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ABSTRACT Fine-grained fashion retrieval searches for items that share a similar attribute with the query
image. Most existing methods use a pre-trained feature extractor (e.g., ResNet 50) to capture image
representations. However, a pre-trained feature backbone is typically trained for image classification and
object detection, which are fundamentally different tasks from fine-grained fashion retrieval. Therefore,
existing methods suffer from a feature gap problem when directly using the pre-trained backbone for fine-
tuning. To solve this problem, we introduce an attribute-guided multi-level attention network (AG-MAN).
Specifically, we first enhance the pre-trained feature extractor to capture multi-level image embedding,
thereby enriching the low-level features within these representations. Then, we propose a classification
schemewhere images with the same attribute, albeit with different values, are categorized into the same class.
This can further alleviate the feature gap problem by perturbing object-centric feature learning. Moreover,
we propose an improved attribute-guided attention module for extracting more accurate attribute-specific
representations. Our model consistently outperforms existing attention based methods when assessed on
the FashionAI (62.8788% in MAP), DeepFashion (8.9804% in MAP), and Zappos50k datasets (93.32% in
Prediction accuracy). Especially, ours improves the most typical ASENet_V2 model by 2.12%, 0.31%, and
0.78% points in FashionAI, DeepFashion, and Zappos50k datasets, respectively. The source code is available
in https://github.com/Dr-LingXiao/AG-MAN.

INDEX TERMS Attention, fine-grained fashion retrieval, fashion, feature gap.

I. INTRODUCTION
Fashion retrieval is a crucial research topic [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], especially for fashion recommendations [18], [19],
[20], [21], [22]. It aims to learn the overall similarity among
different fashion items [6], [23], [24]. Fine-grained fashion
retrieval is an emerging topic in the fashion retrieval field.
It focuses on learning fine-grained similarity rather than
overall similarity, because the similarity between items varies
depending on the specific attribute considered in the task.
For example, two shirts with a crew neck and a v-neck,
respectively, are considered similar in a fashion retrieval task,
while they will be treated as different items when doing
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fine-grained fashion retrieval under the guidance of neckline
design. Moreover, the attribute can be very diverse, thus this
research task is more challenging than the general fashion
retrieval.

This research topic, while challenging, holds significant
importance in the field. Achieving high-quality fine-grained
fashion retrieval is crucial not only for meeting the varied
and diverse needs of users in the real world but also plays
a pivotal role in fashion copyright protection, as highlighted
by Martin et al. [25]. This capability is instrumental in
identifying items with copied or duplicated designs, which
hinges on the nuanced ability to discern intricate similarities
among fashion items. The process involves analyzing detailed
attributes of clothing, such as texture, pattern, and shape, at a
granular level, enabling the detection of subtle differences
and similarities that are not apparent at a glance. As the
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fashion industry continues to grow and evolve, with an ever-
increasing volume of designs and the rapid proliferation of
knock-offs, the demand for advanced fine-grained similarity
analysis technologies becomes more pressing. These tech-
nologies not only support the creative integrity of designers
by safeguarding their original designs but also enhance
consumer experience by providingmore accurate and person-
alized fashion recommendations. Therefore, developing and
refining these technologies is essential for advancing both
copyright protection efforts and the overall user experience
in fashion e-commerce platforms.

Current approaches for fine-grained fashion retrieval are
mainly the conditional similarity network [26] and attention
networks [27], [28], [29]. The most recent contrastive
learning method [30] and clustering method [31] use the
attention network [27] as their base network.
However, existing state-of-the-art (SOTA) methods have

two problems. (1) They rely on pre-trained Convolutional
Neural Network (CNN) backbones that were initially trained
for image classification on the ImageNet dataset [32] to
extract image representations. The captured image embed-
ding is then processed to calculate the fine-grained sim-
ilarities. This leads to a feature gap problem due to the
distinct nature of the image classification task and fine-
grained fashion retrieval task. (2) Existing work adopts high
level features for fine-grained fashion similarity learning.
Considering the diversity of the attributes, the neglect of
low level features will degrade the model performance,
especially for some attributes that care about small texture
difference.

