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ABSTRACT The current explosion in user traffic necessitates the placement of edge servers in proximity
to the Internet of Things (IoT) devices, allowing computation tasks to be offloaded to edge servers. This
strategy aims to minimize the average delay of traffic requests by enabling user/IoT devices to locally
execute time-sensitive tasks or offload them to edge servers within the edge computing paradigm. This new
paradigmwill also allow to cache contents at edge servers, but considering such an increasing number of user
requests and limited storage capability of edge servers, selection in edge caching decisions is challenging.
In addition, while there is general consensus that this technology may provide a variety of benefits, there are
serious questions about its security implications. This is because malicious users can manipulate the caching
decisions of the edge servers by sending fake traffic requests, which reduces the caching efficiency of the
resource-constrained edge servers. Driven by these issues, in this paper, we propose a blockchain-based
content caching and computation strategy to validate the authenticity of cached content and thus prevent
unauthorized requests from malicious users. Specifically, the Proof of Stake (PoS) consensus mechanism is
presented to handle low computational work, validate the process of blocks, and manage the transactions
between edge servers and legitimate users. Then, a Deep Q Network (DQN)-based solution is proposed
to intelligently develop an effective content caching and computation strategy. According to performance
evaluation, the proposed model significantly outperforms the conventional caching strategies. It improves
the cache hit rate by up to 8.2% on average and reduces the response delay by up to 7.45% on average.

INDEX TERMS Blockchain, content caching, PoS, edge computing, Internet of Things.

I. INTRODUCTION
Industry 5.0 will fundamentally transform the industrial
environment by maximizing human-robot collaboration-
enabled automation and digitization. In this transformation,
6G is expected to integrate innovative technologies including
the Internet of Things (IoT), Artificial Intelligence (AI),
Machine Learning (ML), and Blockchain. Recently, edge
computing has also emerged as a critical technology for
designing and analyzing next-generation wireless networks.
This technology has been developed around the ‘‘edge servers
at the network edge’’ to offload the computation tasks and
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reduce processing latency by adding new perspectives to
network management.

According to Ericsson Mobility Report [1], total mobile
network traffic reached around 160EB permonth at the end of
2023 and is expected that it will raise 563EB permonth by the
end of 2029. We can expect that Internet-related user traffic
will increase tremendously, most of which will be video
traffic. Tackling this traffic increase has become a priority
for network operators in the communications industry.
While handling traffic demands is a major challenge, the
advances in the edge computing paradigm could offer a
solution.

6G networks will be challenging to realize due to
the stringent latency and computing constraints for most
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FIGURE 1. An illustration of malicious task requests in the edge
computing system.

latency-sensitive tasks (i.e., video streaming, XR-type
services) [2]. On one hand, the edge computing paradigm
enables both services and network functions to be placed
close to the users to reduce latency and bandwidth, and
thereby, computation tasks are offloaded from user devices
to the edge servers [3], [4]. On the other hand, a funda-
mental issue in mobile edge computing is determining the
content caching strategy at the edge servers; that is, which
data should be stored at the network edge to maximize
system performance since obtaining content from the remote
content servers experiences huge latency [5]. This helps
in reducing latency, improving Quality of Service (QoS)
and network efficiency, and enhancing user experience.
However, as seen in Fig. 1, malicious users can manipulate
the caching decisions of the edge server by sending fake
computation requests, which decreases the cache hit rate and
increases service cost. In this context, edge security cannot
be ignored to prevent malicious requests and inefficient
network management. Thus, in this paper, we propose a
novel framework for secure content caching and computation
for edge computing with the collaboration of blockchain
technology to efficiently manage cached content and validate
the authenticity of the content.

Blockchain is a decentralized and distributed technology
that provides transparency, security, and trust mechanisms
by keeping a tamper-resistant record of transactions [6].
Essentially, blockchain can ensure the data integrity of
transmission between edge servers and user devices by
storing the critical information in the blockchain. In addition,
blockchain can be used to implement security mechanisms,
such as authentication between edge servers and user devices
with smart contracts [7]. Smart contracts are programs on
the blockchain for executing an agreement and reliable
transactions without third-party intervention. Once the smart
contract is implemented on the blockchain, its code cannot be
changed. This enables the integrity, security, and authenticity
of transactions. In our model, blockchain is used to validate
the authenticity of the cached content, thereby preventing
unauthorized requests from malicious users.

