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ABSTRACT Traffic dynamics is universally crucial in analyzing and designing almost any network.
This article introduces a novel theoretical approach to analyzing network traffic dynamics. This theory’s
machinery is based on the notion of traffic divergence, which captures the flow (im)balance of network
nodes and links. It features various analytical probes to investigate both spatial and temporal traffic dynamics.
In particular, the maximal traffic distribution in a network can be characterized by spatial traffic divergence
rate, which reveals the relative difference among node traffic divergence. To illustrate the usefulness,
we apply the theory to two network-driven problems: throughput estimation of data center networks and
power-optimized communication planning for robot networks, and show the merits of the proposed theory
through simulations.

INDEX TERMS Dynamic networks, network traffic dynamics, traffic divergence.

I. INTRODUCTION
Network traffic is critical in various network operations such
as routing, congestion control, traffic anomaly detection,
planning and scheduling, etc. The ubiquitous importance
of these operations in almost any class of networks, from
computer and data center networks to software and ad-hoc
ones, dictates the necessity of powerful tools to represent
network traffic, their flows, and distribution. Given the
existing modeling strategies in the literature, one may mainly
classify those trafficmodels into two categories based on their
generality and applicability to different types of networks and
operations.

A. RELATED WORK
The first traffic model category is often reformulated and
specifically customized from one application domain to
another. The major bulk of these strategies belongs to
self-similarity seeking methods [1], [2]. Following the idea
of the similar reaction to similar patterns of traffic, these
models mostly rely on various probabilistic distributions [3]
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to model traffic as fractional Brownian motion and even
geometrical intuitions, e.g., those borrowed from the theory
of fractals [4]. Then, one usually applies observer operators
to those distributions to determine metrics of interest
by measuring desired states of a network. The efficient
scalability of these models comes at the cost of their relatively
inaccurate assessments. The larger a network becomes, the
more problematic such inaccuracies will become, particularly
in the case of performance factors like latency. Moreover,
self-similarity conventions constructing these models assume
some degrees of relative homogeneity associated with traffic
distributed in a network. This assumption may generally not
be valid in the majority of networks involving structural
and/or data heterogeneity, including computer [5], social [6],
ad-hoc [7], and software [8] ones. Machine learning
techniques have also been explored to identify various
traffic-driven aspects of networks. For instance, Principal
Component Analysis [9] was applied to structures of complex
networks to infer traffic-related conclusions via reducing
their dimensionality [10]. Recurrent neural networks applied
to dynamic states of computer networks, in the form of time
series, are employed for congestion control forecasting and
anomaly detection [11]. These methods are overall flexible in

67512

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-4964-8962
https://orcid.org/0000-0002-5933-254X
https://orcid.org/0000-0001-8205-9708
https://orcid.org/0000-0002-5716-1396


M. Macktoobian et al.: Traffic Divergence Theory: An Analysis Formalism for Dynamic Networks

design, but transferring traffic knowledge between different
areas of complex networks while preserving highly-accurate
predictions is challenging [12], [13].

In contrast to the specificity of self-similarity methods,
network flow theory [14], [15] is an attempt to model
network traffic generally. This formalism, derived from
the graph theory, was originally invented to solve the
maximum flow problem [16], i.e., finding the largest net
flow from a source node to a destination one. Different
graph-based versions of this problem were solved by Dinic’s
algorithm [17], EK algorithm [18], MPM algorithm [19],
and Orlin algorithm [20]. Due to the limited tools in the
network flow theory (residuals, augmenting paths, etc.),
the cited algorithms act on graphs globally. Hence, they
cannot be effectively scaled for exceedingly-large graphs
such as those of data center topologies and social networks.
Furthermore, this theory does not exhibit any machinery
to analyze temporal and/or spatial dynamics of network
traffic distribution. A complex version of the maximum flow
problem, i.e., the multi-commodity flow problem [21] to
which various system-level constraints may be applied, has
emerged as a fundamental hurdle in computing different
network characteristics such as throughput. Namely, the
NP-complete nature of this problem makes it difficult to
be used to compute traffic-based metrics of large-scale
networks.

B. CONTRIBUTION
In this article, we propose a novel concept, i.e., Traffic
Divergence (TD), and related formalism that not only features
a general solid tool to model traffic flow and distribu-
tion in networks but also reveals new implications about
spatial and/or temporal traffic dynamics in such networks.
Compared to the reviewed strategies above, here are the
major advantages and merits exhibiting the contributions of
this article.

• This theory is inherently suitable for analysing traffic-
and flow-based variations in networks. Accordingly,
it provides a unified approach to modeling network
traffic dynamics for incoming and outsourcing flows of
both nodes and links.

• Contrary to the network flow theory, our theory
yields global traffic-driven conclusions about large-
scale networks based on their local dynamisms in node
neighborhoods. This localizability feature particularly
contributes to realizing computationally efficient and
scalable traffic dynamical analyses.

• Our traffic divergence theory is generally applicable
to a wide range of networks. Particularly, this theory
is expressive enough to model different problem state-
ments and constraints associated with various networks
such as computer and ad-hoc networks. In this regard,
we later supply examples of how our theory may be
applied to traffic-related problems associated with data
center networks and ad-hoc robot networks.

C. ORGANIZATION
This article is organized as follows. Section II and III intro-
duce the network model and the formalism of TD. Section IV
is devoted to the discussion of two network applications that
our theory contributes to the improvement of their state-
of-the-art solutions. Namely, in Section IV-A, we employ
our theory to develop a congestion-aware routing algorithm
for data center topologies. Section IV-B utilizes the Traffic
Divergence Theory to formulate an optimization problem
to address power-optimized communication planning for
ad-hoc robot networks. Section V discuss some limitations of
our work based on which new potential streams of research
are proposed. Our conclusions are provided in Section VI.