To address the above-mentioned issue, we present an
attribute-guided multi-level attention network (AG-MAN) to
improve retrieval accuracy in fine-grained fashion similarity
learning. The proposed AG-MAN can extract more dis-
criminative image features. Specifically, we firstly enhance
the pre-trained CNN backbone to increase the low-level
features contained in image representations. Then, when fine-
tuning the pre-trained CNN for extracting image features,
we suggest incorporating a classification loss that groups
images sharing the same attribute but differing in sub-
classes into a common category. This can further alleviate the
feature gap problem by perturbing for object-centric feature
learning. Once improved image representations are attained,
we introduce an improved attribute-guided attention module
to derive more accurate attribute-specific representations.
The proposed AG-MAN consistently outperforms existing
attention networks over three datasets. In brief, this paper
offers the following key contributions:

1) This paper identifies the feature gap problem in SOTA
fine-grained fashion retrieval methods and proposes
solutions to address it.

2) We propose an improved attribute-guided attention
module, named attribute-guided attention (AGA).

3) The proposed attribute-guided multi-level attention
network, AG-MAN, consistently outperforms existing
methods across three datasets.

II. RELATED WORK
A. FASHION RETRIEVAL
As fashion recommendations become a trending research
topic, fashion retrieval also attracts more attention [5], [23],
[24], [33], [34], [35], [36], [37], [38], [39]. Ji et al. [33] lever-
aged detailed label information from e-commerce websites
to improve cross-domain retrieval. This aided the attention
mechanism in pinpointing clothing within complex scenes,
facilitating in-shop retrieval based on the extracted clothing
features. Han et al. [24] employed a bi-directional long short-
term memory (Bi-LSTM) network to recommend an item for
the given incomplete outfit in the fashion compatibility task.
Subsequently, the advancement of the attention mechanism
bolstered the models’ capacity to understand context and wit-
nessed widespread integration into computer systems [40],
[41], [42], [43] and recommendation systems [44], [45],
[46]. Wang et al. [47] used a self-guided attention module
to autonomously capture clothing features without relying
on external landmark annotations. Nevertheless, they pri-
marily concentrated on the broader resemblance of attire,
falling short of the requirements for fine-grained retrieval.
To address this issue, several fine-grained fashion retrieval
methods have been proposed [26], [27], [28], [29]. In [26],
they learned an embedding space and used a fixed mask to
select relevant dimensions of the embedding space based on
a specified attribute. The masked embedding was adopted
for final loss calculation. Different from it, Ma et al. [27]
proposed to acquire distinct embedding spaces tailored to
specific attributes, rather than relying on a single and unified
embedding space. To clarify, they evaluated the nuanced simi-
larity within each corresponding feature space.Wan et al. [28]
presented a similar network architecture. They believed that
the concurrent acquisition and integration of spatial and chan-
nel attention features are effective, with the exception of the
sequential learning employed within the attention modules.
Yan et al. [29] employed iterative learning strategies to this
task. Xiao et al. [30] employed a contrastive learning method
for solving the multi-view problem [30]. Jiao et al. [31]
incorporated different supervisions at both instance and
cluster level for more accurate fine-grained fashion retrieval.
However, they often overlooked the feature gap issue.

B. ATTENTION MECHANISM
The attention mechanism witnessed a significant traction and
has shown remarkable effectiveness in a variety of research
domains, encompassing fields such as computer vision [40],
[48], [49], [50], [51] and natural language processing [52],
[53], [54]. At its core, the attention mechanism can be
understood as a method that allocates more weights towards
the most relevant parts of the input data.

In the fashion retrieval field, attention mechanisms are also
very important because using a fixed region of interest for
a specified attribute across all of the images is not optimal
due to the diverse nature of fashion images, which often
feature complex backgrounds, pose variations, and other
factors. Consequently, attention mechanism is commonly
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FIGURE 1. Model architecture. #1, #2, #3, and #4 are four blocks in ResNet50 backbone.