As a result, in this paper, we propose a blockchain-based
secure content caching and computation framework in edge
computing systems. Given the large amount of traffic in
today’s wireless networks, we design a content caching

solution with an improved cache hit rate and shorter average
delay. We integrate the blockchain technology into a content
caching strategy to prevent unauthorized user requests and
allow traceable, irreversible, and reliable transactions. This
paper also explores a novel content caching approach to
improve the QoS that uses a Deep Q Network (DQN)-
based solution. To achieve this, we first formulate the task
computation time for local computation and edge server
computation, and then content requests are assigned to
a popularity class as high popularity and low popularity.
By employing the popularity classification in conjunction
with a DQN-based solution, our model outperforms the
conventional caching strategies.

The main contributions of this paper are as follows:
• We design a blockchain-based secure content caching
and computation model in the edge computing system.
We propose the Proof of Stake (PoS) consensus
mechanism to prevent malicious requests to validate the
process of blocks and manage the transactions between
edge servers and legitimate users.

• We also present an efficient algorithm for content
caching strategy based on DQN to intelligently decide
the contents on edge servers. By doing this, we aim
to improve content retrieval time and decrease average
delay on resource-constrained edge servers, and ensure
that each request is served with better QoS.

• We conduct a set of experiments and demonstrate cache
hit rate, average delay, and offloading ratio performance
by comparing traditional cache replacement strategies.
We show that our model can effectively enhance system
performance in an edge computing system.

The remaining work of this paper is organized as follows.
Related work on edge caching and blockchain-based security
solutions are discussed in Section II. Blockchain-based
network architecture and threat model are presented in Sec-
tion III. The proposed blockchain-based content caching and
computation model is given in Section IV. The performance
evaluation of the proposed model is discussed in Section V
and finally, Section VI presents the conclusion and future
work.

II. RELATED WORK
In this section, we summarize the research in two categories:
edge caching and blockchain-based security.

A. EDGE CACHING
Edge computing technology allows data to be processed on
components close to the source. However, offloading the
tasks to the edge servers and caching the contents create
difficulties due to the limited storage capacity of edge servers.

In [8], the authors consider the challenges of the hetero-
geneity of the network and spatial-temporal characteristics
of content popularity. They model the edge caching problem
as a Markov Decision Process (MDP) and propose an
actor-critic learning method to improve system performance
in terms of average delay, cache hit rate, and traffic offloading
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ratio. In [9], the authors aim to optimize edge caching
and computation offloading by designing an intelligent
framework between user devices and edge nodes. For each
request, the edge node decides whether to cache or not.
Accordingly, a cache replacement problem is also modeled
as an MDP and solved by the Deep Reinforcement Learning
method. Although these works optimize the caching and
communication between user devices and edge nodes in
mobile edge systems, due to the poor security of computation
and storage in edge computing architecture, there are
problems with malicious task requests. In [10], the authors
address the problem of caching interrupts due to the vehicle
movement, and a caching decision strategy is defined based
on a Recursive Deep Reinforcement Learning algorithm
to decrease the service delay and improve the caching
hit ratio. Similarly, in [11], the authors focus on vehicle
movement and consider roadside units as edge nodes to
cache the popular contents. They model the edge caching
problem and propose a coalition game-based distributed
caching scheme to improve caching resource utilization
and hit ratio. In [12], the authors investigate resource
allocation and caching strategies for cloud-to-things systems
to minimize latency and freshness of information (i.e., Age
of Information). However, these studies still have limitations
because the integration of blockchain into edge computing
systems improves the security of data transmission. In [13],
the authors propose a searchable and secure edge caching
scheme for intelligent 6G systems. In the study, edge nodes
pre-cache user-requested data based on the user’s position and
direction. However, due to security threats of edge computing
systems, an attacker may send large numbers of fake content
to the cache to decrease the cache-hit rate of legitimate users.
Thus, the security of both edge nodes and user devices has a
significant impact on the development of secure edge caching
systems [14].
This state-of-the-art motivates us to intelligently build a

decision-making process for secure content caching at edge
nodes. However, designing a secure content caching and
task computation architecture is still open. In this paper,
we explicitly bridge that gap by defining a blockchain-based
framework and presenting a deep learning-based solution.

B. BLOCKCHAIN-BASED SECURITY
IoT/user devices generate large amounts of content, and com-
putationally expensive operations impede the development
of models on user devices. To overcome this limitation, the
edge computing paradigm is applied to reduce storage and
computation cost, and blockchain is used to secure data
storage and computation at the network edge.

