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ABSTRACT This paper investigates the L2−L∞ exponential consensus control problem of leader-follower
multi-agent systems based on an event-triggered strategy. It begins by establishing an error system and
provides a sufficient condition guaranteeing exponential stability of the error system while satisfying the
L2 − L∞ performance index. Subsequently, utilizing the condition, a design method for the L2 − L∞

controller is presented. Finally, through a numerical example, this paper discusses the relationship between
optimal L2 − L∞ performance index and the maximum sampling period under different topological
structures. The effectiveness of the proposed theoretical framework is validated through the numerical
example.

INDEX TERMS Leader-follower, multi-agent systems, event-triggered, L2 − L∞, exponential consensus.

I. INTRODUCTION
Multi-Agent Systems (MASs) refer to systems composed
of multiple interacting agents, holding a crucial position in
contemporary control science and engineering. The research
onMASs focuses on the interactions, collaborative behaviors,
and optimization of overall performance among intelligent
agents [1], [2], [3], [4], [5], [6]. Currently, the study of
MASs has become a hotspot in the field of control, covering
a broad spectrum from theoretical exploration to practical
applications.

MAS consensus control is a critical research area aimed
at achieving a coherent state among interacting agents
during their evolution. This consistency involves mutual
communication and adjustment strategies among agents to
ensure their states or behaviors remain consistent in certain
aspects. One of the key challenges in this field is to
design effective control strategies that lead the collective
exponential convergence of agents to a consistent state [7],
[8], [9]. In numerous scenarios, the imperative for prompt
responsiveness of MASs necessitates the prevalent demand
of exponential consensus stability. Research approaches
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include the distributed control algorithms, event-triggered
strategies, and mechanisms for local information sharing to
achieve exponential consensus across the system. In [7],
the authors addressed the leader-following exponential con-
sensus problem of general linear MASs via event-triggered
control. In [8], based on the dynamic event-triggered strategy,
the exponential consensus of MASs of impulsive PDEs
with switching topology was discussed. In [9], the authors
researched the exponential convergence for heterogeneous
linear MASs over unbalanced digraphs.

Building upon the above introduction, we know that
event-triggered strategy is frequently employed in the
control of MASs [7], [8]. Event-triggered strategy, as a
significant component in the research of MASs, introduces
a new paradigm aiming to optimize the utilization of
communication and computational resources. The strategy’s
advantage lies in triggering communication only when
specific conditions in the system state are met, reducing
communication frequency and lowering the system’s energy
consumption. Ongoing research is primarily concentrated
on the design, analysis, and performance optimization of
event-triggered strategies in various application scenarios.
For example, a distributed control approach for consensus
of MASs based on event-triggered strategy was proposed
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in [3]. In [10], an adaptive event-triggered communication
was adopted in the consensus control of leader-follower
MASs. Recent, many works about dynamic event-triggered
consensus such as dynamic event-triggered consensus of
general linear multi-agent systems with adaptive strategy, and
dynamic event-triggered consensus of multi-agent systems
under directed topology have been addressed. The unique
point of dynamic event-triggered strategy is that the triggered
threshold is adaptive rather than static. This means that the
conditions under which agents communicate and update their
states are based on the system’s current state and can change
over time. The adaptiveness helps in reducing communication
demands while ensuring that the agents can still reach
consensus efficiently. Dynamic event-triggered strategy is
part of a growing field of research that seeks to optimize how
and when agents in a network communicate so that collective
goals are achieved efficiently and resources such as energy or
bandwidth are conserved. Obviously, We should keep an eye
on dynamic event-triggered strategy, as it is a research trend
in this field.

External disturbances are prevalent in control systems.
Both H∞ control and L2 − L∞ control methods are highly
effective in suppressing the impact of external disturbances
on the system. Wang developed an adaptive H∞ control
scheme to ensure the consensus of the nonlinear second-
Order MASs in [11]. In [12], the H∞ consensus control for
MASs with input delay and directed topology was discussed.
Similar problem forMASswith linear coupling dynamics and
communication delays was studied in [13].