II. THE MACHINERY OF TRAFFIC DIVERGENCE
In this section, we establish a flow-based formalism to
provide an analytical tool for various network analyses at the
heart of which traffic distribution is a pivotal concept. For
this purpose, we first establish the general network model on
which TD is developed.

A. NETWORK MODEL
In our theory, a network is an undirected graph (V, E)
consisting of a set of nodes Vand a set of links E⊆ V×V

connecting them. For a node u ∈ V, its neighbor set is
defined as

Nu := {z ∈ V\{u} | Auz ̸= 0}, (1)

where A denotes the adjacency matrix of the graph ([22]).
For a node u ∈ V and a node v ∈ Nu, fuv (t,1) (t,1 ∈ R+)
denotes the positive average flow rate from u to v over
the time period [t, t +1], e.g., the amount of materials
transported or the data packets transmitted divided by 1,
as shown in Figure 1. For the case that 1 → 0+, fuv (t,1)
should be regarded as the positive instantaneous flow rate
at time t . In the remaining part of the paper, fuv (t,1) is
abbreviate to fuv for notational simplicity unless the time
period 1 is of interest. A route from node u ∈ V to node
v ∈ V in a network is a path connecting u and v in which
all nodes and links are distinct. It is assumed that the length
of any route, the number of links involved, in the network is
finite. Also, self-loops or cycles, i.e., links connecting a node
to itself, are excluded in the network.

Each node is supposed to have limited processing capacity,
resulting in unequal or imbalanced input and output. For
example, n1 packets are transmitted into a switch in a data
network over a period of time, but only n2 packets, where
n2 < n1, flow out from the switch over the same period.
The remaining n1− n2 packets are either stored in the switch
for future processing or discarded due to congestion. We will
utilize this imbalance to characterize network traffic as shown
later.

Each link is assumed to have limited transmission capacity.
More specifically, when 1 is fixed, fuv (t,1) is uniformly
bounded for all t ∈ R+ and any feasible u and v.
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FIGURE 1. Traffic flow notation associated with nodes of a network.

B. NODE, LINK, AND ROUTE TD
Inspired by the notion of sink (input) and source (output)
flows in the network theory (see, e.g., [23], [24], [25]),
we develop the concept of TD for nodes, links, and routes
in this subsection.
Definition 1 (Node TD): Given a network with node set V,

the TD of node u ∈ V, denoted by∇u, reads as the difference
of the sink flows entering the node and the source flows
leaving it, i.e.,

∇u :=
∑
z∈Nu

[fzu − fuz]. (2)

Example 1: Suppose a node set V= {u, z1, z2} and flows
fuz1 = 4, fu,z2 = sin t , fz1,u = cos t , and fz2,u = 1. Then,
according to Definition 1, the TD of u can be calculated as
∇u = (1+ cos t)− (sin t + 4) = cos t − sin t − 3.
Definition 2 (Link TD): Given a network with node set V,

suppose that u ∈ V and v ∈ Nu. Then, the TD of the
link connecting u and v, denoted as ∇u,v, is defined as the
difference of the net flows entering the link and the net flows
departing it, namely,

∇u,v :=
∑

w∈{u,v},
z∈V\{u,v}

[fzw − fwz]. (3)

Example 2: Assume that the node set of a network is V=
{u, v, z1, z2, z3} associated with flows fu,z1 = 1, fu,z2 = t2/et ,
fz1,u = 2, and fz3,v = sin t , according to Definition 2, the
TD of the link connecting u to v can be calculated as ∇u,v =
(2+ sin t)− (1+ t2/et ) = 1+ sin t − t2/et .

The proposition below shows that the TD of a link can be
factorized as the sum of the TD of corresponding nodes.
Proposition 1 (Node-Link TD Correspondence): Given

a network with node set V, suppose that u ∈ V and
v ∈Nu. Then, the TD of the link connecting u and v can be
factorized as

∇u,v = ∇u +∇v. (4)

Proof: See, Appendix A. □
In view of the two definitions above, the TD of a route may

be defined as the difference of the external net flows entering
its nodes and the net flows departing those nodes.
Definition 3 (Route TD): Given a network with node

set V, suppose� is a route including a set of nodesR ⊆ V.

Then, the traffic divergence of�, written as∇�, is defined as

∇� :=

∑
u∈R,z∈V\R

[fzu − fuz]. (5)

Example 3: Let V = {u, v,w, z1, z2, z3} be the node set
of a network. Assume a set of flows as fu,z1 = 1, fz2,v = 2,
and fw,z3 = 3. Then, the TD of the route� with nodes u, v,w
∇� = 2− (1+ 1) = 0.
Similar to Proposition 1, the result below demonstrates

how the TD of a route can be expressed in terms of the TD of
its constituting nodes.
Proposition 2 (Node-Route TD Correspondence): For a

route �, its TD can be factorized as

∇� =

∑
u∈�

∇u. (6)

Proof: See, Appendix B. □
Following this proposition, the TD of a route can be

recursively computed throughout its expansion via adding
further nodes given the TD of some initial nodes as revealed
below.
Proposition 3 (Node-Link-Route TD Correspondence):

Suppose that � is a route between node u and node v and
the associated node set is {u,w, v}. Then, we have

∇� = ∇u,w +∇v = ∇w,v +∇u. (7)

Proof: See, Appendix C. □

C. SPATIAL TD DYNAMICS
A natural question in network traffic analysis is how the
traffic at one specific node affects that of other nodes.
Suppose flows fu,z1 = cos t , fu,z2 = cos t , fz1,u = sin t , and
fz2,u = sin t . Then, it is easy to obtain that ∇u = −2∇z1 =
−2∇z2 , which shows the spatial relationship among different
node TD. Loosely speaking, if ∇z1 or ∇z2 changes one unit,
then ∇u will change two. Inspired by this, we introduce a
new operation to characterize the relative spatial change of
TD below.
Definition 4 (Spatial Node-Node TD Derivative): Given

a network with node set V, suppose that u, v ∈ V, and
∇u = h (∇v), where h is a many-to-one mapping. Then, the
spatial TD derivative of node u with node v is defined as
∂∇u
∂∇v
:= h′, where h′ represents the derivative of hwith respect

to its argument. Furthermore, ∂
n
∇u

∂∇u
n := h(n), where n ∈ Z+

and h(n) represents the nth derivative of h with respect to its
argument.