FIGURE 2. The proposed classification branch perturbs the object-centric
feature learning in the fine-tuning process by grouping images with the
same attribute but different sub-classes into the same class. The number
above the image denotes the sub-class under each attribute.

used in the fashion domain [7], [27], [33], [47], [55], [56].
For instance, Ak et al. [7] leveraged prior knowledge of
garment construction to pinpoint the precise components
of clothing. Nevertheless, their methodology was confined
to upper-body clothing, restricting its broader applicability.
Wang et al. [47] proposed incorporating channel attention
mechanisms into a fully convolutional network. Ji et al. [33]
employed attributes to enhance attention modeling. In [27],
they introduced two attribute-guided attention mechanisms
that used a specific attribute as auxiliary input alongside
the given image. The suggested attention modules have
successfully discerned patterns associated with the specified
attribute under the directive of that attribute. Wan et al. [28]
improved existing attribute attention modules by fusing the
spatial and channel attention information. Yan et al. [29]
enhanced attribute localization accuracy through iterative
refinement of the attention module. In contrast to existing
methods, we theoretically analyze the feature gap problem in
current fine-grained fashion retrieval methods and introduce
a more powerful attention network for solving the problem
and achieving more accurate fine-grained fashion retrieval.

III. PROPOSED METHOD
A. OVERVIEW
The primary motivation of this research is to tackle the
feature gap issue that currently challenges SOTA attention

networks in fine-grained fashion retrieval. This problem
arises from the common practice of directly employing pre-
trained CNN backbones to extract image representations,
which are subsequently processed with attention modules.
Our underlying theoretical foundation stems from the notion
that leveraging a feature embedding for classification may
hinder the learning process for the given task, mainly because
it overlooks essential lower-level image features. Therefore,
it is imperative to exercise caution when employing pre-
trained CNNs, especially when the new research task diverges
significantly from traditional image classification.

Figure 1 depicts the architecture of our proposed network.
In this research topic, the query attribute can be related to
the local information (e.g., neckline-design, texture-related,
and lapel-design, etc.) and global information (e.g., style-
related, pant-related, and shape-related, etc.). Therefore,
capturing multi-level image features is crucial rather than
solely focusing on designing complex attention modules.
Thus, we first enhance the pre-trained CNN backbone to
capture hierarchical image features. We also propose to
calculate the logit distribution difference between images
with different attribute labels by adding one classification loss
Lc. This can disrupt the object-centric feature learning within
a pre-trained CNN backbone during the fine-tuning process,
thus contributing to the mitigation of the feature gap issue.
To extract more accurate attribute-specific embeddings,
we introduce an improved attribute-guided attention (AGA)
module.

Concretely, for a given query item (I , a), with I denoting
the image and a indicating the attribute, the attribute attended
feature vector is f (I , a) ∈ Rc. This feature vector lies in a
continuous vector space Rc and encapsulates the distinctive
features of the specified attribute within the image. Here,
c represents the dimensionality of the feature vector. For a
pair of fashion images, (I , I ′), we compute the embedding
similarity between their respective attribute-specific feature
vectors, (f (I , a), f (I ′, a)), to quantify their similarity with
respect to the same attribute. Furthermore, we extend this
similarity assessment across multiple attributes by aggre-
gating the similarity scores for each individual attribute.
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Specifically, we calculate the similarity score for each
attribute separately and then sum these scores to obtain an
overall measure of fine-grained similarity between the two
images across all attributes. It is essential to emphasize that
each attribute-specific feature vector resides in its respective
attribute-specific embedding space. If there are a total of n
attributes of interest, we learn n separate embedding spaces
simultaneously to capture the distinct characteristics of each
attribute within the image.