However, to the best of our knowledge, very few authors
have researched the L2 − L∞ consensus problem for MASs
recently. L2 − L∞ control stands as a control methodology,
aiming to achieve stability and performance optimization.
This method considers the system’s performance from a
global perspective by defining theL2 andL∞ norms between
the external disturbances and estimated signals. Current
research focuses on the theoretical derivation and practical
applications ofL2−L∞ control, providing a new perspective
for the control of MASs.

Motivated by the above discussions, this paper inves-
tigates the event-triggered L2 − L∞ consensus problems
for the leader-follower MASs with the disturbances. The
main contributions of this paper can be summarized as
follows.
1) A closed-loop error model for the consensus of leader-

follower MASs is established. Based on the error
nodel of MASs and event-triggered strategy, a sufficient
condition in terms of linear matrix inequalities is
proposed to guarantee the consensus stability and
L2 − L∞ attenuation level.

2) An L2 − L∞ consensus controller gain matrix is given
for leader-follower MASs.

3) Based on the proposed algorithm, we discuss the
relationship between optimal L2 − L∞ attenuation
level γ ∗ and the maximum allowed sampling period δ∗

with different topological structures.

The rest of this paper is organized as follows. The
closed-loop errorMASs is established in Section II. The main
results on theL2−L∞ consensus are proposed in Section III.
Section IV provides a numerical example to illustrate the
effectiveness of the results given in Section III. Section V
draws the conclusions.

Notations: In this paper, Z+ denotes the set of non-
negative integers; Rn and Rn×m denote the n-dimensional
Euclidean space and the set of all n × m real matrices,
respectively; I and 0 denote identity matrix and zero matrix
with appropriate dimensions, respectively; ⊗ denotes the
Kronecker product between two matrices; sym(A) stands for
A + AT ; the superscript ‘‘T ’’ stands for matrix transpose.
The Laplacian matrix of a multi-agent system is denoted as
L = [lij]N×N , where lii =

∑N
j=1,j̸=i wij, and lij = −wij for

i ̸= j. wij represents the link quality from agent j to agent i
and satisfies wii = 0, wij ≥ 0. The leader adjacency matrix
is denoted byM = diag{m1,m2, . . . ,mN }, where mi ≥ 0 for
i = 1, 2, . . . ,N . Note that if there is an edge from the leader
to agent i, then mi > 0, otherwise, mi = 0.

II. PROBLEM FORMULATION
In this article, the N followers in MAS are described by{

ẋi(t) = Axi(t) + Bui(t) + Dωi(t),
xi(t0) = x0i , t0 ≤ t, i = 1, · · · ,N ,

(1)

where xi(t) ∈ Rn, ui(t) ∈ Rn and ωi(t) ∈ Rn are the
state, control input and external disturbance of the ith agent,
respectively. A, B and D are the system matrices with
appropriate dimensions.

Let x0(t) be the leader, whose dynamical behavior is
formulated as follows{

ẋ0(t) = Ax0(t) + Dω0(t),
x0(t0) = x00 , t0 ≤ t,

(2)

The controlled output is defined as is

zi(t) = C
(
xi(t) − x0(t)

)
. (3)

The control strategy adopts an event-triggered mechanism.
Let δs denotes the sampling instants with a constant sampling
period δ (s ∈ Z+). Meantime, let t ik (k ∈ Z+) denotes the
event-triggered instants of the agent i. For simplicity, we set
δ0 = t i0 = 0.
Then, the controller is designed as

ui(t) = −K
( ∑
j∈N (i)

wij
[
xi(t ik ) − xj(t

j
k ′ )

]
+ mi

[
xi(t ik ) − x0(δs)

])
, t ∈ [δs, δs+1), (4)

where t ik and t
j
k ′ denote the latest event-triggered instants for

the agent i and agent j, and K ∈ Rn×n denotes the control
gain matrix to be given. N (i) represents the neighbor set of
agent i, e.g., for agent i and agent j, j ∈ N (i) if wij > 0.
Here, for agent i, we define an event-triggered function as:

f (δs) = ξTi (δs)ξi(δs) − ϵieTi (δs)ei(δs), (5)
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where ξi(δs) = xi(δs) − xi(t ik ), ei(δs) = xi(δs) − x0(δs),
t ik denotes the event-triggered instant closest to sampling
instant δs, and ϵi is a constant threshold.