As link TD can be represented by the involved node TD,
Spatial Link-Node TD Derivative, ∂∇u,v

∂∇u
or ∂∇u,v

∂∇v
, can be

defined in a similar way, thus omitted here for brevity. If h
in the above definition is not bijective, then ∂∇v

∂∇u
may not

be well-defined. For this singular case, we use
(
∂∇u
∂∇v

)−1
to

calculate ∂∇v
∂∇u

. The theorem below asserts how the spatial
node-node TD derivatives of two adjacent nodes relates to
the related spatial link-node TD derivative.
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Theorem 1 (Spatial TDDynamics): Let u ∈ Vand v ∈Nu.
Then, given any n ∈ Z+, we have

∂n∇u,v

∂∇u
n −

∂n∇u,v

∂∇v
n =

∂n∇v

∂∇u
n −

∂n∇u

∂∇v
n . (8)

Proof: See, Appendix D. □
Example 4: Assume a link including two adjacent nodes

u and v such that the traffic divergence of one of them is a
spatio-temporal function of that of another, say,∇u = [m∇v+
n]g(t), where m, n ∈ R, and g(t) is a real-valued function in
time. From this it follows that ∇v = (∇u/g(t)−nm ). Then, ∇u,v
ca be expressed as a function of ∇u or ∇v as ∇u,v = ∇u +
(∇u/g(t)−nm ) or∇u,v = ∇v+[m∇v+n]g(t). Simple calculations
show that equation 8 holds.

We end this subsection by introducing a concept which will
be used later for traffic distribution analysis.
Definition 5 (Spatial TD Rate): Given a node u ∈ V, the

spatial TD rate of u is defined as

□u :=
∑
z∈Nu

∂∇u

∂∇z
. (9)

Intuitively, the spatial TD rate of a node characterizes the
coupling between the node and its neighbors. If □u = 0, then
overall the traffic in the neighbor nodes has little impact on
that of u

D. TEMPORAL TD DYNAMICS
Traffic divergences usually vary in the course of time,
as well, because of variable flows of communication between
different pairs of nodes. For the characterization of such a
temporal traffic dynamism, we define the notion of temporal
traffic divergence rate as below.
Definition 6 (Temporal Traffic Divergence Rate): Given a

node u ∈ V, the temporal traffic divergence of u is defined as

⊞u :=
∑
z∈Nu

[
∂

∂t
∇z]. (10)

Example 5: Assume a node u whose corresponding
neighbor set is Nu. Let the traffic divergence of neighbor
z ∈ Nu be an accumulative function of the traffic
divergences of its neighbors, say, ∇z :=

∑
y∈Nz [m∇y +

n]g(t), where m and n are real numbers. So, we have
⊞u =

dg(t)
dt

∑
z∈Nu,y∈Nz [m∇y + n].

The result below shows how the temporal traffic rate of
a node is bounded by multiplicative functions of its spatial
and temporal traffic divergence rates and the cardinality of
its neighbor node set.
Theorem 2 (Node Temporal Traffic Rate): Given a node

u ∈ V the cardinality of whose neighbor setNu is n := |Nu|,
the temporal traffic rate of that node is bounded as

−n−1[□u⊞u] ≤
∂∇u

∂t
≤ n−1[□u⊞u]. (11)

Proof: See, Appendix E. □
The computation of node temporal traffic rate is extremely

desired in many traffic-driven analyses, such as anomaly

detection [26], phase transition investigations [27], self-
similarity monitoring in cyber-attacked networks [28], etc.
However, the exact computation of this quantity in long
operations of many networks is often practically infeasible.
Alternatively, temporal and spatial traffic divergence rates of
a node can be readily computed. Thus, one can employ the
result of the theorem above to find a bounded profile for the
node temporal traffic rate of any desired node in a network.

III. MAXIMAL TRAFFIC DISTRIBUTION
A natural question in network analysis is to quantify the
traffic distribution over the network. In terms of the spatial
TD rate defined previously, we propose a new quantity to
characterize the relative difference of traffic among different
nodes.
Definition 7 (Maximal Traffic Distribution): The traffic

associated with a network including nodes V is called
maximally-distributed if the following condition is fulfilled.

1u,v :=
□u

□v
= 1 (∀u, v ∈ V). (12)

An alternative definition would consider the ratio of
absolute values of traffic divergences to define the maxi-
mum traffic distribution condition. However, the ratio of rates
of traffic divergences inherently better incorporate dynamics
of traffic divergences compared to the ratio of absolute values.
In this regard, the ratio of rates is directly correlated with the
desired equilibrium state of traffic. On the other hand, any
static metric, such as the ratio of absolute values, essentially
requires some excessive conditions on the rate of traffic
divergences, as well. The following proposition gives an
equivalent characterization of maximal traffic distribution,
which may be more computationally efficient.
Proposition 4 (A Equivalent Condition): The maximal

traffic distribution condition in (12) is equivalent to∑
z∈Nu

[
∂∇z

∂∇u
+

[ ∂

∂∇u
−

∂

∂∇z

]
∇u,z

]
∑
z∈Nv

[
∂∇z

∂∇v
+

[ ∂

∂∇v
−

∂

∂∇z

]
∇v,z

] = 1 (∀u, v ∈ V)

Proof: See, Appendix F. □
The assessment of (12) is computationally resource-

intensive particularly when one deals with large networks.
This condition seeks a direct but naive approach to globally
investigating the maximality of traffic distribution in a
network. However, it is beneficial to demonstrate that the
overall localized assessments of the condition in each node’s
neighborhood condition are indeed equivalent to the cited
global assessment, i.e.,

[1u,v = 1(∀u ∈ V)(∀v ∈Nu)] ≡ [1u,v = 1(∀u, v ∈ V)].