B. HIERARCHICAL FEATURE EXTRACTION
The concept of hierarchical features has been widely applied
across various research domains. Yet, there is a lack of
research focused on designing an effective hierarchical fea-
ture extraction module specifically for fine-grained fashion
retrieval. In this paper, we propose to develop a hierar-
chical feature extraction module tailored for fine-grained
fashion retrieval. We use the widely adopted pre-trained
ResNet50 [57] as the backbone network for a fair comparison
with exsiting models [26], [27], [28]. Because fine-grained
fashion retrieval needs to deal with multiple attributes,
and it cares about different level features, integrating more
multi-level features into the image features is essential.
To achieve this, we begin by performing an addition operation
to combine the F2(.) (output of intermediate block 2 of
ResNet50) and F3(.), resulting in a fused output denoted
as F2,3(.). Next, we concatenate F2,3(.) with F3(.) and feed
this concatenated feature representation into the proposed
attribute-guided attention module. This can enhance the
multi-level features contained in the image representations
that will be processed with the attribute-guided attention
module.

Moreover, the pre-trained CNN is designed to learn some
object-centric features, which are not what we need in
fine-grained fashion retrieval. Thus, we propose adding a
classification loss to group images with the same attribute but
different sub-classes into the same class (Figure 2). This can
boost the learning ofmore diverse image features. Concretely,
the F2,3(.) is passed into block 4 of ResNet50 [57] and a
fully connected (FC) layer to calculate a classification loss
of different attributes.

C. AGA
The proposed AGA comprises four parts: attribute-guided
spatial attention (ASA), spatial attention (SA), attribute-
guided channel attention (ACA), and channel attention (CA).
It is an improvement of the attribute-aware attention module
proposed in [27]. To encode the attribute information, we use
a one-hot vector denoted as a ∈ {0, 1}n, where n ∈ N
represents the total number of distinct attributes.

1) ASA
In this research task, learning feature representations for
specific, related regions is essential. For instance, to capture
attribute-specific features for the neck design, the region

surrounding the neck holds greater significance compared to
others regions. Moreover, since fashion images can exhibit
substantial variations, such as in poses and scales, relying
on a fixed region for a specific attribute across all images
is suboptimal. Thus, this paper introduce an ASA module,
a mechanism that dynamically focuses on specific areas of
an input image based on the relevance with a particular
attribute, as illustrated in Figure 3a. To elaborate, with h
and w representing the height and width dimensions, we first
align the dimensionality of the image feature embedding
f (I ) ∈ Rc×h×w and the attribute embedding p(a) ∈

Rc′×h×w. Formally, we obtain the transformed image feature
representation p(I ) ∈ Rc′×h×w by applying a convolutional
layer Convc′ comprising c′ 1 × 1 convolution kernels to the
f (I ) ∈ Rc×h×w, given as

p(I ) = tanh(Convc′ (I )). (1)

To obtain attribute representations, we initially transform
the query attribute into a vector of dimensionality c′,
which is achieved via an embedding layer and an FC
layer. Subsequently, we apply self-attention to the attribute
embedding. Therefore, the transformed attribute p(a) belongs
to the space Rc′×h×w, where c′ denoting the number of
channels, and

p(a) = σ (Waa) ∗Waa, (2)

where Wa ∈ Rc′×n represents the transformation matrix for
the embedding and FC layers, n represents the number of
attributes, and σ indicates a sigmoid function. Finally, the
spatially attended representation of the image is given by

f (I , a)s = f (I ) ∗W1s(p(I ) · p(a)), (3)

where s denotes a softmax function andW1 indicates a learned
weight matrix. It’s important to highlight that we use the
sigmoid function for optimizing the attention weights in
most cases, a common practice in many attention methods,
as described in [40] and [58]. In Eq. 3, the softmax is adopted
to further improve the model’s ability in distinguishing the
differences between features of different attributes.

