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ABSTRACT In power systems with a significant hydroelectric component, instances of the Unit
Commitment (UC) problemmay bemuchmore computationally intensive due to the longer decision horizons
and the additional hydro constraints. Therefore, this paper presents a methodology to reduce the solution
space to accelerate 168-hour-ahead UC formulated as a Mixed-Integer Linear Program (MILP). First,
an offline model maps environment observations to actions in a Multi-Agent Deep Reinforcement Learning
(MADRL) model. This mapping uses historical power system operation data to determine the on/off status
of specific generation units. Then, the online model uses the binary variable solutions obtained by the offline
model to solve a UC problem with a reduced solution space. The Multi-Agent approach allows each agent,
based on Artificial Neural Networks (ANN) with a Temporal Convolutional Network (TCN) architecture,
to group units that are located in the same region. A shared cumulative reward function is used to adjust
simultaneously the different ANN weights during the learning phase. The effectiveness of our method is
demonstrated using real operational data of the Chilean National Electricity System, achieving statistically
significant lower computation times and a negligible error that is within the integrality gap of the solver.

INDEX TERMS Artificial neural networks, multi-agent deep reinforcement learning, unit commitment,
variable reduction.

I. INTRODUCTION
Short-term generation scheduling involves minimizing the
operation costs in a specific horizon by defining an opti-
mal schedule for the different generators while satisfying
numerous physical, operational, and economic constraints.
This is a much more difficult task for systems with an
important hydroelectric component due to the limits of
water reservoirs and the stochastic nature of hydro inflows.
Specifically, in hydrothermal systems such as the Chilean
National Electricity System, the Unit Commitment (UC)
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problem entails optimizing the sequence of on/off status
for thermal generators, requiring solutions for horizons
extending up to 168 hours. The complexity deepens with the
growing penetration of Variable Renewable Energy (VRE)
sources and the inclusion of new technologies and novel
constraints. As renewable generators are included as variables
to model transmission limits due to curtailment effects,
more decision variables are added to UC formulations,
adding even more time to solve the associated Mixed-Integer
Linear Programs (MILP). Thus, power systems operational
planning tools in the energy transition require balanc-
ing the growing computational demands with solution
quality.
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There have been many proposals to improve the compu-
tational performance in the UC problem focused on using
historical power system operation records. A review of
current machine learning (ML) trends applied to the UC
problem is shown in [1]. The first works incorporating the
use of ANN to solve the UC problem are from the 1990s.
In [2] and [3], ANNs are used to solve the UC problem
in a simplified way. In [2], a neural network uses the load
profiles as input and thermal generators’ on/off status as
outputs (26 units). In [3], Hopfield networks are used for
a system with 17 thermal units. Reference [4] introduces
a model based on a three-layer fully connected network
model to estimate the units’ status by utilizing nodal load
profiles as input. Subsequently, the UC problem is solved
using a simulated annealing method, a heuristic optimization
algorithm to find near-optimal solutions to combinatorial
optimization problems. In these works, good results are
achieved related to improving resolution times, but they are
only tested in small test systems with few thermal units.

More recent works have tried to use data-driven approaches
to find patterns in the optimization problem and treat it
as a classification/clustering problem. In [5], a reduction
of variables to the classic MILP formulation is proposed
for the Security-constrained UC (SCUC) problem. With an
offline/online scheme, the offline model obtains the solutions
of the binary variables, whereas the online model solves
the reduced SCUC problem with the MILP formulation.
This paper uses the k-means method to classify the net load
demand in the buses and find feasible solutions for the state
of the units.

Another trend seen in recent years is the application of
ML techniques to improve the performance of MILP solvers
based on Branch & Bound. In [6], ML is used to improve
the branching strategy. The approach involves emulating the
decisions made by an effective branching strategy, specifi-
cally strong branching, through a fast approximation. This
approximation is generated using an ML technique based on
a collection of observed branching decisions derived from
strong branching. The proposed approach involves extracting
features to represent the state of a potential branching
variable within a specific tree node. Comprehensive strong
branching decisions are obtained by solving a set of training
instances, and subsequently, a regressor is trained to predict
the estimated branching score.