(13)

Lemma 1: Suppose nodes u, v,w ∈ V such that v is
between u and w. Then, given a γ ∈ R+, assume that
the relative traffic rate in both sides of v are the same,
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say, 1u,v = 1w,v := γ . Then, the overall end-to-end relative
traffic rate between u and w is maximally distributed.

Proof: See, Appendix G. □
The result above implies that the traffic rate symmetrically

distributed around the neighboring nodes of a particular node
represents the maximal traffic distribution condition in the
route connecting those nodes together serially.
Theorem 3 (Localization): Given a network comprising

some nodes belonging to V, the maximal traffic distribution
condition (12) may be relaxed to the following equivalent
localized version.

1u,v = 1 (∀u ∈ V)(∀v ∈Nu) (14)

Proof: See, Appendix H. □
Remark 1: The advantage of the localized version above

is that it entails less number of evaluations corresponding to
1u,v = 1 compared to those of (12).
Remark 2: In practice due to the complexity of traffic

dynamics in computer networks, it is generally unlikely that
the maximal traffic distribution condition can be met for
every neighborhood. Alternatively, given a sufficiently small
radius ϵ, one may seek the realization of

|1u,v − 1| ≤ ϵ (∀u ∈ V)(∀v ∈Nu). (15)

IV. EXAMPLE APPLICATIONS AND NUMERICAL
SIMULATIONS
In this section, we illustrate how our traffic divergence theory
can be helpful to model and solve different flow-based net-
work problems. For this purpose, Section IV-A employs the
theory to model the dynamics of throughput in two popular
network topologies used in datacenters. This formulation
particularly maximizes the distribution of traffic in such
topologies to minimize the risk of node/link congestion. The
second application, described in Section IV-B, expresses a
traffic-driven formulation of a solution to power-optimized
communication planning problem in ad-hoc robot networks
using Traffic Divergence Theory. For all results presented
in this section, we use NetworkX [29] for network graph
synthesis, and Gekko optimization suite [30] for nonlinear
programming.

A. CONGESTION-AVOIDING THROUGHPUT ANALYSIS FOR
DATACENTER TOPOLOGIES
Throughput maximization is extremely desired in any
network topology deployed in datacenters as a well-known
measure of communication performance. In these networks,
nodes are either switches or servers. Throughput depends
on routing in not only computer networks [31], [32], [33]
but also wireless networks [34], [35], [36], [37] and
even network-on-chip architectures [38], [39], [40] and in
datacenters [41], [42]. This dependence stems from the fact
that different routing schemes may lead to various latency
profiles that negatively correlate with throughput.

Throughput maximization with respect to uni-regular and
bi-regular topologies, as depicted in Figure 2, has been

FIGURE 2. Uni-regular and bi-regular topologies in datacenters. (In the
uni-regular case, all switches are connected to (usually similar) number
of servers. However, some servers in the bi-regular case are exclusively
connected to other switches for routing purposes.)

extensively investigated [43], [44], [45]. In particular, Jain
method [46], bisection bandwidth (BBW) method [47],
and TUB method [48] have been presented as the most
successful models yielding close throughput upper bounds
with respect to real throughputs of various datacenter
topologies. In this section, we propose a congestion-avoiding
routing algorithm, based on Traffic Divergence Theory, using
which the cited throughput gap reduces compared to the
quoted methods. In other words, given a uni-regular or
bi-regular topology associated with a datacenter network,
we find the throughput profile of the topology according
to the maximally-distributed traffic in that network. In this
regard, we highlight the congestion awareness of our analysis
that directly benefits from the traffic distribution tools of the
theory introduced in Section II.
Congestion is a concern attributed to routes and their

corresponding nodes. Thus, we intend to conduct our
throughput analysis based on a congestion-aware routing
strategy. For this purpose, we propose a congestion-avoiding
minimum-hop routing algorithm, i.e., Algorithm 1, that finds
optimal routes between two typical nodes such that their
minimum distance and maximum traffic distribution are
simultaneously taken into account as a trade-off using our
traffic divergence theory. In particular, each route (see, Line 1
of Algorithm 1) is defined as a series of consecutive hops
that reach a target node v ∈ K from a source node u ∈ K.
The length minimization criterion may be addressed using
various powers of the adjacency matrix associated with a
network (Lines 5-7). Namely, the (u, v) entry of An denotes
the number of routes from u to v including exactly n hops.
In Lines 9 and 10, the nodes enjoying the least traffic
distributed in their neighborhood are found to shape the
desired optimal route.
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Algorithm 1 Congestion-Avoiding Minimum-Hop
Router
Inputs: Source and target switches u, v ∈K

Adjacency matrix A
Output: Route set ψ(u, v)

/* Initializations */

1 ψu,v← v // route as a hop list

2 A⋆← ∅ // list of powers of A

3 m← 1 // hop counter

4 n← 0 // power counter

/* Generation of required power matrices */

do
5 A⋆← A⋆∪̇{An

}

6 n← n+ 1
7 while An

uv = 0
/* Switch-wise routing */

8 while m ̸= n do

9 � :=
{
z ∈K

∣∣∣ An−m
uz ̸= 0 ∧Azv ̸= 0

}
// the

set of the candidate nodes

10 0 := argminz∈�|1z,y − 1|
(
∀y ∈Nz

)
// the

next node satisfying the minimum traffic

distribution condition

11 v← 0

12 ψu,v← ψu,v∪̇{0}

13 m← m+ 1

14 ψu,v← ψu,v∪̇{u}
15 return reverse(hop_list)