The triggering instants for i are defined as follows:

t ik+1 = inf{δs > t ik : f (δs) > 0}. (6)

Noting xi(t ik ) = xi(δs) − ξi(δs), we can rewrite (1) as

ẋi(t) = Axi(t) − BK

×

( ∑
j∈N (i)

wij
[
xi(δs) − ξi(δs) − xj(δs) + ξj(δs)

]
+ mi

[
xi(δs) − ξi(δs) − x0(δs)

])
(7)

+ Dωi(t), t ∈ [δs, δs+1)..

Define ei(t) = xi(t) − x0(t). Then, we get the error system

ėi(t) = Aei(t) − BK
∑
j∈N (i)

wij
[
ei(δs) − ej(δs)

]
+ BK

∑
j∈N (i)

wij
[
ξi(δs) − ξj(δs)

]
− BKmi

[
ei(δs) − ξi(δs)

]
(8)

+ D
[
ωi(t) − ω0(t)

]
.

Let

e(t) = [eT1 (t) · · · eTN (t)]
T

∈ RNn
1

ξ (t) = [ξT1 (t) · · · ξTN (t)]
T

∈ RNn
1 ,

ω(t) = [ωT
1 (t) · · · ωT

N (t), ω
T
0 (t)]

T
∈ R(N+1)n

1

z(t) = [zT1 (t) · · · zTN (t)]
T

∈ RNn
1 . (9)

Based on (8) and (3), we have
ė(t) = [IN ⊗ A]e(t) − [H ⊗ BK ]e(δs)
+[H ⊗ BK ]ξ (δs) + [IN ⊗ D]Dωω(t),
z(t) = [IN ⊗ C]e(t)

(10)

where H = L +M and

Dω =


I 0 . . . 0 −I
0 I . . . 0 −I
...

...
. . .

...
...

0 0 0 I −I


N×(N+1)

.

Define ε(t) = t − δs for t ∈ [δs, δs+1). ε(t) can be
regarded as a time-varying delay with ε̇(t) = 1 and ε(t) ≤ δ.
We transform (10) into

ė(t) = Ae(t) − AK e(t − ε(t)) + AK ξ (t − ε(t))
+DDωω(t),
z(t) = Ce(t),

(11)

where

A = IN ⊗ A, AK = H ⊗ BK ,

D = IN ⊗ D, C = IN ⊗ C .

Next, we give two definitions and a lemma, which can help
us understand the results.
Definition 1 (see [7]): The agents of (1) and (2) are said

to be exponential consensus if there exist positive-definite
constants κ > 0, β > 0 and T > 0, the following condition
holds:

∥xi(t) − x0(t)∥ ≤ κe−βt

for all t > T , ωi(t) = 0 and any xi(0) ∈ Rn (i =

1, 2, · · · ,N). β is called the convergence rate.
Definition 2 (see [14]): Given a scalar γ , the multi-agent

system composed of (1), (2) and (3) is said to be exponential
consensus with a prescribed L2 − L∞ performance level γ

if system (11) is exponentially stable, and under zero initial
condition (e(0) = 0), ∥z(t)∥∞ < γ ∥ω(t)∥2 for all nonzero

ω(t) ∈ L2[0, ∞), where ∥z(t)∥∞ = supt
√
z(t)T z(t).