Blockchain is a promising technology in the computing
domain when it comes to securing information shared
between different entities of a network, such as between
edge servers and user devices. Moreover, by leveraging smart
contracts, blockchain can provide transparent execution,
where the outcome is verified and approved by a majority of
the mining nodes within the network [15]. Smart contracts

run on the blockchain, include predefined rules to be
executed by communicating parties and provide access
control only to authorized users in a decentralized manner.
Thus, the storage of content data on edge servers can be
restricted by smart contracts only according to the requests
of authorized/legitimate users so that it defines how requests
can be managed and what steps to take when malicious
nodes are detected. The consensus mechanisms ensure the
correct implementation of smart contracts [16]. Consensus
mechanisms include various types of consensus algorithms,
such as Proof ofWork (PoW), Proof of Elapsed Time (PoET),
Proof of Stake (PoS), etc. These consensus algorithms are
used to build trust and properly store the transactions on the
blocks [17].
In [5], the authors address the security issues, where edge

servers may return false results or viruses to users. In this
regard, they present a trust management procedure between
users and edge nodes. To achieve this, a trust degree of
the edge nodes is defined and updated by users based on
the QoS. Then, an algorithm is proposed to manage the
caching resources of edge nodes. However, the authors do
not discuss authentication efficiency and additional costs for
the blockchain-based scheme. In [18], the authors propose
a distributed blockchain cloud architecture to allocate edge
cache resources and improve the QoS in IoT networks. They
present a content selection algorithm for edge nodes and
aim to improve the utilization of cache space. Blockchain
is used to build a distributed architecture to address the
security challenge of increasing data volume. However, the
proposed content cache strategy does not consider different
contents to improve the utilization of cache space. In [19], the
authors consider data tampering and eavesdropping attacks
and present a blockchain-assisted framework to provide the
security of historical data and optimize content caching
probability for 6G networks. In [20], the authors focus
on edge computing for speeding up the response time of
traffic requests and blockchain for ensuring the security of
data transmission. A blockchain-based algorithm is designed
to predict the popular files and decide which files to
cache to improve the cache hit rate. Similarly, in [21],
the authors address the challenge of content caching in
edge computing-assisted blockchain networks and propose
a deep reinforcement learning-based solution to improve
the system performance in terms of transmission delay and
caching reward. In these works, popular files are cached
on the edge nodes and thereby, IoT/user devices can access
popular content from edge nodes faster than obtaining the
same content from the remote cloud. However, it is not
possible to cache all contents at the network edge and
these studies do not consider the computation capability of
edge nodes, and how to securely offload the tasks is not
discussed.

In [22], the authors present a game theory approach to
optimize the edge servers and user devices in blockchain
networks. Then, the caching and pricing solutions are
formulated for a higher caching utilization. In [23], the
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FIGURE 2. Proposed blockchain-based model for content caching and computation.

authors design a distributed and trusted authentication system
in a blockchain-based edge network. They consider an elliptic
curve cryptography-based approach to guarantee security
at the network edge. An edge caching strategy is defined
and compared with traditional caching strategies in terms of
cache hit rate and delay. Although a distributed authentication
mechanism protects the data validity, when the number of
user requests increases, the network becomes congested
due to the limited cache size and the time required to
create a new block for each participating entity to the
network. In [24], the authors present a combination of
centralized and blockchain-based authentication architecture
for edge computing-based IoT systems. They consider cen-
tralized authentication for edge nodes and blockchain-based
authentication for IoT devices. Authentication efficiency is
evaluated in terms of computation costs of transactions,
processing and storage resources, and processing time in the
blockchain network. However, a computation offloading and
edge caching strategy will inevitably bring communication
overhead to the network, which is not considered in the
proposed model.

Although these studies have mostly focused on allo-
cating caching resources of edge nodes, how to prevent
unauthorized requests and manage caching resources is not
addressed.

III. SYSTEM MODEL
A. NETWORK ARCHITECTURE
The proposed network architecture of the blockchain-based
content caching and computation model is given in Fig. 2.
As shown in the figure, the proposed model consists of

three components: (i) Physical Layer, (ii) Edge Layer, and
(iii) Service Layer. The physical layer includes N =

(1, 2, .., i, ..,N ) users and M = (1, 2, .., j, ..,M ) edge
server-enabled base stations at fixed locations. The locations
of edge servers are defined as L(j), where j ∈ M .
Here, edge servers have a limited storage capacity to cache
contents and serve the users within the communication range.
Users may execute the computation tasks locally or offload
them to the edge layer as seen in Fig. 2. The connection
between the user and the edge server is expressed as
follows: 

e1,1 e1,2 . . . e1,M
e2,1 e2,2 . . . e2,M
. . . . . . . . . . . .

eN ,1 e2,2 . . . eN ,M

 (1)

where ei,j ∈ {0, 1}, and ei,j = 1 indicates that user i is in
the communication area of edge server j, otherwise it is equal
to 0.

Edge servers have an important role in processing user
requests at the network edge and caching these requests with
blockchain. Each edge server connects to the cloud server and
downloads the requested content if it is not in the cache. The
blockchain guarantees the edge security and authenticity of
the cached contents.