2) SA
After obtaining f (I , a)s, we first calculate the average and
max channel pooling outputs of f (I , a)s, denoted as Avg(Is)
and Max(Is), and concatenate them in the channel dimension
to retain more information. They are then passed into a
convolution layer and a sigmoid layer to extract an attention
weight for the f (I , a)s. SA aims to further improve the
positioning ability of f (I , a)s. The processed f (I , a)s is
denoted as f (I , a)s′ . The detailed operation is given below:

WSA = σ (Conv1([Avg(Is),Max(Is)])), (4a)

f (I , a)s′ = f (I , a)s ∗WSA, (4b)

where Conv1 represents a convolutional layer consisting
of a single 1 × 1 convolution kernel and [, ] denotes a
concatenation operation.
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FIGURE 3. Details of (a) ASA, (b) SA, (c) ACA, and (d) CA in the proposed AGA module. The ASA and SA enhance the related region localization while
the ACA and CA improve the ability to distinguish between different attributes within the same region.

The proposed SA is very straightforward. We concatenate
the Avg(Is) and Max(Is) for more diverse information
(Figure 3b).

3) ACA
While the ASA and SA dynamically concentrate on particular
regions within the image, it’s important to note that these
identical regions might simultaneously relate to several
attributes simultaneously. For instance, attributes such as
lapel design and neck design are both associated with the
area surrounding the neck. To address this issue, we introduce
an ACA mechanism applied to the spatially attended
embedding, denoted as f (I , a)s′ . The ACA is designed to
select dimensions within the spatially attended feature vector
that are relevant to the given attribute. In more detail, we start
by transforming the attribute into an embedding vector with
an embedding layer and a FC layer. This embedding vector
has the same dimensionality as f (I , a)s′ , and is expressed as

q(a) = σ (Wa′a) ∗ (Wa′a), (5)

whereWa′ ∈ Rc′×n is a transformation matrix.
Then, the attribute representation q(a) and spatially

attended image embedding f (I , a)s′ are combined by an
element-wise addition and the resultant feature is passed
through two subsequent FC layers to compute the channel
attention weights. We also adopt a learned weight matrixW2
to increase the adaptability. The final output is

WACA = σ (Wc2 (r(Wc1 ([q(a), f (I , a)s′ ])))), (6a)

f (I , a)c = f (I , a)s′ ∗W2 ∗WACA, (6b)

where Wc1 and Wc2 indicate the weight matrices of two
FC layers, respectively, and r represents a ReLU activation
function.

4) CA
To enhance the utilization of pertinent channel information
derived from the obtained f (I , a)c, we implement a simple
dimensionality reduction, succeeded by an expansion oper-
ation, aimed at extracting channel-specific attention. This
process yields f (I , a)c′ . For a more detailed description,
please refer to Figure 3d.

D. MODEL LEARNING
The model learning process contains two losses: attribute
classification loss and triplet ranking loss. First, the attribute
classification loss is computed with

Lc = −wa[ya · log σ (xa) + (1 − ya) · log(1 − σ (xa))]. (7)

Then, with the triplet input (I , Ip, In), we aim to minimize
the distance between the embeddings of images with the
same specific sub-class, denoted as DI ,Ip , and maximize the
distance between the embeddings of images with different
sub-classes, denoted as DI ,In . More formally, we define the
triplet ranking loss as

DI ,Ip =
f (I , a)c′ · f (Ip, a)c′

∥f (I , a)c′∥∥f (Ip, a)c′∥
, (8a)

DI ,In =
f (I , a)c′ · f (In, a)c′

∥f (I , a)c′∥∥f (In, a)c′∥
, (8b)

Ltriplet = max{0,m+ DI ,Ip − DI ,In}, (8c)

where m represents the margin, empirically set to be 0.2.
The final loss is a dynamic weighted loss that combines

the attribute classification loss Lc and the triplet ranking loss
Ltriplet in an adaptive manner. The primary goal of defining
weighted loss is to control the training process and ensure
that both losses contribute effectively to learning. Initially,
the Lc and Ltriplet are set to have the same weight coefficient
of 0.5. Then they will change following an exponential
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TABLE 1. Details of used datasets. They provide a rich set of attributes and their corresponding sub-classes to describe fashion items in detail.

