they require more training steps to converge, as shown in
fig. 1b and fig. 1c. IN does not learn in FL; indeed, since
both MNIST and CIFAR10 have ten classes, ResNet-18-IN’s
performance is like tossing a coin. BRN seems to have a very
long learning curve; in fact, it needs a lot of training rounds to
reach convergence. However, its performance is still far from
the best performances of BN, GN, and LN. For this reason,
the following subsections will report results only for the most
promising normalization layers: BN, GN, and LN.

B. NORMALIZATION LAYERS AND BATCH SIZE
We examined the effect of a range of batch sizes on training
NNs with different normalization layers (Tab. 6 and Fig.2).
We trained ResNet-18 on both MNIST and CIFAR10 with a
batch size of 8, 16, 32, 64, 128, 256 and 512.

In Tab.6, we can see that GN and LN variants of ResNet-18
consistently outperformBN (batch sizes 8 and 16). In all three
variants, the accuracy degrades when the batch size becomes
too large (in almost all cases, there is a significant drop in
performance when passing batch size 256 to 512). A possible
explanation for this phenomenon is that, as stated in [28], ‘‘the
lack of generalization ability is due to the fact that large-batch
methods tend to converge to sharp minimizers of the training
function’’. This is especially true in contexts such as FL,
where clients have fewer data than in centralized scenarios,
and therefore, increasing the batch size has a greater effect.

C. NORMALIZATION LAYERS AND NUMBER OF EPOCHS
PER ROUND
The Director-Envoy paradigm provided by OpenFL creates
a workspace that allows data scientists to write their own
training functions. By default, the number of epochs is equal
to 1. Indeed, after every epoch of training, the aggregation

strategy chosen is performed (FedAvg). By adjusting this
hyper-parameter, it is possible to choose the favourite number
of epochs per round before aggregation. We considered two
types of experiments to study how accuracy is affected by the
number of epochs per round:

• Fix the number of rounds and increase the number of
local training steps (Tab.7).

• Fix the number of training epochs to 1000 and vary the
ratio of epochs to rounds (Tab. 8).

It can be noted that models benefit frommore local steps of
gradient descent before doing aggregation. Indeed, accuracy
increases as E increases. A possible explanation is that this
happens because clients of the federation share a similar loss
function shape, and going more and more towards the local
minima can be beneficial to reach global optima.

Interestingly, when E = 1, BN converges quickly, while
GN and LN requiremore training steps to converge. However,
when E increases to 10 or 100, BN also requires more rounds
to reach convergence, while the learning curves of GN and
LN are unaffected by significant changes.

These results can also be analyzed from a communication
point of view: with the same amount of epochs, less commu-
nication achieves better results. For example, on CIFAR10,
ResNet-GN with E = 2 and 500 rounds achieves higher
accuracy than ResNet-GN with E = 1 and 1000 rounds
(Fig.4). This means that perhaps counter-intuitively, training
locally before performing aggregation can boost the model’s
accuracy. This seems to indicate that pursuing local optimiza-
tions can lead to better approximations of the local optima.
However, at a certain point, increasing E and reducing the
number of rounds decreases the performance. This pattern is
clearly visible with all the normalization layers and in both
datasets. Table 8 shows that we always need an appropriate
ratio of epochs to round.

Finally, it has been observed [30] that as the communica-
tion frequency diminishes, the ideal settings for local training
tend to mirror those of centralized training. For this reason,
a more frequent aggregation can require differentiating from
the centralized training’s optimal parameters.

D. NORMALIZATION LAYERS AND NUMBER OF CLIENTS
A recent work [30] shows that the number of clients of
the federation directly affects learning rate and batch size
compared to centralized training, affecting thus the global
model performance.

We tested the scalability of FL by measuring the effect of
the number of clients of the federation, as shown in Fig. 5,
and considering two types of experiments:

• a labels quantity skew split of the dataset across a
different number of clients (namely 2, 4, 8, and 10).
Results are reported in Table 9.

• a uniform dataset split across clients, but considering
only some parties. Here the idea is to show how
increasing the number of participants, and so the
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TABLE 2. Accuracy in the non-federated setting.

TABLE 3. Accuracy in the uniform setting.

TABLE 4. Accuracy in the labels quantity skew setting.

TABLE 5. Accuracy in the covariate shift setting.

FIGURE 1. Accuracies of ResNet-18 on the uniform and non-IID cases. BN, GN, and LN require a few rounds to reach convergence in the uniform setting,
while they need more training steps to converge in non-IID scenarios. It is clearly shown that BRN requires a very long learning curve and that IN does not
learn in FL.

quantity of data, can be beneficial to the federation.
Results are reported in Table 10.

We can observe (Table 9) that the accuracy significantly
increases when decreasing the number of clients. Indeed,
when the number of parties is small, the amount of local
data increases, leading to better local models, and aggregating
fewer models can result in less information loss. Moreover,

we can note the importance of normalization layers in FL:
GN and LN variants of ResNet-18 in the ten-client scenario
perform better than BN in a two-client scenario on CIFAR10,
while on MNIST, there is only a slight drop.

Table 10 shows the results in an IID scenario considering
only some shards of the dataset. In this case, the amount of
local data remains the same in each configuration; however,
the federation’s total amount of data varies according to the
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TABLE 6. Accuracy in the labels quantity skew setting as the batch size
varies.

FIGURE 2. Accuracies on CIFAR10 and different batch sizes. Accuracy
degrades when the batch size becomes too large.

TABLE 7. Accuracy in the labels quantity skew setting as the number of
epochs per round varies.

number of parties. Increasing the quantity of data in the
federation by increasing the number of clients benefits the
aggregated model.