The service layer is responsible for the execution of the
proposed blockchain-based content caching and computation
model. This layer runs the blockchain manager, computation
manager, content manager, and proposed DQN-based content
caching strategy modules, which will be detailed in the next
section.
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B. THREAT MODEL
As seen in Fig. 2, unauthorized/malicious users can make
requests to increase computational density and latency on
the edge servers. For example, an edge server can receive
fake content requested by a malicious user, execute the
computation task and transmit it to the malicious user. Also,
the requested content can be cached. In this case, malicious
users can hamper or even shut down the system operations
since the cache can be filled with the contents of themalicious
users.

IV. PROPOSED BLOCKCHAIN-BASED CONTENT CACHING
AND COMPUTATION MODEL
The most common services launched by the service providers
are Fixed Wireless Access (FWA), Enhanced Mobile Broad-
band (eMBB), and XR-based services [1]. FWA provides
wireless broadband connectivity for different indoor and
outdoor use cases. Accordingly, users can generate different
content types. The Radiocommunication Sector of ITU
(ITU-R) has determined the following scenarios for 2020 and
beyond [25]: (i) eMBB for addressing the surge in data
rates, high user density and providing substantial traffic
capacity for hotspots, (ii) Ultra Reliable and Low Latency
Communications (URLLC) for stringent requirements such as
latency, reliability, throughput etc. based on delay-sensitive
applications, and (iii) Massive Machine Type Communica-
tions (mMTC) for a massive number of connected devices to
transmit low volumes of delay-insensitive data. Here, each
content may have a different popularity. Thus, in this paper,
we classify the contents into high-popularity content and low-
popularity content.

In this section, the service layer functionalities and
blockchain construction are explained as follows.

A. BLOCKCHAIN MANAGER
The blockchain manager is responsible for managing the
transactions received from legitimate users and smart con-
tracts between the edge server and users. The details are as
follows:
• Smart contract: Smart contract is responsible for executing
a code on blockchain that allows traceable, irreversible, and
reliable transactions. In this paper, edge servers are designed
to run smart contracts.

The blockchain manager in the edge server stores the user
device information and adds the transaction in blocks and it
is responsible to create a smart contract between the edge
server and users [26]. A smart contract is designed to execute
a blockchain process, which stores the caching transaction in
a local database. The communication diagram between the
edge server and the user device is illustrated in Fig. 3 and
explained below.

• Step 1: Each user device registers to the associated
edge server and sends its device information. Then, the
edge server sends to the blockchain manager to add the
blockchain network. The blockchain manager generates

FIGURE 3. Communication diagram between edge server and user device.

a user device ID and sends it to the edge server. A smart
contract is created and signed between the edge server
and the user device.

• Step 2: The user creates a transaction which includes
transaction id, user device id, edge server id, nonce,
content request, the hash value of the previous block,
and the hash value of the whole transaction. Each user
sends the transaction to the associated edge server. The
transaction is encrypted with a secret key using Secure
Hash Algorithm (SHA)-256.

• Step 3: The edge server verifies the transaction with the
same secret key using SHA-256.

• Step 4: The user requests are executed by the edge server
and sent to the user.

• Step 5: Also, the content requests may be stored in
a local database by the edge server according to the
proposed content caching strategy.

• Transaction: The legitimate users send traffic/content
requests to the edge server in the form of transactions as seen
in Fig. 4. This transaction cannot be copied by a malicious
user since a chained checksum of SHA-256 is implemented
to maintain a trust relationship between the edge server and
the user.

FIGURE 4. Transaction block.

• Consensus mechanism: The main goal of the consensus
mechanism is to build a trust relationship between distributed
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nodes [7]. The security of the blockchain depends on
the consensus mechanism [6]. Transactions are recorded
on the blockchain via a consensus algorithm. There are
different consensus algorithms, such as PoW, PoET, PoS,
etc. PoW, one of the most common consensus algorithms,
solves computationally intensive problems and requires a
lot of computational resources [17]. This is because PoW
provides a mechanism to establish decentralized consensus
in blockchain networks by motivating mining nodes to
dedicate computational resources to validate transactions.
However, this requires a lot of time and high energy
consumption to complete. Therefore, this approach has led
to the development of alternative consensus mechanisms
like PoET. In the PoET algorithm, a random waiting time
is assigned to each node. After waiting for the specified
time, the first node that gets the shortest waiting time is the
winner and may add its block to the network [17]. However,
PoET is based on the assumption that the trusted execution
environment is secure and reliable. If the trusted execution
environment is controlled by a single participant, a risk
of centralization may arise, which potentially manipulates
the random waiting time process. In our model, PoS is
chosen to validate and add the transactions to the blockchain.
PoS is executed based on randomly generated stakes of
users accepted into the blockchain. The reason for choosing
the PoS is to meet the latency requirements of computa-
tion tasks. PoS solves long delays and extensive energy
consumption problems in the transaction processing of
PoW [27].