Lemma 1 (see [10]): For a matrix Q > 0 and any
Y with appropriate dimensions, the following inequality
holds:

−Y TQ−1Y ≤ −Y T − Y + Q.

Remark 1: According to Definition 1 and 2, the expo-
nential consensus of agents of (1), (2) and the exponential
stability of system (11) are equivalent. Moreover, the
L2 − L∞ exponential consensus controller of multi-agent
system composed of (1), (2) and (3) can be obtained by
system (11).

III. MAIN RESULTS
The sufficient condition and the controller design method for
the L2 −L∞ consensus of the multi-agent system composed
of (1), (2) and (3) with the event-triggered condition (5) will
be provided in this section.
Theorem 1: The error system (11) is exponentially stable

with a prescribed L2 − L∞ performance γ under the
event-triggered condition (5) if there exist positive-definite
matrices W1 > 0, W2 > 0, W3 > 0, positive scalar
β > 0 and matrix K such that the following inequalities
hold:

9̃ω =

[
9̃ 9̃ωD

9̃T
ωD −γ 2I

]
< 0 (12)

and [
W1 CT

∗ I

]
> 0, (13)

where

9̃ωD =
[
DT

ωDT 0 0 0
]T

,

9̃ = 9̃1 + 9̃2 + δeβδFT0 W3F0,

9̃1 =

(
sym

(
FT1 W1F0

)
+ βFT1 W1F1

)
+

(
FT1 e

βδW2F1 − FT3 W2F3
)

+

(
FT2 F2 − FT4 I

−1
ϵ F4

)
,
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9̃2 = −
1
δ
0̃T

[
W3 0
0 W3

]
0̃,

0̃ =

[
I −I 0 0
0 I −I 0

]
,

F0 = [A − AK 0 AK ] ,

F1 = [I , 0, 0, 0], F2 = [0, I , 0, 0],

F3 = [0, 0, I , 0], F4 = [0, 0, 0, I ],

Iϵ = diag{ϵ1, ϵ2, . . . , ϵN } ⊗ In.

and the convergence rate is β
2 .

Proof: First, define

γ (t) ≜ [eT (t), eT (t − ε(t)), eT (t − δ), ξT (t − ε(t))]T ,

γ1(t) ≜ [γ T (t), ωT (t)]T .

To establish the asymptotical stability condition of the
system (11) under the condition (5), we consider ω(t) = 0.
Then, an LKF is chosen as

V (t) =

3∑
l=1

Vl(t), t ∈ [δs, δs+1) (14)

where

V1(t) = eT (t)W1e(t), (15)

V2(t) =

∫ t

t−δ

eβ(µ−t+δ)eT (µ)W2e(µ)dµ, (16)

V3(t) =

∫ 0

−δ

∫ t

t+v
eβ(µ−t+δ)ėT (µ)W3ė(µ)dµdv, (17)

with W1 > 0, W2 > 0, W3 > 0. Considering (11), we get
the time derivative of V1(t)

V̇1(t) = γ T (t)sym
(
FT1 W1F0

)
γ (t) (18)

which indicates that

V̇1(t) + βV1(t) = γ T (t)
[
sym

(
FT1 W1F0

)
+ βFT1 W1F1

]
γ (t). (19)

Similarly, the derivatives of V2(t) and V3(t)

V̇2(t) = eβδeT (t)W2e(t) − eT (t − δ)W2e(t − δ)

− β

∫ t

t−δ

eβ(µ−t+δ)eT (µ)W2e(µ)dµ

= γ T (t)
(
FT1 e

βδW2F1 − FT3 W2F3
)
γ (t) (20)

− βV2(t).

V̇3(t) = δeβδγ T (t)FT0 W3F0γ (t)

−

∫ t

t−δ

eβ(µ−t+δ)ėT (µ)W3ė(µ)dµ (21)

− βV3(t).