In [7], three strategies based onML are proposed to extract
features from the SCUC problem and solve the reduced
problem using the MILP formulation. On the one hand, they
utilize the k-nearest neighbors (kNN) algorithm to determine
which constraints should be initially included in the first
iteration of the UC resolution and which ones should be
excluded. On the other hand, the authors propose a solution
predictor using the kNN method as a warm start for the
MILP solver to obtain initial feasible solutions. Finally, they
introduce a Support Vector Machine (SVM)-based affine
subspace predictor to reduce the search area. The predicted

results potentially enhance the running time and solution
quality of the MILP solver. Solution times are reduced
4.3 times on systems of 1888 and 6515 buses.

Some studies have examined different ML algorithms to
predict units’ on/off status, including feasibility techniques
to assess solution viability. These studies have also utilized
demand profiles as inputs to train the ML algorithms.
For example, in [8], logistic regression (LR), deep neural
networks (DNN), random forest (RF), and kNN algorithms
are utilized to obtain a reduced SCUC problem. The
commitment schedules’ accuracy is validated using various
test cases, such as the IEEE 24-bus, IEEE 73-bus, IEEE 118-
bus and South Carolina Synthetic Grid 500-bus. Authors also
incorporate a feasibility layer to address infeasible solutions,
demonstrating high training accuracy. The results displayed
significant speed-up ratios ranging from 3.4 to 3.6 on average
for all test systems. In addition, tests for the Polish 2383-bus
system show a speed-up ratio of 6.9.

Similarly, in [9], experiments are conducted on the IEEE
24-bus system and a practical 5655-bus system using kNN,
DNN, RF and Decision Trees (DT) algorithms. On average,
each algorithm achieved a computational improvement of at
least 40% while maintaining the cost variation within 1%.
Compared to the other algorithms, kNN consistently achieved
notable computational enhancements without sacrificing
optimality in any scenario. Based on the results obtained by
various models, the authors concluded that learning the on/off
status of the units may not necessitate highly sophisticated
models. In [10], the authors focused on analyzing historical
power system data patterns, incorporating a model based on
Graph Neural Networks (GNN) and long short-term memory
(LSTM) layers. They validated their findings on various
power system test cases, including the IEEE 24-bus, IEEE
73-bus, IEEE 118-bus, and South Carolina Synthetic Grid
500-bus system. One of the significant contributions of their
research is the application of the GNN layer, harnessing the
advantages of graph-based structures. The proposed approach
displayed significant time savings, with reductions ranging
from 20% to 50%, depending on the specific study case.

The aforementioned works demonstrate a common
approach in training ML models using load profiles or net
demand as inputs. These inputs consider consumers’ elec-
tricity consumption patterns and consider the contribution of
renewable energy sources to electricity generation. However,
those works have focused on thermal systems without
considering systems with a strong hydroelectric component,
like the Chilean electric system. Moreover, research has
demonstrated that integrating domain knowledge into
machine learning models can significantly enhance model
performance. For example, [11] propose two clustering
algorithms based on domain knowledge, illustrating their
advantages compared to 13 other clustering algorithms.
In hydrothermal systems, operational scheduling is intricately
linked to water reservoir management, introducing unique
challenges to the UC problem, such as longer horizons
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and an expanded solution space. The operation of thermal
power plants within these systems relies on managing
water reservoirs. Incorporating domain-specific information,
such as reservoir generation, into the model can augment
the model’s capacity to accurately determine the optimal
operation of thermal units in response to dynamic system
conditions.

Furthermore, this is closely linked to the fact that most
works considerMLmodels, such as kNN,RF or SVM [7], [8],
[10], to treat the problem as one of classification. However,
despite its excellent performance in other sequential decision-
making problems, the use of Reinforcement Learning (RL) to
obtain relevant decision variables in the optimization problem
has not been explored. By employing a Multi-Agent Deep
Reinforcement Learning (MADRL) framework to tackle
the UC problem, we introduce a novel theoretical and
methodological perspective to power system optimization,
demonstrating how advanced machine learning techniques
can significantly enhance the efficiency and reliability of
hydrothermal power system operations.