The key idea for throughput analysis associated with a
topology is the partitioning of the flow reaching a node to
those belonging to the transient traffic and those planned
to reach that node. The total profile of transient traffic
can also be directly computed with respect to the routes
of the topology. Accordingly, we derive a closed-form
equation representing the throughputs corresponding to both
uni-regular and bi-regular topologies subject to minimum
node and/or link traffic divergence.
Proposition 5: Given a network including node (switch)

set K, let n := |K| be the dimension of the adjacency
matrix associated with that network.Then, the worst-case
computational complexity of Algorithm 1 is O

(
n3

)
.

Proof: See, Appendix I. □
Theorem 4 (Throughput Subject to Maximum Traffic

Distribution): Given a traffic matrix1 T associated with a
uni-regular or a bi-regular topology, let E be the number
of switch-to-switch links in that topology. Denote by K the
set of all switches in the topology. Let and H and Hu be
the universal number of servers connected to each server in

1Our doubly-stochastic traffic matrix formulation particularly follows the
saturated hodemodel [49]. In this model, nodes are considered to be switches
rather than servers. However, with modification of traffic matrix definition,
one can take a server-level analysis, as well.

the uni-regular case and the number of servers connected to
switch u ∈ K in the bi-regular case, respectively. Then, the
maximum achievable throughput for the topologies based on
the maximal traffic distribution requirement is as follows.

θT=
2E
H

[
1+

∑
u∈K,v∈K\{u},

ρ∈ψu,v

[
αρ |ρ|

[ ∑
w∈ρ

∇w

]−1]
− |ψu,v|

]−1

(16)

Proof: See, Appendix J. □
Remark 3: In the theorem above, there is no general

constraint to select the elements of the co-efficient set

{1 > αρ ∈ R≥0 | ∀ρ ∈ ψu,v}, (17)

because practically not all route selections are based on the
shortest ones, and there are numerous potential functional
requirements, according to a datacenter and its network
size, that may impact that route selection. Thus, in practice,
one expects to observe a gap between the real throughput
(as the solution to the path-based multi-commodity flow
problem [21]) of a network and what (16) predicts.
We numerically validate that the result of Theorem 4

indeed reduces the throughput gap compared to Jain
method [46], BBW method [47], and TUB method [48].
As already noted, throughput gap is defined as the difference
between the real throughput of a network topology and the
predicted throughput based on the closed-form formulation in
each of the quoted methods. We take Jellyfish topology [50]
and Fat-tree topology [51] into account as typical uni-regular
and bi-regular topologies, respectively. The total number
of servers are selected according to the cardinality set
{1, 500, 1000, · · · , 25000}. Server-per-switch parameters are
H = 10 (resp., Hu = 8) for uni-regular (resp., bi-regular)
topology tests. Links are generated based on a uniform
random distribution. In each simulation scenario, each entry
cu,v of the capacity matrix C is 0 if there is no (in)direct
link from u to v, otherwise a positive number otherwise.
The traffic matrix Tof each scenario is randomly generated
bounded by its corresponding capacity matrix. The profile
of the coefficient set {αρ | ∀ρ ∈ ψ(u, v)} is based on the
length of each contributing optimal route ρ, i.e., the longer
the route is, the larger its coefficient is proportionally. This
selection scheme roughly values the longer routes because of
their larger capacity for traffic transfer.

As Figure 3a illustrates, the throughput gap associated
with Jellyfish topology reduces, compared to the best
available estimations in the literature, should one employs
Algorithm 1 at the heart of which our traffic divergence theory
functions. By increasing the number of servers, the gap curve
asymptotically tends to zero because the number of optimal
routes roughly increases. Thus, the contribution assignment
of optimal routes, based on the coefficient set, become less
relevant to the overall gap. A similar trend corresponding
to Fat-tree topology may also be observed in Figure 3b.
The overall gap reduction is larger than that of Jellyfish
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FIGURE 3. Throughput gap reduction for datacenter networks using traffic divergence theory.

FIGURE 4. Traffic distribution for datacenter networks using traffic divergence theory. (The radius ϵ dynamics associated with a particular 1u,v is
depicted. The average radius of each interval is noted on the figure.)

topology since Fat-tree topology, similarly to other bi-regular
topologies, includes more route options to fulfill maximal
traffic distribution criteria of Algorithm 1.

One can also validate the maximal distribution of traffic
by the activation of Algorithm 1 leads to the traffic
distribution maximization based on how radius ϵ varies
in (15). In particular, as depicted in Figure 4a, we take a
particular pair of nodes, labeled by u and v, in the described
Jellyfish topology to trace their relative traffic. In particular,
given two typical nodes u and v, the smaller the ϵ radius is,
the more distributed their traffic are. We set up an experiment
including 80 time steps partitioned to 4 equal intervals of
20 time steps. During the first and the third (resp., the second
and the forth) intervals, we switch off (resp., on) the traffic
distribution mechanism, i.e., Algorithm 1. So, we observe

that the ϵ radii in the second and the fourth intervals are
much closer to zero compared to those of the first and the
third intervals. The same dynamics may be observed for any
arbitrary pair of nodes. In a similar vein considering the same
pair of nodes in the previous case, Figure 4b also expresses
the effectiveness of our formalism to distribute traffic around
those nodes in Fat-tree topology. Following the discussion
about the throughput gap, since Fat-tree topology generally
includes more traffic-driven optimal routes, its radius ϵ is
smaller than that of a Jellyfish topology.