FIGURE 4. The conceptual structure of compared models and ours. The CSN is a conditional
similarity network while the the ASENet_v2 and AttnFashion are attention networks in this research
field. Ours is also an attention network.

function. To preventing the weight coefficient from becoming
too large, which could lead to convergence issues, we add
the w0 and w1 into the weighted loss. Thus, the final loss
becomes

L = 0.5 ∗ ew0Lc + w0 + 0.5 ∗ ew1Ltriplet + w1, (9)

where w0 and w1 are learned weight parameters that are
initialized as zero.

E. MATERIAL
A summary of the datasets used in this paper are given in
Table 1.

1) FASHIONAI
FashionAI is a large-scale fashion dataset with hierarchical
attribute annotations for fashion understanding. We use this
dataset because of its high-quality attribute annotations. Since
the full version of FashionAI has not been publicly released,
we use an early version as in [27]. It consists of 180,335
apparel images, where each image is annotated with a fine-
grained attribute. There are eight attributes, and each attribute
is associated with a list of sub-classes. For instance, the
attribute neckline design has 11 corresponding sub-classes
such as round neckline and v neckline. We randomly split
images into three sets with an 8:1:1 ratio, resulting in
144k/18k/18k images for training/validation/testing. Besides,
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TABLE 2. Results on the FashionAI dataset: The best result is bolded, and the second best is underlined. Our model consistently surpasses its
counterparts across all attribute types in terms of performance.

TABLE 3. Experimental results on DeepFashion dataset. Our model performs the best.

FIGURE 5. Top-10 retrieval examples from the FashionAI dataset, where the images with a black bounding box exhibit the same
sub-classes with the query image, while images with a red bounding box have different sub-classes compared to the query image. The
majority of the search results within the top 10 generated by our model are precise and correct.

for every epoch, we construct 100k triplets from the training
set for model training. Concretely, for a triplet with respect
to a specific attribute, we randomly sample two images of

the same corresponding sub-classes as the relevant pair and
an image with differentsub-classes as the irrelevant one. For
validation or test set, 3,600 images are randomly picked
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FIGURE 6. The model ranks the candidates based on their similarity to the query image in terms of the
specified attribute. The proposed model effectively distinguishes between candidates that share the same
sub-classes as the query image (indicated by a black bounding box) and those that differ (marked with a
red bounding box). In contrast, other models struggle to achieve this precise ranking, often placing
candidates with shared sub-classes lower in the list than they should.

as query images. The remaining images, annotated with
the same attribute, are used as the candidate images for
retrieval.

2) DEEPFASHION
DeepFashion [2] is a large dataset that consists of four
benchmarks for tasks in clothing: category and attribute pre-
diction, in-shop clothes retrieval, fashion landmark detection,
and consumer-to-shop clothes retrieval. In our experiments,
we use the category and attribute prediction benchmark for
the attribute-specific retrieval task.

The category and attribute prediction benchmark contains
289,222 images with six attributes and 1,050 sub-classes, and
each image is annotated with several attributes. We randomly
split the images into training, validation, and test sets by an

8:1:1 ratio and construct 100k triplets for training. For both
the validation and test sets, images are split into query and
candidate images at a 1:4 ratio.

3) ZAPPOS50K
Zappos50k [59] is a large shoe dataset consisting of 50,025
images collected from the online shoe and clothing retailer,
Zappos.com. For ease of cross-paper comparison, we use
the identical split provided by [26]. Specifically, we use
70%/10%/20% images for training/validation/testing. Each
image is tagged with four attributes: the type of the shoes, the
suggested gender of the shoes, the height of the shoes’ heels,
and the closing mechanism of the shoes. For each attribute,
200k training, 20k validation, and 40k testing triplets are
sampled for model training and evaluation.
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FIGURE 7. Visualization of the spatial attention based on a specified query attribute, depicted above the original retrieved image.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
To assess the feasibility of the proposed model, we conduct
evaluations on the attribute-specific fashion retrieval (ASFR)
and triplet relation prediction (TR) tasks. Details of the
definition of these two tasks and the experiments are given
below.