Further, we obtain

V̇2(t) + βV2(t) = γ T (t)
(
FT1 e

βδW2F1

− FT3 W2F3
)
γ (t), (22)

and

V̇3(t) + βV3(t) = δeβδγ T (t)FT0 W3F0γ (t)

−

∫ t

t−δ

eβ(µ−t+δ)ėT (µ)W3ė(µ)dµ. (23)

As eβ(µ−t+δ)
≥ 1 for µ ∈ [t − δ, t], we know that

−

∫ t

t−δ

eβ(µ−t+δ)ėT (µ)W3ė(µ)dµ

≤ −

∫ t

t−δ

ėT (µ)W3ė(µ)dµ

i.e.,

−

∫ t

t−δ

eβ(µ−t+δ)ėT (µ)W3ė(µ)dµ

≤ −

∫ t−ε(t)

t−δ

ėT (µ)W3ė(µ)dµdµ (24)

−

∫ t

t−ε(t)
ėT (µ)W3ė(µ)dµdµ.

Then, applying Jensen inequality [15] to (24), we get

−

∫ t

t−δ

eβ(µ−t+δ)ėT (µ)W3ė(µ)dµ

≤ −γ T (t)
1
δ
0̃T

[
W3 0
0 W3

]
0̃γ (t), (25)

Noting that eq. (5) implies that

γ T (t)
(
FT2 F2 − FT4 I

−1
ϵ F4

)
γ (t) ≥ 0. (26)

Combining (19), (20), (22), (23), (25) and (26) yields

V̇ (t) + βV (t) ≤ γ T (t)9̃γ (t), (27)

Obviously, 8̃ω < 0 results in 8̃ < 0, which represents
V̇ (t)+βV (t) ≤ 0. It means that, if (12) holds, the system (11)
is exponentially stable under condition (5). Further, it implies
that the convergence rate is β/2 [16].

Next, we introduce an index to establish the L2 − L∞

performance condition for the system (11) under the zero-
initial condition.

J = V (t) −

∫ t

0
γ 2ωT (µ)ω(µ)dµ, (28)

where V (t) is defined in (14). Noting zero-initial condition
(V (0) = 0), we get

J =

∫ t

0
[V̇ (µ) − γ 2ωT (µ)ω(µ)]dµ,

Due to βV (t) > 0, it can be concluded that

J ≤

∫ t

0
γ1(µ)T 8̃ωγ1(µ)dµ,

8̃ω < 0 in Theorem 1 implies J < 0 for ω(t) ̸= 0 and t >

0. Therefore, we have V (t) ≤ γ 2
∥ω∥

2. Moreover, from (13)
and (14), we have,

eT (t)W1e(t) < V (t) ≤ γ 2
∥ω∥

2 (29)
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and

CTC ≤ W1 (30)

Finally, combining (29) and (30), we have

zT (t)z(t) = eT (t)CTCe(t) ≤ V (t) ≤ γ 2
∥ω∥

2 (31)

Hence, we obtain that ∥z(t)∥∞ ≤ γ ∥ω∥2 for any
nonzero ω(t). This completes the proof. □

Now, based on Theorem 1, we provide an LMI design
method of the L2 − L∞ consensus controller for the
system (11) under condition (5).
Theorem 2: The error system (11) is exponentially stable

with a convergence rate β
2 and a prescribed L2 − L∞

performance γ under the event-triggered condition (5) if
there exist positive-definite matrices Ŵ1 > 0, Ŵ2 > 0,
Ŵ3 > 0 and matrix K̂ , such that the following inequality
holds:

1 + 5 < 0, (32)[
Ŵ1 Ŵ1CT

∗ I

]
> 0, (33)

where

1 =



111 −2̂ 0 2̂ Ŵ1AT Ŵ1DDω Ŵ1 0
∗ 0 0 0 −2̂T 0 0 Ŵ1
∗ ∗ 133 0 0 0 0 0
∗ ∗ ∗ 144 2̂T 0 0 0
∗ ∗ ∗ ∗ 155 0 0 0
∗ ∗ ∗ ∗ ∗ −γ 2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ 177 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