B. POWER-OPTIMIZED COMMUNICATION PLANNING
FOR ROBOT AD-HOC NETWORKS
In ad-hoc robot networks, nodes are mobile robots whose
movements are subject to the connectivity preservation
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of their links, which are point-to-point communicational
channels between them. For such networks, the point-point
assumption of the theory is also reasonable [52], [53], [54]
given the current trend of beamforming with directional
antennas [55], [56].

Many mission-critical ad-hoc robot networks, including
those used for firefighting [57], space operations [58], etc.,
access very limited energy resources whose fast re-charge
may be either impractical or very expensive. So, in the course
of thesemissions, the least energy-consuming plan to perform
a mission is the best one. In such ad-hoc robot networks,
desired processing resources at a node directly depend on the
traffic divergence of that node that quantifies its data transfer
and processing load. So, given a desired throughput profile,
and some power criteria, one seeks the minimum divergence
for all nodes that is often equivalent to the least expensive
hardware orchestration for that network. For this purpose, let
C and T be the capacity and traffic matrices, respectively,
associated with a typical ad-hoc robot network. Denote by
θT(∇u) the throughput profile of this network expressed in
terms of the traffic divergence profiles of its nodes (∀u ∈K).
Moreover, assume a dynamics threshold m to set a power
limit for communication activities of this node. This limit
determines an upper bound associated with the allowable
power consumed by a node due to performance and energy
considerations [59].
Then, the quoted power-optimized communication prob-

lem can be formulated as an optimization problem as follows.

min
∇u

∏
u∈K

∇u

s.t. T· θT(∇u)≤ C (∀u ∈K) (18a)∣∣∣∣∂∇u∂t
∣∣∣∣≤ m(∀u ∈K)

∇u∈ R(∀u ∈K) (18b)

Here, (18a) imposes any desired communication require-
ments on the planning process, while (18b) governs com-
munication activities of each node in terms of how much
its traffic divergence rates are allowed to vary. We assume
an ad-hoc robot network, including 19 nodes, with a ring
topology, as shown in Figure 5. A ring topology includes
a backbone ring and a set of branches [60]. This topology
simultaneously realizes optimal communication and fault
tolerance for ad-hoc robot networks. Given a fix capacity
matrix, we plan a traffic matrix in which each node has
to communicate with all other nodes in that network. The
doubly-stochastic entries of this matrix are weighted samples
of a uniform distribution.

Figure 6 displays the solution profiles associated with
two thresholds m = 1.1 and m = 0.9. Nodes #1 to #6
are the elements of the backbone cycle of the topology,
as depicted in Figure 5, through which the majority of the
network transient traffic is transmitted. Thus, it is expected
that the optimal traffic divergences of these nodes are higher

FIGURE 5. The ring topology associated with the hypothetical ad-hoc
robot network.

FIGURE 6. A typical solution to the power-optimized communication
planning for an ad-hoc robot network.

than those of the other nodes. Following the same line
of reasoning, the least power burden associates with those
nodes that have only one neighbor, e.g., node #7. That is
because such leaf nodes only process their own traffic but
not any transient one. Accordingly, they may require less
computational resources and energy consumption. Thus, their
minimized traffic divergence values are relatively small. The
performed simulations manifest that m ≤ 0.8 makes the
mathematical program infeasible.

V. DISCUSSION
We believe that this theory, given its general and efficiently-
expressive formalism, may be capable of resolving even
more complex problems in the scope of computer networks.
Namely, it may provide new insights about less intuitive
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traffic-based mechanisms in complex networks, for example,
similarly to what Theorem 2 asserts in view of entangled
spatial and temporal traffic dynamics. With this aim,
further research may be conducted to expand the theory by
incorporating new ideas and analysis tools into its current
formalism.

The improvement of the solutions to the two example
applications of the article may also be taken as other venues
of research. In particular to the throughput gap problem,
as already stated, the determination of coefficient set associ-
ated with the normalization of split ratios is a critical step for
throughput predictions. Our strategy may be substituted with
better metrics to set these coefficients for further reduction of
the reported throughput gap. Regarding the power-optimized
communication planning problem, one already notes the
complexity of the nonlinear program that associates with the
problem. The larger a target ad-hoc network is, the more
problematic the complexity of this program will become in a
computational point of view. To alleviate this issue, it would
be beneficial to find equivalent, but less complex, constraints
to simplify the program and its feasibility analysis for large-
scale networks. Moreover, queuing features of nodes are
abstracted away in this work, that is, the buffer size of queues
are assumed to be infinite. However, one may incorporate
more restrictive queue-dependent constraints into the current
theory to realize a delay-dependent version of the current
formalism for desired applications and analyses. Finally,
this theory may provide new insights regarding control and
behavior generation of multi-robot systems ranging from
small teams to large-scale swarms.

VI. CONCLUDING REMARKS
In this article, we presented a traffic divergence theory
to model network dynamics in view of traffic variations.
We elaborated on a computationally-rich set of properties
associated with this theory that can express various spatial
and temporal characterizations corresponding to traffic
distribution. The theory may be generally applied to different
types of networks for the analysis of those concepts that are
entangledwith traffic distribution. In this regard, we exhibited
the wide applicability of the theory by its usage to model
and solve two non-trivial problems: first, we improved the
throughput gap corresponding to both uni-regular and bi-
regular topologies; second, we planned power-optimized
communication for ad-hoc robot networks.