The pseudo-code of the PoS-based secure processing is
given in Alg. 1. In our approach, the blockchain is used
to connect multiple edge servers, thus enabling information
sharing between edge servers on the network. When a user
device requests to establish a secure connection with the
associated edge server, the device first sends a registration
request along with its certificate. The certificate is signed by
a trusted authority with its private key and can be verified
with its public key. Thus, an edge server can verify the
legitimate user’s certificate. If the certificate is verified, the
user device can send content requests to the edge server,
otherwise, the user device is not included in the system
(lines 5-11). Then, the blockchain infrastructure runs the
smart contract which stores and verifies the transactions to
avoid malicious requests. The smart contract is responsible
for the management of each entity, including edge servers and
IoT/user devices, and provides the interface for the recording
of secure content on edge servers. Thereby, network security
can be handled by multiple edge servers thanks to the
smart contracts. Accordingly, each server receives the content
requests from user devices and creates the transactions to
add the blockchain (lines 12-15). As a new block is added
to the blockchain, the functions, called the Computation
Manager and Content Manager, which will be detailed in
the next subsection, are executed for the content caching and
computation strategy according to the cache capacity of the
edge server (lines 16-18).

Algorithm 1 PoS-Based Secure Processing
1: Require: Certificate, Traffic requests from all user

devices
2: Ensure: Updated blockchain
3: Initialize the miners forM edge servers
4: for all miner j ∈ M do in parallel do
5: for all user in the coverage area of miner j do
6: Registration_Request(Certificate)
7: if authentication is verified then
8: Add to the blockchain as an honest miner
9: else
10: Label the user as a malicious miner
11: end if
12: Each edge server receives content request
13: Generate a transaction by defining its own stake
14: Calculate the whole hash of the transaction block
15: Add it to the blockchain
16: while There is a new block in blockchain do
17: Send the block to the Computation_Manager

(Section IV-B) and Content_Manager (Sec-
tion IV-C) functions to update the content caching
and computation strategy according to the cache
capacity of the edge server

18: end while
19: end for
20: end for

B. COMPUTATION MANAGER
As the number of computation tasks is increased, delay-
sensitive tasks cannot be locally executed by the user devices.
In this case, users offload the tasks to the edge servers.
In the paper, we classify the contents as high popularity
and low popularity. The reason to implement this is because
improving the cache hit rate will also reduce the service time
of computation tasks.

In this subsection, we will define the computation time and
details of the delay analysis.
1) Local Computation Time: Let’s assume that the

computing capability of an IoT/user device i as ϒi, the
required CPU cycle per bit as ci, the size of computation task
asχi. Then, the computation time of the task at the user device
is calculated as [28].

t locali = χici/ϒi (2)

2) Edge Server Computation Time: Computation time of
the task at the jth edge server to process the ith IoT/user device
request is calculated as

t
edgej
i = χicj/ϒi,j (3)

where ϒi,j is the computing capability of jth edge server for
ith IoT/user device.
Each server has a capacity of C such that when the

edge server is overloaded, waiting time in the queue is also
analyzed.
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3) Queuing Delay: In this module, each content request
is assigned to a popularity class; high popularity and
low popularity. We assume that the arrivals of the higher
popularity class and lower popularity class have mean arrival
rates λ1 and λ2 with Poisson distribution, respectively. The
total arrival rate is λ ≡ λ1 + λ2. In our popularity-based
selection, the highest popularity data packet is served ahead
of the lowest popularity, but there is no preemption. Each
edge server has a service capability and we model it with
an M/M/1 queuing system. The service distribution of both
classes is exponential with the same rate µ.
According to the M/M/1 queuing system, the expected

number of traffic requests in the system is expressed as
follows for the high popularity class, L(1)q and the low
popularity class, L(2)q , respectively [29].

L(1)q =
λ1ρ

µ − λ1
(4)

and

L(2)q =
λ2ρ

(µ − λ1)(1 − ρ)
(5)

where ρ = λ1/µ + λ2/µ.
Then, according to the equation W (i)

q = λiL
(i)
q , wait-

ing time in the queue is expressed as follows for the
high popularity class, W (1)

q and the low popularity class,
W (2)
q , respectively [29].