Recent advances in ML techniques have shown the
potential of RL techniques combined with ANN for sequen-
tial decision-making. This integration effectively resolves
real-world complex problems by facilitating interactions
with the environment and learning from reward signals.
For example, in [12], an offline/online scheme is proposed
to obtain power levels dispatched together with voltage
levels in an Optimal Power Flow (OPF) problem. RL is
used to offer a cost function that includes operational
constraints. In [13], a MADRL scheme is proposed, based
on ANN and RL, to operate a hybrid photovoltaic plant
with energy storage participating in electricity and ancillary
service markets. Two ANN-based agents are proposed for
the day-ahead and real-time markets. Both networks are
trained under the same reward function so that the weights
of both networks are adjusted simultaneously. A similar
approach is adopted in this study, as each agent can specialize
in solving a specific problem within the context of the
overall task, and agents can collaborate and share knowledge
during the training process. This application of MADRL
to hydrothermal UC problems not only showcases the
adaptability of machine learning models to complex energy
systems but also enriches the theoretical foundations of
reinforcement learning, particularly in multi-agent settings
where cooperative learning strategies are critical. Hence, this
approach enhances the global learning of the system and can
lead to more efficient and robust solutions.

From a methodological point of view, the MILP-based
UC formulation is solved by actual commercially available
solvers obtaining high-quality UC solutions in adequate
simulation time. However, this study significantly enhances
the resolution process of the UC problem in a real hydrother-
mal system. The MADRL algorithm allows us to take
advantage of its capabilities for sequential decision-making
in complex environments. In the proposed MADRL model,

several agents are trained short-term generation scheduling
results conducted by the Independent System Operator (ISO)
of the Chilean National Electricity System. After setting
the hyper-parameters with a validation set, out-of-sample
results are contrasted against actual UC results obtained
by the ISO to determine the performance and convergence
conditions of the introduced methodology solving real day-
ahead conditions. Therefore, the main contribution of this
work is to propose a MADRL-based offline scheme to
determine specific thermal generation units’ on/off status
reducing the solution space, and to solve instances of
MILP-based UC problems applied to a real-life large-scale
hydrothermal power system. Simulation results demonstrate
that the proposed method significantly accelerates the reso-
lution time remaining within the established error margins
so that the mathematical framework is under study for its
potential implementation by the Chilean ISO. Bearing in
mind (i) the interest of security-constrained unit commitment
models, (ii) the relevance of modeling hydrothermal power
systems, (iii) the introduced MADRL approach, (iv) the
modeling improvements described in the paper upon the
state-of-the-art security-constrained unit commitment, and
(v) the successful numerical experience applied to a real-life
hydrothermal power system reported in the manuscript,
we feel that the contents of this paper constitute an original
and substantial contribution to the technical knowledge. Here,
we underscore our theoretical contributions: to the field
of machine learning, by advancing MADRL methodologies
for complex decision-making environments; and to power
system optimization, by presenting novel solutions that
significantly reduce computational burdens while addressing
the unique challenges of hydrothermal systems.

The rest of this paper is organized as follows: Section II
introduces the required background in UC and hydrothermal
generation scheduling. Section III proposes the MADRL
framework to solve the problem. The case study is presented
in Section IV. Section V presents numerical results regarding
solution quality and computational performance. Finally,
Section V concludes this paper.

II. BACKGROUND
A. MILP FORMULATION OF UC
The UC problem is a family of optimization problems
dealing with scheduling power-generating units in a specific
period. The UC solution must respect many operational
constraints. Equation 1 presents a generic formulation for the
UC problem:

min
x,y

cT x+ dT y (1a)

subject to Ax ≤ b, (1b)

Hy ≤ h (1c)

Gx+ Ey ≤ g (1d)

x ∈ {0, 1}|G|×|T | (1e)
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The vector x represents the binary variables related to the
on/off status of the thermal power plants for the planning
horizon period. The vector y represents the continuous
variables related to each unit’s dispatched power and reserves.
The sets G and T contain the indices that identify each
generator and the scheduling-time period, respectively. The
cost function and constraints are written linearly, resulting in
a MILP formulation.

The objective function seeks to minimize the production
costs, considering the fuel costs and start-up and shutdown
costs, in addition to the costs of energy and reserves not
served. The term cT x represents the generators’ start and
shutdown costs. The term dT y corresponds to the dispatch
costs and the unsupplied energy costs. The constraint (1b)
includes the minimum-up and minimum-down to prevent
starting and shutting down too frequently. The constraint (1c)
contains the ramping rates of the generators, and the
constraint (1d) includes the power balance requirements, unit
reserve and their generation limits. It should be noted that the
problem can also consider restrictions associated with VRE
units, transmission and security constraints using a linear DC
approximation [14].