APPENDIX A
THE PROOF OF PROPOSITION 1
As sink flows toward the nodes positively contribute to the
link TD except those passed between them, the net sink flow
may be written as

∇
←
u,v =

∑
z∈Nu\{v}

[fzu − fvu]+
∑

z∈Nv\{u}

[fzv − fuv]. (19)

Similarly to the sink case, source flows leaving the nodes
negatively contribute to the net divergence of their link while

the direct flow between the nodes do not participate in the
net term because they are not interface flows of the link but
internal ones between the nodes:

∇
→
u,v =

∑
z∈Nu\{v}

[fuz − fuv
]
+

∑
z∈Nv\{u}

[fvz − fvu]. (20)

Thus, one yields

∇u,v =∇
←
u,v −∇

→
u,v

=

∑
z∈Nu

[fzu − fuz]+
∑
z∈Nv

[fzv − fvz]

=∇u +∇v, (21)

which completes the proof.

APPENDIX B
THE PROOF OF PROPOSITION 2
If the length of � is 2, i.e., � being a link, then its TD
is trivially the link TD, according to Proposition 1. As the
first non-trivial case, assume that � is constituted by nodes
u, v,w ∈ Vsuch that� is a route between u and vwhere w is
the exclusive node between them. Then, writing the equations
associated with the sink and source components of ∇u,w and
∇w,v then following the same line as used in the proof of
Proposition 1 yields ∇� = ∇u + ∇w + ∇v. The claim of
this proposition can be obtained by mathematical induction
on the length of �.

APPENDIX C
THE PROOF OF PROPOSITION 3
Using Propositions 1 and 2 yields

∇� = ∇u +∇w +∇v

= (∇u +∇w)+∇v = ∇u,w +∇v
= (∇w +∇v)+∇u = ∇w,v +∇u. (22)

APPENDIX D
THE PROOF OF THEOREM 1
We prove the claim by induction of n. For the base case
associated with n = 1, we start from the spatial link-node
TD derivative.

∂∇u,v

∂∇u
=
∂(∇u +∇v)

∂∇u
= 1+

∂∇v

∂∇u
(23)

∂∇u,v

∂∇v
=
∂(∇u +∇v)

∂∇v
= 1+

∂∇u

∂∇v
(24)

Subtraction of the second equation from the first one yields
∂∇u,v

∂∇u
−
∂∇u,v

∂∇v
= [

∂

∂∇u
−

∂

∂∇v
]∇u,v =

∂∇v

∂∇u
−
∂∇u

∂∇v
.

(25)

Arbitrary number of successive partial derivations applied
to (23) and (24) leads to what follows.

∂n∇u,v

∂∇u
n =

∂n(∇u +∇v)
∂∇u

n = 1+
∂n∇v

∂∇u
n (26)

∂n∇u,v

∂∇v
n =

∂n(∇u +∇v)
∂∇v

n = 1+
∂n∇u

∂∇v
n (27)
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Similarly to the base case, subtracting the second equation
from the first one yields the expected result.

APPENDIX E
THE PROOF OF THEOREM 2
Since

∂∇u

∂t
=

∑
z∈Nu

∂∇u

∂∇z

∂∇z

∂t
(28)

Using Cauchy-Schwartz inequality, one yields[ ∑
z∈Nu

∂∇u

∂∇z

∂∇z

∂t

]2
≤

∑
z∈Nu

[∂∇u
∂∇z

]2 ∑
z∈Nu

[∂∇z
∂t

]2
. (29)

Given the following elementary result, where {xi} is a
finite series of integer numbers including m elements whose
average is x

m∑
i=1

xi = m(
1
m

m∑
i=1

xi)2 +
1
m

m∑
i=1

(x − x)2, (30)

we define average spatial and temporal traffic rates at u as
follows.

∂u,z := n−1
∑
z∈Nu

∂∇u

∂∇z
(31)

∂z,t := n−1
∑
z∈Nu

∂∇z

∂t
(32)

By writing (30) with respect to ∂∇u
∂∇z

using (31), the first term
in the RHS of (28) may be written as follows.∑
z∈Nu

[∂∇u
∂∇z

]2
=

1
n

[(∑
z∈Nu

∂∇u

∂∇z

)2
+

∑
z∈Nu

(∂∇u
∂∇z
− ∂u,z

)2]
=

1
n

[(∑
z∈Nu

∂∇u

∂∇z

)2
+

∑
z∈Nu

(∂∇u
∂∇z
−

1
n

∑
z′∈Nu

∂∇u

∂∇z′

)2]
=

1
n

[(∑
z∈Nu

∂∇u

∂∇z

)2
+

∑
z∈Nu

[(∂∇u
∂∇z

)2
+

1
n2

( ∑
z′∈Nu

∂∇u

∂∇z′

)2
−

2
n

(∂∇u
∂∇z

)( ∑
z′∈Nu

∂∇u

∂∇z′

)]]
=

1
n

[(∑
z∈Nu

∂∇u

∂∇z

)2
+

∑
z∈Nu

(∂∇u
∂∇z

)2
+

1
n2

∑
z∈Nu

( ∑
z′∈Nu

∂∇u

∂∇z′

)2
−

2
n

∑
z∈Nu

(∂∇u
∂∇z

)( ∑
z′∈Nu

∂∇u

∂∇z′

)]
(33)

In the RHS of the equation above, the outer summation in the
third term has a free index. So, that summation is equivalent
to the multiplication of the cardinality of its index set, i.e., n,
to its subsequent summation. Then, index z′ of the inner
summation may be renamed to z. In the fourth term, we have

two identical summations multiplied to each other. So, (33)
may be further simplified as below.∑
z∈Nu

[∂∇u
∂∇z

]2
=

1
n

[(∑
z∈Nu

∂∇u

∂∇z

)2
+

∑
z∈Nu

(∂∇u
∂∇z

)2
+

1
n

(∑
z∈Nu

∂∇u

∂∇z

)2
−

2
n

(∑
z∈Nu

∂∇u

∂∇z

)2]
=

1
n

[(∑
z∈Nu

∂∇u

∂∇z

)2
+

∑
z∈Nu

(∂∇u
∂∇z

)2
−

1
n

(∑
z∈Nu

∂∇u

∂∇z

)2]
One can take the definition of spatial traffic divergence rate
into account so that the above equation turns to∑

z∈Nu

[∂∇u
∂∇z

]2
= n−1□2

u. (34)