W (1)
q =

ρ

µ − λ1
(6)

and

W (2)
q =

ρ

(µ − λ1)(1 − ρ)
(7)

C. CONTENT MANAGER
Caching policies decide which tasks are cached and when
they are removed from the cache based on an optimization
problem. In this paper, we aim to optimize the service delay
and securely cache the contents to improve the cache hit rate
based on the proposed deep learning-based approach.

We assume that there are F = {1, 2, .., f , . . .F} different
contents, and users may request these contents. We classify
the content requests into two categories: high popularity
and low popularity. Content popularity is defined as the
probability distribution of content requests from all users
in the system and measures the interest of users in the
contents [30]. It is modeled by a Mandelbrot-Zipf (MZipf)
distribution. MZipf distribution aims to model the occurrence
frequency of events with parameters that control the scaling
behavior of the distribution and describes the probability of
requesting a content, f . It is defined as follows [31].

Pf =
(Rf + ϵ)−α∑
i∈F(Ri + ϵ)−α

(8)

where Rf is the rank of content f in the descending order of
content popularity, α > 0 is the skewness factor, and ϵ ≥ 0
is the plateau factor [30]. The skewness factor quantifies the

degree of asymmetry in a distribution. It serves as a measure
indicating how much a particular distribution deviates from a
standard normal distribution. The plateau factor controls the
shape of the distribution of the left-most part. It determines
the proportion of total requests attributed to user devices with
the lowest ranks [31].
Each edge server can cache various contents to meet the

requirements of computation requests from user/IoT devices.
Once a user device offloads the computation task to the
edge server, the edge server can check whether the requested
content is in the cache. If it is not in the cache, the edge
server can download it from neighbor edge servers or cloud
server. At the same time, the proposed strategy is updated to
increase the cache hit rate. In addition, increasing the cache
size can improve the cache hit rate. However, this results in
more memory and high cost. Therefore, instead of traditional
cache replacement policies such as First In First Out, Least
Recently Used, implementing an intelligent content caching
and computation strategy makes it possible to improve the
cache hit rate without increasing the cost.

D. SECURITY ANALYSIS
One of the critical steps in this model is to provide a secure
connection for each participating entity to the network to
avoid malicious users. Therefore, we implement an authen-
tication mechanism based on the blockchain infrastructure.
Attackers/malicious users may send fake content requests
and cause high computation overhead on the edge server.
In order to prevent this, each user device has a certificate,
C = EK−

auth
[IDi,K

+

i ,Time] from a trusted authority that
contains the user device ID, the public key of the user
device (K+

i ), and the expiration date. The certificate is signed
by the trusted authority with its private key, (K−

auth). The
edge node can verify the certificate using the public key
of the trusted authority. If a malicious node sends a fake
certificate, the user’s request will be rejected. In addition,
we use the blockchain to guarantee the authenticity of the
cached content with the hash value since a chained checksum
is implemented. Each block contains content request and hash
value with nonce. Here, even if the same content is requested
from the edge server more than once by the user, the hash
value will be unique each time due to the nonce. Each block is
encrypted with a secret key using SHA-256. Only legitimate
entities can access secret keys. The smart contract can verify
the correctness of the block between the edge server and the
user device. Thus, a malicious device cannot impersonate
legitimate devices.

E. DEEP Q NETWORK-BASED CONTENT CACHING
STRATEGY
Given the above problem formulation, our goal is to develop
an effective content caching and computation strategy scheme
that can satisfy the QoS requirement of each user. The service
layer performs comprehensive analysis with a DQN-based
method to minimize the service delay and improve cache
efficiency.
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1) ARCHITECTURE OF DEEP Q NETWORK
The traditional Q learning algorithm is one of the widely
used model-free reinforcement learning methods. It provides
the agent with the ability to find and learn the best
action in a given state without the need to create maps of
domains [32]. However, traditional Q learning cannot handle
the task computation strategy since the requests of users are
unpredictable and change dynamically. As the number of
traffic requests increases, the amount of memory required
to save and update the Q-table will increase. In this regard,
we use a neural network to learn the environment, give a
content caching and offloading decision, and approximate the
Q-values.

This paper proposes a Deep Q Network (DQN) based
scheme whose main idea is to obtain a more stable
training procedure and then design a learning agent able
to compute an effective strategy. DQN is an application of
Deep Reinforcement Learning (DRL). DQN has two neural
networks. The first neural network, called the main network,
is used to update the network parameters in each iteration, and
the second, called the target network, is used to compute the
target and it has the same architecture with the first network.
Initially, all DQNs are initialized with random parameters and
the agent chooses the minimum cost (computation delay) at
each iteration, which also improves the cache hit rate.

The environment dynamics are defined as follows.