111 = sym(AŴ1) + βŴ1, 133 = −sym(Ŵ1) + Ŵ2,

144 = −sym(Ŵ1) + Iϵ, 155 = −
1

δeβδ
Ŵ3,

177 = −
1
eβδ

Ŵ2, 2̂ = H ⊗ BK̂ , Ŵ1 = IN ⊗ Ŵ1,

5 =
1
δ
0̂T

[
−sym(Ŵ1) + Ŵ3 0

0 −sym(Ŵ1) + Ŵ3

]
0̂,

0̂ =

[
I −I 0 0 0 0 0 0
0 I −I 0 0 0 0 0

]
.

Then, the L2 − L∞ consensus controller K is given by

K = K̂ Ŵ−1
1 . (34)

Proof: In (12), we set W1 as: W1 = IN ⊗ W1. At the
same time, let Ŵ1 = W−1

1 and set Ŵ1 = IN ⊗ Ŵ1. It’s easy
to get

Ŵ1W1 = I . (35)

Applying Shur complement to (12), we know that (12) is
equivalent to

91 + 92 < 0, (36)

where

91 =



6 −W1AK 0 W1AK AT DDω

∗ I 0 0 −AT
K 0

∗ ∗ −W2 0 0 0
∗ ∗ ∗ −I−1

ϵ AT
K 0

∗ ∗ ∗ ∗ −
1

δeβδ W−1
3 0

∗ ∗ ∗ ∗ ∗ −γ 2I

 ,

6 = sym
(
W1A

)
+ βW1 + eβδW2,

Iϵ = diag {ϵ1, ϵ2, · · · , ϵN } ⊗ In,

92 = −
1
δ
0T

[
W3 0
0 W3

]
0,

0 =

[
I −I 0 0 0 0
0 I −I 0 0 0

]
.

Defining J = diag{Ŵ1, Ŵ1, Ŵ1, Ŵ1, I , I }. Pre- and post-
multiplying (36) with J , we have,

J91J + J92J < 0. (37)

Let 9̂1 = J91J and 9̂2 = J92J , then we obtain

9̂1 =



6̂11 −AKŴ1 0 AKŴ1

∗ Ŵ1Ŵ1 0 0
∗ ∗ −Ŵ1W2Ŵ1 0
∗ ∗ ∗ −Ŵ1I−1

ϵ Ŵ1
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Ŵ1AT Ŵ1DDω

− Ŵ1AT
K 0

0 0
Ŵ1AT

K 0
−

1
δ
W−1

3 0
∗ −γ 2I


(38)

where

6̂11 = sym(AŴ1) + βŴ1 + eβδŴ1W2Ŵ1

Based on Lemma 1, we have

9̂2 = −
1
δ
0T

[
Ŵ1 0
0 Ŵ1

] [
W3 0
0 W3

] [
Ŵ1 0
0 Ŵ1

]
0

≤
1
δ
0T

[
−sym(Ŵ1) + W−1

3 0
0 −sym(Ŵ1) + W−1

3

]
0

(39)

and

−Ŵ1W2Ŵ1 ≤ −sym(Ŵ1) + W−1
2 , (40)

−Ŵ1I−1
ϵ Ŵ1 ≤ −sym(Ŵ1) + Iϵ . (41)

Integrating (38), (39), (40), (41) into (37), and setting K̂ =

KŴ1, Ŵ2 = W−1
2 , Ŵ3 = W−1

3 , inequality (32) can be
obtained. Consequently, we can conclude that inequality (12)
holds if inequality (32) holds. Similarly, Pre- and post-
multiplying (13) with diag{Ŵ1, I } and noting (35), we can
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deduce that inequality (13) holds if (33) holds. This completes
the proof. □
Next, an algorithm for optimization L2 − L∞ attenuation

level γ based on the Theorem 2 would be proposed.
Algorithm 1: Given the system parameters, the minimum

attenuation level γ can be obtained by solving the following
problem

min γ̂

s.t. LMIs (32), (33)

where γ̂ = γ 2. Then, the minimum attenuation level is
calculated as γ ∗

=
√

γ̂min, where γ̂min denotes the optimal
value of γ̂ .