A similar argument for the second term in the RHS of (28)
yields ∑

z∈Nu

[∂∇z
∂t

]2
= n−1 ⊞2

u . (35)

. So, we have [∂∇u
∂t

]2
≤ n−2□2

u⊞
2
u, (36)

that leads to the desired result, i.e.,

−n−1[□u⊞u] ≤
∂∇u

∂t
≤ n−1[□u⊞u]. (37)

APPENDIX F
THE PROOF OF PROPOSITION 4
According to Theorem 1, differential traffic divergence
dynamics (8), in particular the case n = 1, may be rearranged
as below for u and v and their adjacent nodes inNu andNv.

∂∇u

∂∇z
=
∂∇z

∂∇u
+ [

∂

∂∇u
−

∂

∂∇z
]∇u,z (∀z ∈Nu) (38)

∂∇v

∂∇z
=
∂∇z

∂∇v
+ [

∂

∂∇v
−

∂

∂∇z
]∇v,z (∀z ∈Nv) (39)

Substituting these two equations into (12) completes the
proof.

APPENDIX G
THE PROOF OF LEMMA 1
An immediate consequence of 1u,v = 1w,v = γ is
1u,w = 1w,u = 1, which is equivalent to the maximal traffic
distribution between u and v.

APPENDIX H
THE PROOF OF THEOREM 3
The case m = 1 in Lemma 1 corresponds to traffic symmetry
under maximal traffic distribution. So, for any arbitrary
number of nodes, if the relative traffic rate between every two
neighboring node is maximally distributed, then any relative
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traffic rate between two arbitrary distant nodes has to also be
maximally distributed.

APPENDIX I
THE PROOF OF PROPOSITION 5
In the worst case, the length of an optimal route is n. Thus,
the computational complexity of the do-while block of the
algorithm is O

(
n3

)
. The while loop may be executed as many

as n− 1 times. In particular, Each of Lines 9, 11, 12, 13 may
be executed in one operation. Defining the maximum number
of neighbors associated with a node as

Y := max
z∈K

Nz, (40)

Line 10 requires Y operations. Thus, since in general n≫ Y ,
the overall computational complexity reads as O

(
n3+ (n−1)

(Y + 4)
)
≡ O

(
n3), which is what the proposition claims.

APPENDIX J
THE PROOF OF THEOREM 4
(i) Uni-regular case: The traffic reaching a switch u ∈ K

belongs to either of the following categories: it is destined to
reach u as its target, or it corresponds to transient traffic. The
cited transient traffic 3T

u is constrained with respect to the
capacity of the switch that, given the total number of switches
Ru and the number of outage ports Qu, reads as follows.

3T
u + θ

T
∑

v∈K\{u}

Tuv = Ru − Qu −H (41)

Consequently, noting that [48]∑
u∈K

[Ru − Qu −H] = 2E, (42)

the total transient traffic of the topology is obtained as below.∑
u∈K

3T
u = 2E− θT

∑
u∈K

∑
v∈K\{u}

Tuv (43)

Alternatively, one may compute the total transient traffic
of the topology based the route set ψu,v between arbitrary
switches u, v ∈ K computed by Algorithm 1, i.e., the
congestion-avoiding minimum-hop routing mechanism.∑

u∈K

3T
u = θ

T
∑
u∈K

∑
v∈K\{u}

tuv
∑
ρ∈ψu,v

βTρ (|ρ| − 1) (44)

Here, |ρ| is the length of route ρ and βTρ is the split ratio
of ρ. This ratio determines the contribution of this route to
the carriage of the cited total transient traffic. The lower the
traffic of a switch is, the higher its split ratio shall be to
minimize the likelihood of any congestion, implying

βTρ ∝ ∇
−1
ρ , (45)

that using the result of Proposition 2 leads to

βTρ ∝
( ∑
w∈ρ

∇w
)−1

. (46)

The overall contributions of split ratios associated with all
found routes shall be equal to unit. Thus, the co-efficient
set (17), one may write∑

ρ∈ψu,v

βTρ = αρ
( ∑
w∈ρ

∇w
)−1
= 1, (47)

which turns (44) to∑
u∈K

3T
u = θ

T
∑
u∈K

∑
v∈K\{u}

Tuv

[ ∑
ρ∈ψu,v

αρ

( ∑
w∈ρ

∇w

)−1
×

(
|ρ| − 1

)]
. (48)

The double stochasticity of Timplies that the summations of
all of its rows and columns are equal to H. Finally, by the
equality of (43) and (48) and some simplifications, we obtain

θT=
2E
H

[
1+

∑
u∈K,v∈K\{u},

ρ∈ψu,v

[
αρ |ρ|

[ ∑
w∈ρ

∇w

]−1]
− |ψu,v|

]−1
,

(49)

which is the theorem’s claim.
(ii) Bi-regular case: The capacity of each switch is variable

depending on whether it is connected to servers or solely
to other switches. Formally speaking, given the selector
function below applied to an arbitrary switch u ∈K

S(u) :=

{
1 if u is connected to any servers
0 otherwise

, (50)

(41) is written as

3T
u + θ

T
∑

v∈K\{u}

Tuv = Ru − Qu −HuS(u). (51)

Then, (42) turns into∑
u∈K

[Ru − Qu −HuS(u)] = 2E. (52)

However, (43) is invariant with respect to this change. So, the
remainder of the proof for the bi-regular case follows that of
the uni-regular one.
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