• State: The state contains all the network information to
give the best action. The input of the network state is
a three-dimensional array. Each user submits its content
request in the form (λi,R,D,L) to the edge server. Here,
Here, λi is the packet arrival rate. R indicates the data
rate,D is the delay constraints and L is the packet length.
According to the relationship between the edge servers
and the users, defined in Eq. 1, the workload of each
edge server is tracked.

• Action: An agent performs an action by calculating the
local computation time and edge server computation
based on the content popularity. The chosen action
defines the next states. Neural networks can help the
agent learn the best actions. Accordingly, the user can
locally process the task or offload it to the edge server.

• Reward: The reward function is the action taken by
the agent to make the right decision in the interaction
with the environment over time. Our objective is to
maximize rewards to minimize task computation time
through cached resources. If the requested content f is
in the cache, the hit is 1, otherwise it is 0. The cache hit
rate is calculated by dividing all hits by the total number
of requests. Thus, we consider the computation time as
the key performance indicator to increase the cache hit
rate. The reward function is defined as follows.

r(t) = −

N∑
i=1

(
xi,j,f Pf (t

edge
i +W (·)

q ) + (1 − xi,j,f )t locali
)

(9)

where xi,j,f ∈ {0, 1} is a binary variable. xi,j,f = 1means
that user device i requests the content f from edge
server j, otherwise xi,j,f = 0 and it means that the
task is executed by the user device. W (·)

q indicates the
waiting time in the queue as given in Eqs. 6 and 7.
Apparently, maximizing the expected reward equals
minimizing the overall computation time based on the
content popularity.

• Loss function: DQN learns the features in the state and
the loss function uses the difference between best actions
as indicated by the Q value of both the main network and
target network. The loss function is the mean squared
error of the predicted Q value and the target Q value,
Q*, which updates the weight optimizing the cost.

2) OPERATION PROCEDURE OF DQN
The main components of the DQN are described in the
previous subsection. During the procedure, each model will
compute an offloading strategy to minimize the cost and
improve cache efficiency. The main steps of the proposed
strategy are summarized as follows.
• Step 1: Every user submits the content requests to the
nearest edge server.
• Step 2: The contents are classified as high and low popu-
larity content. All experiences and computation requirements
are stored in an experience pool, which is represented by
(st , at , rt , st+1). This is where the biggest difference between
DQN and Q learning emerges. In Q learning, the current
and past experiences are included in the process, while in
DQN, the learning process is more effective and improved
with previous experiences included in the experience pool.
Thus, DQN updates the weights using the loss function.
• Step 3: At each state, an action is determined whether to
reconfigure the content caching and offloading strategy to
minimize the cost.
• Step 4:The next action is defined by themaximum output of
the Q network. Here, local and edge server computation times
are performed. The challenge is to find a content caching and
task computation strategy that specifies how to decide the
cache content and perform tasks with an acceptable QoS.

FIGURE 5. Task offloading ratio with different cache replacement
strategies.
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FIGURE 6. (a) Training loss with the proposed edge caching strategy (b) Cache hit rate with different cache
replacement strategies.

• Step 5: The procedure from Step 3 to 4 is repeated until the
system finds a solution that fulfills a required reward value.

V. PERFORMANCE EVALUATION
The simulation is implemented in an edge computing
scenario, where a 1000 × 1000 environment with 23 base
stations and a varying number of users, similar to [33]. The
arrival of computation tasks transmitted by each user of its
associated edge server-enabled base station has a Poisson
distribution with a rate of (0, 0.2]. The total number of
contents is F = 10 and the size varies between 100KB and
1MB. MZipt distribution is applied to simulate the content
popularity characteristic. The cache size of each edge server
is the same and is set to [100MB − 500MB] in different
experiments. The users are randomly distributed and each
user is assigned to the nearest edge server. The required CPU
cycle for a task is 1000 Megacycles.

We carry out a DQN algorithm and choose the hyperbolic
tangent activation function and Adam optimizer. We use
a single-layer fully-connected feed-forward neural network,
which consists of 200 neurons. The parameters for each edge
server are the same. The experience pool size is set to 2000,
the batch size is 256, the episode number is set as 200,
the discount factor is 0.9, the exploration probability is set
as 0.001, the learning rate is set as 0.05 and the period of
replacing the target Q network is set as 250.

We consider different content caching strategies. Accord-
ingly, content caching strategies can be divided into two
categories; reactive cache placement strategies and proactive
cache placement strategy. Reactive cache placement strate-
gies are simple and effective policies in traditional archi-
tectures. Thus, we compare our results with the following
reactive edge caching strategies:

• Proposed Approach: The proposed DQN-based proac-
tive edge caching strategy

• First In First Out (FIFO): As the cache is full, this
algorithm checks the content list and deletes the content
with the longest waiting time in the cache [34].