B. MILP-BASED UC CHALLENGES IN HYDROTHERMAL
SYSTEMS
The UC problem in hydrothermal systems is much more
complex than for purely thermal systems because of the need
to manage hydro energy storage of water reservoirs, hydro
cascading constraints, and considerations for alternative
water uses. For example, the UC problem includes many
complex irrigation constraints in the Chilean system.

Also, the operational planning horizons are much longer
because of the limited storage capacity of hydro reservoirs.
Whereas in thermal UC, the horizon extends to 1 day or,
at most, a few days ahead, in many hydrothermal systems, the
horizon extends to a week, increasing the number of variables
involved [15]. In this paper, the MILP formulation uses an
operational planning horizon of 168 hours, where the binary
variables constraints of the four last days are relaxed.

Furthermore, UC in hydrothermal systemswith large reser-
voirs needs to use results from hydro coordination models
(usually based on Stochastic Dual Dynamic Programming
models, SDDP [16]), which estimate the opportunity costs of
water over much longer horizons.

III. PROPOSED MADRL-BASED SOLUTION-SPACE
REDUCTION FRAMEWORK FOR UC PROBLEM
In this study, while acknowledging the existence of various
methodologies aimed at optimizing the UC problem, our
primary focus is on the practical application and implemen-
tation of a MADRL approach specifically tailored to the
Chilean hydrothermal power system, offering a direct, real-
world comparison with the current UC strategies employed
by the Chilean ISO, rather than a theoretical exploration of
methodological alternatives.

A. OFFLINE/ONLINE PROPOSED FRAMEWORK
In this paper, an offline model maps environment observa-
tions to actions using a MADRL model, determining specific
generation units’ on/off status that are then fed to an online
MILP-based model. Fig. 1 shows a simplified scheme of the
offline/online proposed framework.

FIGURE 1. Flowchart of the proposed framework.

In the offline stage, the ANN-based agents of the MADRL
model are trained through interaction with the simulated envi-
ronment, built with historical system operation scheduling
data. While reinforcement learning can be computationally
expensive to train, once the MADRL model is fine-tuned,
its predictions about the commitment status of the selected
generators are nearly instantaneous. In the online stage, these
predictions can then be used to reduce the solution space of
the security-constrained UC, which is where computational
efficiency improvement is sought.

B. MADRL
MADRL is chosen for this operational power system problem
due to its suitability for sequential decision-making and
its capabilities for adapting to changing environments [17],
[18], [19]. In this work we introduce a MADRL model
that explores the relationship between historical data and
UC solutions. The aim is to significantly decrease the
computational burden of the MILP-based UC problem by
reducing the solution space.

In RL, the learning agent interacts with an environment
and strives to deduce the correct output. Although it receives
feedback on the quality of its actions, unlike in supervised
learning, the correct output is not explicitly disclosed (and
the feedback may be delayed). Learning in this context
is driven by exploration, involving trial and error. Thus,
in our proposed model, the agents only receive feedback
on the quality of their actions regarding how close the
proposed solution was to the solution of the MILP-based
hydrothermal UC obtained by PLEXOS. However, it is never
informedwhat that solution was, and the feedback is provided
after the action. To elaborate on this, the approach involves
utilizing historical data to simulate the decision-making
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environment for agents regarding the on/off status of units.
This simulation occurs during the learning phase, where
the environment provides states (st ) encompassing inputs
like demand, VRE, reservoir levels, and unit on/off status.
Moreover, the environment quantifies the reward for the
agent’s actions. However, it does not provide the right answer.

To refine the policies of the ANN-based agents, we lever-
age historical power system records, encompassing previous
binary variables of the UC solutions, hydro generation
scheduling for the reservoirs, nodal loads, VRE generation,
and a temporal representation. Hydro generation scheduling
in the reservoirs holds significance, as it influences the
scheduling of thermal units in hydrothermal systems, contin-
gent on water usage. This comprehensive dataset enables us
to scrutinize temporal patterns and trends in the operation of
the units.