1) ASFR TASK
When given a fashion image along with a specified attribute,
the objective is to identify fashion images from the dataset
that share the same attribute as the given reference image.
We employ two datasets for this task: the FashionAI
dataset [27] and the DeepFashion dataset [2]. Specifically,
1) The FashionAI dataset encompasses eight attributes, each
featuring multiple values. These attributes can be categorized
into design-related and length-related attributes. 2) In con-
trast, the DeepFashion dataset comprises five attributes, with
approximately 200 values per attribute. These 13 attributes
collectively pertain to distinct regions within images and
encompass a wide spectrum of image features, ranging from
low-level characteristics to high-level image comprehension.
Therefore, experiments on these two datasets allow us to
assess the proposed model’s real-world applicability and
effectiveness. Our evaluation metric is the Mean Average
Precision (MAP), which is a widely recognized performance
measure employed in various retrieval-related tasks [27].

2) TR TASK
With a triplet of {(I , Ip, In)|a} as input, it aims to predict
whether the relevance degree of (I , Ip) surpasses that of
(I , In) for the specified attribute a. The dataset used in this
task is the Zappos50k dataset [59]. We measure performance
using prediction accuracy.

The batch size, embedding size, learning rate, learning
rate decay step size, and decay rate are 16, 1024, 0.0001, 3,
and 0.9, respectively. The training epoch number is 50. The

TABLE 4. Triplet relation prediction on Zappos50k.

Figure 4 illustrates the conceptual frameworks of the models
under comparison, as well as our own model.

B. RESULTS
1) EXPERIMENTAL RESULTS ON THE ASFR TASK
We compare the proposed model with typical attention
networks for fine-grained fashion retrieval task to show that
our ways to improve the attribute-aware attention module
and alleviate feature gap problem are effective. We do
not compare our work with Yan et al. [29], due to the
absence of released source code, preventing us from re-
implementing their approach and replicating the reported
results. Tables 2 and 3 present an overview of the comparison
models’ performance on the FashionAI and DeepFashion
datasets, respectively. The tables display the results for
various attribute types. It is evident that the proposed network
consistently exhibits better performance than other models on
both FashionAI and DeepFashion datasets.

Figure 5 presents the top-10 retrieval examples generated
by the proposed model when query cloth and attribute are
given. The accurate results in the top-10 retrieval examples
serve as compelling evidence of the AG-MAN model’s
efficacy.

We also show some ranking results. Given a query
image and 10 candidate clothes, the model evaluates and
ranks the candidates based on their similarity to the query
image with respect to a specified attribute of interest. This
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TABLE 5. Ablation studies on the FashionAI dataset.

TABLE 6. Ablation studies on the DeepFashion dataset.

TABLE 7. Ablation studies on the proposed AGA module (FashionAI dataset).

process involves extracting and comparing detailed feature
representations of both the query image and each candidate
garment to determine their match level in terms of the query
attribute. The candidates are then ordered from most to least
similar, facilitating the identification of garments that best
match the user’s search criteria. As we can see from Figure 6,
even when other models fail, the proposed method can
produce an accurate ranking. It embeds the labeled similar
items closer than the labeled different ones.

To gain deeper insights into our proposed model, we visu-
alize the attention maps learned by the proposed ASA.
As depicted in Figure 7, these attention maps exhibit
notable characteristics. They tend to exhibit higher response
values in regions relevant to the specified attribute, while
diminishing responses in regions deemed irrelevant. This can
demonstrate the ASA’s capability to discern which areas are
more pertinent for a specific attribute. It’s worth noting that
attention maps for attributes related to item length exhibit
greater complexity compared to design-related attributes.
In the case of length-related attributes, multiple regions often
exhibit heightened responses. However, our model excels in
accurately locating the starting and ending points of a fashion
item, enabling it to make informed speculations about its
length. Even in scenarios involving the most intricate global
attributes, our model consistently outperforms in pinpointing
the relevant regions.