• Least Recently Used (LRU): The LRU algorithm
arranges the cache list according to the recent use of
contents. The most recently unused content is always
deleted from the cache [34].

• Least Frequently Used (LFU): When the cache is full,
the least frequently used content is removed from the
cache [35].

A. PERFORMANCE PARAMETERS
We measure the following performance parameters to evalu-
ate our proposed model.

• Cache Hit Rate: It is the ratio of the number of hits to
the number of all requests.

• Average Delay: It is measured by the sum of the task
computation time and queuing delay.

• PoS Processing Time: To validate the transactions in
the blockchain, the processing time is measured for an
acceptable QoS requirement.

• Offloading Ratio: It is the ratio of the total number of
offloaded tasks to the edge server to the total number of
tasks.

B. RESULTS
In Fig. 5, we first illustrate the relationship between task
offloading ratio and cache size. As seen in the figure,
a larger cache size means that more contents can be cached
and users can offload the computation tasks to the edge
servers for processing. The proposed model has a much
higher offloading ratio compared to traditional strategies.
This achieves significant improvement on both cache hit
rate and service time, thereby the storage and computation
limitations of user devices can be alleviated.

Fig. 6(a) shows the training loss of the proposed model
during the training time. The proposed edge caching strategy
shows a fast convergence speed and small fluctuations within
a certain range. This is because the proposed model first
collects the transaction requests of users in each training step,
then decides the content caching strategy according to the
task offloading decision for the later training. In Fig. 6(b),
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FIGURE 7. Average delay with different cache replacement strategies.

FIGURE 8. Queue Delay (ms) over time (s) for high popularity content and
low popularity content.

we show the relationship between cache hit rate and cache
size for different cache replacement strategies. As the
cache size increases, more contents can be cached in the
edge servers and the efficiency of different strategies also
increases. As seen in the figure, the cache hit rate is
significantly better than the LFU, FIFO, and LRU algorithms.
Our model shows an average increase of 8.2%, 7.94%, and
7.78% in cache hit rate compared to LFU, FIFO, and LRU,
respectively.

Fig. 7 compares the average delay for different cache
replacement strategies. As expected, as the cache size
increases, the average delay also decreases since more
contents are cached in the edge servers. The proposed
DQN-based content caching strategy outperforms the tra-
ditional strategies. The performance improvement and the
importance of secure content caching can be seen in the
figure. In particular, compared to traditional strategies,
the proposed model increases content retrieval time and
decreases delay. This reduces the data traffic and provides
better QoS. When compared to LFU, FIFO, and LRU, our
model shows an average increase of 6.4%, 7.12%, and 7.45%
in service delay, respectively.

In Fig. 8, we also provide queue delay over simulation
time according to the Eqs. 6-7 when the cache size is equal
to 500. As explained in Section IV-B, each content request
has been assigned to a popularity class. As seen in the figure,
with this approach, it has been observed that more popular
content is cached and thus there is an improvement in both

FIGURE 9. PoS processing time for edge servers as the number of
computation tasks increases.

cache hit rate and service time in subsequent requests. With
the proposed model, the resources of local and edge devices
are observed and an acceptable QoS is provided to the users
for edge caching services.

Finally, in Fig. 9, we observe the PoS processing time
for edge security. As the number of computation tasks is
increased, the processing time is given. Here, PoS-based
processing is executed by edge servers to validate and add
the transactions to the blockchain. When the number of
tasks increases, the computation requests wait longer to be
processed by edge servers. Although PoS processing time
increases the average delay, it prevents unauthorized requests
from malicious users and provides the authenticity of cached
content for edge security.

VI. CONCLUSION
In this paper, we propose a blockchain-based secure content
caching and computation model in edge computing systems.
We demonstrate how blockchain can enhance security to pre-
vent malicious traffic requests while providing authenticity
of the cached content and trustworthiness. First, we design
a blockchain-based network architecture to define a secure
content caching and computation strategy composed of
the physical layer, edge layer, and service layer. Second,
we give the communication diagram between edge servers
and user devices to manage the transactions received from
legitimate users and present PoS-based secure processing
between edge servers and users. Then, we formulate the
content caching and computation problem and present a
DQN-based strategy to increase the cache hit rate and
decrease the service delay. Eventually, the effectiveness of
our proposed framework is compared with traditional cache
replacement strategies. Simulation results have demonstrated
that the proposed blockchain-based secure content caching
and computation model can provide both cache efficiency
and delay minimization. In this problem domain, energy
efficiency is also an essential factor. Ignoring the consumed
energy by IoT/user devices and edge servers means that a
significant amount of consumed electricity. Hence, in future
work, we will also analyze our proposed model in terms of
energy efficiency.
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