E. ANALYSIS OF COMPUTATION TIME
Table 14 in the Appendix section summarizes the wall-clock
times (mean of five different runs) required for training the
models for 200 federation rounds on CIFAR10. Results,
expressed in the HH:MM time format, reveal an easily
discernible pattern. All the alternatives to BN decrease the
wall-clock time by about 20%. While the wall-clock times
are the combination of the computation (train and test
phases) and communication (exchanging parameters between
the clients and the central server) times, it is important
to note that the overhead introduced by BN, with respect
to the alternative normalization layers, highly depends on

TABLE 8. Comparison between different epochs per round in labels
quantity skew setting.

TABLE 9. Accuracy in the labels quantity skew setting as the number of
collaborators varies.

TABLE 10. Accuracy in the i.i.d. setting using only some shards of the
dataset.

TABLE 11. Accuracy in the uniform setting with EfficientNet-B0.

the computation phase. Indeed, normalization introduces a
small number of learnable parameters for every layer of the
model. So, the increase in magnitude (in MB) of the weights
exchanged between the federation’s participants is negligible.
In particular, compared with its alternatives, the possible
overhead introduced by the saving and communication of
BN’s moving averages is still negligible. Finally, the main
slowdown introduced by BN should be due to the steps
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FIGURE 3. Accuracies on CIFAR10 and different epochs per round. Accuracy increases as BN converges and lates as E increases, while GN and LN follow
an inverse pattern.

FIGURE 4. Accuracies on CIFAR10 fixing the number of epochs to 1000 and varying the ratio of epochs to rounds.

FIGURE 5. Accuracies on CIFAR10 and different number of clients.
Accuracy of ResNet-18-BN on 2 parties is still lower than
ResNet-18-GN/LN on 10 parties.

TABLE 12. Accuracy in the labels quantity skew setting with
EfficientNet-B0.

of synchronization among mini-batches. Indeed, in BN, the
local averages and standard deviations have to be combined
into a single global mean and variance. This synchronization
overhead is not present in other normalization techniques
computing statistics per each sample individually (LN), per
group (GN, IN). Surprisingly, while BRN exploits the same
mechanism of statistics computation but a slightly different
normalization step from BN, its wall-clock times are lower
than BN’s. This behavior will be further investigated for
future work.

TABLE 13. Accuracy in the covariate shift setting with EfficientNet-B0.

TABLE 14. Wall-clock execution times [HH:MM] to train models on
CIFAR10 for 200 federated training rounds of 1 epoch.

VI. CONCLUSION
This work aims to improve the effectiveness of federated
learning, focusing on hyper-parameter optimization, starting
from understanding which hyper-parameters specifically
affect the training of a federated model differently from
centralized training. We specifically focused on layer nor-
malization, which is also a hyper-parameter of centralized
training, and frequency of model aggregation, which is not
an issue in centralized training.

We experimented with two network architectures and
five normalization layers on two public image datasets.
We tested Batch, Group, Instance, Layer Normalization, and
Batch Renormalization in the uniform, label quantity skew,
and covariate shift settings. Although BN is the SOTA for
classical ML techniques, in our experiments, GN and LN
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outperformed the other normalization layers in all the FL
partitioning strategies.

This paper provides a benchmark for the most common
normalization layers of NNs, helping researchers to compare
and contrast their findings with those of other scientists. As a
drawback, we can underline that BN is the most employed
solution for SOTA algorithms. This can make it difficult
and unfair to compare newly proposed solutions that adopt
different normalization layers and SOTA methods.

Through extensive experimentation, we analyzed how the
batch size, the number of epochs per round, the number of
rounds, and the number of clients of the federation affect the
aggregated model performance. These additional tests have
been conducted in the labels quantity skew scenario, which is
the most challenging for FL algorithms, considering the best
three normalization layers: BN, GN, and LN.

GN and LN outperform BN in almost all the tests.
Results show that regardless of the batch size, GN and LN
consistently outperform BN, although batch size affects the
model’s performance in all cases. Unexpectedly, we observed
that the plot of the quality of the model against the frequency
ofmodel aggregation (epochs per round) consistently exhibits
a maximum at a few epochs per round. For FL, the number of
epochs per round exhibits similar behavior of batch size for
centralized training.

Eventually, we tested the scalability of FL systems.
We noted that FL is not scalable under a strong scalability
assumption, i.e., increasing the number of clients while
maintaining the size of local datasets constant. However,
GN and LN on ten clients still outperform BN on two clients.
The scalability has also been tested in the IID scenario under
the weak scalability assumption, i.e., increasing the number
of clients while maintaining the size of the local dataset per
client constant. In this case, the federation’s data changeswith
the number of clients, and the model’s performance increases
with the number of parties.

In future work, considering the close relationship between
the communication frequency, the batch size, and the number
of workers, we aim to understand deeper if a higher learning
rate and a reduced batch size are required when increasing the
number of epochs per round. Indeed, a smaller batch size may
be required in order to have more model updates, together
with a higher learning rate, which can confirm that with more
epochs per round, the global model parameters have to go
away from centralized optimal parameters [30].

Proposing a new normalization scheme specifically
devised for FL on non-IID data is another interesting
direction for future work. Taking inspiration from the parallel
tempering method, we plan to implement a mean-exchange
algorithm in which the weights of the normalization layers
are exchanged among the federation’s parties rather than
averaged.

APPENDIX
Accuracies on the uniform and non-iid data settings using and
EfficientNet-B0 [26].
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