Then, multiple agents are applied to determine the on/off
status of the different units. The number of agents depends on
the size of the system and its topology. The agents (ANNs)
make hourly decisions (at ) based on observations of the
environmental state (st ) and update the weights of the ANNs
using a policy gradient. The decisions at represent the on/off
status of the different units, and the environmental state
st are the inputs, i.e., previous on/off status of the units,
VRE generation, reservoir scheduling, nodal load and time
representation. Finally, the training phase utilizes a shared
reward function to encourage agent collaboration.

Subsequently, the online procedure solves the UC using
a standard solver while fixing the commitment variables in
certain generation units obtained from the MADRL offline
policy optimization. This procedure reduces the number of
binary variables in the MILP problem, hence decreasing the
computational burden. With the UC solution, we can then
report operational costs, hydro energy, and dispatch levels for
each generation unit.

An alternative approach to using multiple agents would
be a single neural network under a multi-task learning
scheme [20], saving computation at inference time as only
a single network would need to be evaluated. Unfortunately,
this often leads to inferior overall performance, as task
objectives can compete [13]. Furthermore, [21] empirically
demonstrates that the loss or gain of performance depends on
the relationship between the jointly trained tasks. Intuitively,
the features and behaviour of different generators are
different enough to potentially compromise generalization
performance. Therefore, we use separate agents to predict the
on/off status of different units or groups of units of similar
characteristics.

C. FEATURE SELECTION
One of the main advantages of ANNs is their ability to
learn non-linear and complex relationships so that we use
them to map the prediction policy of our agents based on
historical data. As illustrated in Fig. 2, eachANN-based agent
is fed with time series data representing the relevant system’s

operation variables, representing the system’s state (st ). The
literature recommends that the best features representing
the system’s state are those changing in time, as they
can capture the dynamics of power system operations
[2], [5], [8], [9], [10].

D. INPUT VARIABLE SELECTION
The ISO’s experience is also considered for selecting the
relevant input variables. For our implementation, we used
nodal load profiles, VRE power scheduling, and the different
units’ on/off status records as inputs of each ANN. Notice
that load and VRE can be local or regional locations. Finally,
we add a time representation of the hour of the day using
integer numbers.

Furthermore, as demonstrated in [11], incorporating
domain knowledge into machine learning problems can
significantly enhance the performance of algorithms. The
UC problem is different in hydrothermal systems, and
considering the ISO’s experience, the generation schedules
of hydro units with significant water reservoirs are also
considered input variables. Thus, the operational dynamics of
thermal power plants exhibit considerable variation between
wet and dry months. While incorporating hydrological
conditions into the model’s inputs can somewhat mitigate
this issue, it is crucial to conduct training and testing of
the model across different months. This approach enables an
examination of the inherent variations between wet and dry
periods. Additionally, the emergence of atypical hydrological
conditions might necessitate retraining of the agents to
maintain model accuracy and relevance.

E. ANN ARCHITECTURE
An ANN-based agent is illustrated in Fig. 2. We use a
sequence of multiple features to map the on/off status.
Although in power system time series forecasting, it is com-
mon to use LSTM layers (introduced in [22]), in this work,
we prefer to employ temporal convolutional networks (TCN)
[23]. This novel family of architectures has demonstrated
superior performance to LSTM in various tasks, primarily
due to their ability to maintain a longer effective memory.
TCNs are based on several important characteristics. In the
first place, they use causal convolutions, which allow the
output at time t to be convolved only with elements from
time t and earlier in the previous layer. This allows an
output of the same length as the input and no leakage from
the future into the past. The second characteristic is the
use of dilated convolutions, allowing an exponentially large
receptive field so that a top-level output can represent a wider
range of inputs. Also, TCN, unlike recurrent networks such
as LSTM, uses parallel convolutions to process the input
sequences, which is faster than the sequential processing of
recurrent networks. Finally, to deal with deeper architectures,
it is common to concatenate several TCN blocks, including
residual connections [24] to improve the learning procedure
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FIGURE 2. Proposed ANN-based agent.

FIGURE 3. TCN block with three convolutional layers with kernel size two
and dilations [1,2,4].

in deep architectures with many parameters. Fig. 3 illustrates
a TCN block.