2) EXPERIMENTAL RESULTS ON THE TR TASK
Table 4 presents the results for triplet relation prediction on
the Zappos50k dataset. Out of the four methods for fine-
grained fashion retrieval, our proposed model demonstrates

FIGURE 8. Visualization examples for triplet relation prediction. The
‘Close’ column is the predicted closer item, while the ‘Far’ column
denotes the predicted farther item.

superior performance compared to other methods. Figure 8
shows some triplet relation prediction examples. As we can
see, the proposed method can accurately predict the relation
of a triplet input while other models fail.

C. ABLATION STUDIES
Ablation studies were carried out to evaluate the performance
changes of the proposed AG-MAN when removing one of
the following: hierarchical feature and classification branch.
As we can see from Tables 5 and 6, both the hierarchical
feature and classification branch can improve the model’s
performance on the two datasets considered in this paper. The
optimal performance is achieved when both components are
retained in the model, further underscoring their importance.

We also conduct experiments to evaluate the performance
changes when removing ASA, SA, ACA, or CA from the
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TABLE 8. Ablation studies on the proposed AGA module (DeepFashion dataset).

TABLE 9. Comparison of the proposed AGA and exiting attribute-aware attention modules (FashionAI).

TABLE 10. Comparison of the AGA and other attribute-aware attention modules (DeepFashion).

proposed AGA module. The experimental results are shown
in Tables 7 and 8. As we can see, when combining all of them,
the best performance can be achieved.

D. OTHER EXPERIMENTS
To verify that our AGA is an improvement of the one
in [27], and better than the atrribute-aware attention modules
proposed in other methods, we conduct experiments on both
the FashionAI and DeepFashion datasets. As we can see
from Tables 9 and 10, the proposed AGA is more effective
compared with exiting attribute-specific attention modules.
It shows that by adding the SA and CA module, they obtain
a good coupling effect.

E. FAILURE ANALYSIS
Figure 9 shows some failure cases of our model. First, our
model may incorrectly evaluate on some items that share very
small differences with the query image, as seen in texture-
related fashion retrieval in the figure. For certain attributes
related to length, some fashion images are labeled with
varying lengths that are so subtle that even human observers
find it challenging to discern the differences accurately.
Moreover, real-world datasets include pure item and try-on
images that are taken from different viewpoints, making it
difficult to distinguish the subtle difference in length between
these two kinds of images. Finally, the imageswith occlusions
also add some difficulty. In the future, we aim to address these
issues mentioned above.

FIGURE 9. Some retrieval failures of the proposed method.

V. LIMITATIONS AND FUTURE WORKS
The proposed method is not scalable. When new attributes
come, we need to train the whole model again. Scalable
fine-grained fashion retrieval by designing novel continual
learning and Large Language Model prompt techniques
would be a promising research direction.

VI. CONCLUSION
This paper introduced a novel approach called the AG-
MAN to address the feature gap problem and proposed
a better attribute-aware attention module. Concretely, the
AG-MAN modified the pre-trained CNN backbone to
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capture multi-level feature representations for addressing
the feature gap problem. We also proposed a method to
disturb the object-centric feature learning to further alleviate
this problem. Moreover, we proposed a more powerful
attribute-guided attention module for extracting more dis-
criminative representations. AG-MAN exceled in achieving
precise attribute positioning and extracting highly distinctive
features, while being guided by the specified attribute.
Extensive experiments with the FashionAI, DeepFashion, and
Zappos50k datasets showed that our AG-MAN surpasses
existing attention networks for fine-grained fashion retrieval.
Our AG-MAN exhibits significant promise for application in
various attribute-guided recognition tasks.
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