IV. NUMERICAL EXAMPLE
In this section, we will present five multi-agent systems
with different topological structures, dynamics of which are
described by (1) and (2). Three of these systems consist
of one leader and three followers with various topological
configurations, which are represented in Fig 1, 2, 3. OneMAS
comprises one leader and four followers, which is shown in
Fig 4. The last MAS comprises one leader and five followers,
which is shown in Fig 5. Here, x0 denotes the leader agent.
x1, x2, x3, x4 and x5 are the follower agents.
The system matrices of (1) and (2) are set as

A =

[
−1 0.1
0.1 −1

]
, B =

[
1 0
0 1

]
,

D =

[
0 0.4

−0.2 0

]
, C =

[
−0.2 0
0 0.5

]
,

the thresholds in event-triggered condition (5) are set as ϵ1 =

ϵ2 = ϵ3 = 1.0 and the convergence rate is set as β/2 = 0.5.
From the topologies of the MASs, the Laplacian matrices

and the leader adjacency matrices of the four MASs are got
by

L1 =

 0 0 0
0 0 0
0 0 0

 , M1 =

 1 0 0
0 1 0
0 0 1

.

L2 =

 0 0 0
−1 1 0
−1 0 1

 , M2 =

 1 0 0
0 0 0
0 0 0

.

L3 =

 0 0 0
−1 1 0
0 −1 1

 , M3 =

 1 0 0
0 0 0
0 0 0

.

L4 =


0 0 0 0

−1 1 0 0
0 −1 1 0
0 0 −1 1

 , M4 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.

L5 =


0 0 0 0 0

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 ,M5 =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

FIGURE 1. Topology of the MAS1.

FIGURE 2. Topology of the MAS2.

FIGURE 3. Topology of the MAS3.

A. DISCUSSION ON THE RELATIONSHIP BETWEEN γ ∗

AND δ

Firstly, we illustrate the relationship between the optimization
L2 −L∞ attenuation level γ obtained based on Algorithm 1
and the time delay δ for multi-agent systems with different
topological structures.

Here, we incrementally increase the sampling period, δ,
from 0.01 until Algorithm 1 becomes unsolvable, and
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FIGURE 4. Topology of the MAS4.

FIGURE 5. Topology of the MAS5.

calculate the optimal attenuation level γ ∗, which is illustrated
in Fig.6
Remark 2: As we know, time-delay affects the stability

and performance of systems. From Fig.6, it can be seen
that when the time-delay reaches a certain level, the system
performance sharply decreases.
Remark 3: From Fig.6, the comparative analysis reveals

that, under identical conditions for other parameters,
MAS1 exhibits the minimum L2 − L∞ attenuation ratio γ ∗,
while MAS5 demonstrates the maximum. Conversely, the
maximum allowable time delay δ∗, i.e., sampling period δ,
is observed for MAS1 and the minimum for MAS5, as detailed
in Table 1.
This phenomenon arises from the fact that, in the context

of consensus control aligned with the leader, MAS1’s three
follower agents are directly connected to the leader, enabling
them to receive the leader’s state information directly,
enhancing their control decision effectiveness. In contrast,
MAS2 has only one follower, x1, directly obtaining the
leader’s information, while other followers receive second-
hand information. Also, MAS3, MAS4 and MAS5 experience
instances where some followers receive leader information
second-hand or even third-hand, resulting in these MASs
having less effective information.

FIGURE 6. Minimum attenuation level γ ∗ with sample period δ for
various MASs.

TABLE 1. The maximum allowed delays δ∗ and corresponding γ ∗ for
various MASs.

FIGURE 7. System states xi and the exponential curve y = [3, 5]T e−
β
2 t .

It should be pointed out that although the curves for
MAS2 and MAS3, line types of which are asterisk line and
solid line, closely align on the Fig.6, their distinctions can be
found in Table 1.
Especially, comparingMAS3, MAS4, andMAS5, we observe

similar topological structures. It can be asserted that
by maintaining a topology similar to MAS3, MAS4, and
MAS5 and increasing the number of agents, the allowable
time delay δ∗ is expected to decrease, while the L2 − L∞

attenuation ratio is anticipated to increase.

B. VERIFICATION OF EXPONENTIAL CONSENSUS
Without loss of generality, we choose MAS3 for simulation.
Setting δ = 0.05, by Theorem 2, the L2−L∞ controller gain
matrix is obtained as

K =

[
0.0225 −0.1059

−0.1217 0.5843

]
,

and the minimum attenuation level γ ∗
= 0.6244.
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FIGURE 8. The controlled output z of the follower agents under the
disturbance ω(t).

FIGURE 9. Control input, event-triggered instants and release intervals
of u1.

Now, we verify the exponential stability of the system.
For clarity, we choose the initial state of the system as
x0 = [3, 5]T , x1 = [4, 6]T , x2 = [5, 7]T , x3 = [6, 8]T .
Meanwhile, as a comparison, we have added an exponential
curve that conforms to the equation y = [3, 5]T e−

βt
2 to the

Figure. From the Fig.7, it can be seen that the convergence
speed of system states meets the requirements of the specified
convergence rate β/2 = 0.5.

C. VERIFICATION OF L2 − L∞ PERFORMANCE
Next, the L2 − L∞ performance index is verified. The
disturbance input ω(t) is assumed to be

ω0(t) =

[
e−tsin(5t)
e−tcos(5t)

]
, ω1(t) =

[
−e−tsin(5t)
e−tcos(5t)

]
,

ω2(t) =

[
e−tsin(5t)

−e−tcos(5t)

]
, ω3(t) =

[
e−tsin(5t)

−2e−tcos(5t)

]
,

The controlled output z(t) of the follower agents are drown
in Fig.8. At the same time, Fig. 9, Fig. 10 and Fig. 11 illustrate
the event-triggered instants and release intervals for the three
follower agents. Noting that the sampling period, δ = 0.05,

FIGURE 10. Control input, event-triggered instants and release intervals
of u2.

FIGURE 11. Control input, event-triggered instants and release intervals
of u3.

obviously, the frequency of controller changes is much lower
than that of the sampling.

With zero-initial condition, we calculate ∥z(t)∥∞ and
γ ∥ω∥2.

∥z(t)∥∞ = 0.0517 < γ ∥ω∥2 = 0.6244 ∗ 1.2241 = 0.7643

which implies that system composed of (1), (2) and (3) with
parameters setting above satisfies the L2 − L∞ performance
level γ = 0.6244.

V. CONCLUSION
This paper addressed the L2 − L∞ exponential consensus
control problem for multi-agent systems, employing an
event-triggered strategy. The establishment of an error
system allowed for the derivation of a sufficient condition
ensuring the exponential stability of the error system while
meeting the L2 − L∞ performance index. The subsequent
design of the L2 − L∞ controller based on this condition
provided a practical method for implementation. Through the
numerical example, the investigation explored the correlation
between L2 − L∞ performance index and the maximum
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sampling period under diverse topology structures. The
empirical results not only validated the effectiveness of the
proposed theoretical framework but also offered insights into
the interplay between control performance and sampling
intervals in real-world applications of MASs. In future,
I will apply the relevant results proposed in this paper to
the Markovian jump systems. Then, I will compare the
results with distributed optimal consensus of multi-agent
systems with Markovian switching topologies: synchronous
and asynchronous communications. Of course, dynamic
event-triggered strategy is also my main research focus in
future.
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