The TCN block’s output is fed into a dense layer with
ReLU activation functions. The output layer consists of the
on/off status decisions. The output length depends on how
many units it tries to predict and the horizon length. For
example, if the horizon prediction is |T | hours, and the agent
decides the statuses of three generation units, the output layer
will consist of 3 × |T | units. The activation function for the
output layer is a sigmoid(), as this function domain is [0, 1],
which represents the status of the units.

F. LEARNING PHASE
As is usual in time series manipulation in ML, we split our
data into three consecutive groups: training, validation, and
testing. We fit the ANN weights using the training set after
every iteration. Next, we use the validation set to select the
best model considering the different hyper-parameters of the
ANNs. Finally, the test set evaluates the fitter model with out-
of-sample data.

One of the keys of the multi-agent model is to achieve a
collaborative learning phase between the ANN-based agents
using a shared cumulative reward function. In this case, the
outputs of the different neurons are rounded to 0 or 1 because
of the on/off status of the units. This is similar to a multi-label
classification problem (MLCP) [25], which predicts multi
mutually non-exclusive classes. In our problem, we decided
that every agent will have a binary cross-entropy function as

a reward function. This type of function is commonly used to
compare the predicted probabilities to actual class output in
MLCP. The cross-entropy function is zero when the predicted
and real values are equal. When they are not, their value
depends on how close or far they are. The reward function
for a particular agent is obtained as follows:

rBCE = −
1
n

n∑
i=1

[
yi · log ai + (1 − yi) · log(1 − ai)

]
(2)

where yi is the real value, ai is the decision made by the agent,
and n the number of cases. The average cumulative shared
reward function is obtained as follows:

R =
1
N

N∑
j=1

rBCE,j (3)

This is the average of the reward functions of the different
agents in the model. This function depends on the weights
of every agent. The gradient is calculated over the UC
decisions made by every ANN-based agent. It is important
to mention that the agents do not share weights between
them but are influenced by each other because of the shared
reward function used in the learning phase. We also use
mini-batches for the training phase for a computationally
more efficient process. We update each ANN’s weights using
back-propagation in every training iteration. The gradient of
each ANN can be decomposed as follows:

∇θR = ∇aR · ∇θa (4)

where ∇aR is the gradient of the cumulative reward function
concerning the actions a, i.e. the status of the units in the
horizon a = [µn=1,t , . . . ,µn=N ,t , ], and ∇θa is the gradient
of a with respect to neural network parameter θ . Algorithm 1
describes the learning phase of the offline policy optimization
block.

Algorithm 1 Learning Phase
Randomly initialize critic ANN’s weights
Initialize replay buffer R
for each training iteration do

Randomly sample a mini-batch of replay buffer R
Receive initial observation state S0
for t = 1 to T do

Determine action at
Collect UC solutions from ANNs

end for
Observe state and loss function
Calculate the gradient ∇θR
Update ANN’s weights using policy gradient
if stop criterion is met then

break
end if

end for
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IV. CASE STUDY
The proposed framework is tested in the Chilean National
Electric System. As of December 2022, it has an installed
generation capacity of 33,218 MW. Renewable sources
account for 62.0% of the installed capacity (22.3% hydro-
electric, 24.1% solar, 13.0% wind, 2.3% biomass, and 0.3%
geothermal), whereas thermal sources account for 38.0%
(13.0% coal, 15.1% natural gas, and 9.8% oil) [26]. The train-
ing experiments for the ANNs are conducted on a machine
equipped with an Intel(R) Xeon(R) CPU @ 2.20GHz,
NVIDIA A100-SXM4-40GB GPU, and 85 GB of RAM
available. TheMILP simulations are performed on a machine
with an Intel(R) Xeon(R) CPU E5-2650 and 128 GB of
RAM. The UC simulations use PLEXOS 9.100 [27], aMILP-
based electricity market simulation software that the Chilean
ISO uses to obtain day-to-day dispatch scheduling with a
168-hour horizon. The mathematical problem formulated by
PLEXOS is solved with Gurobi version 9.5.2 [28].

A. DATA
The Chilean ISO website is the source of the nodal load,
VRE scheduling, generation scheduling for the reservoirs,
and historical operational data of the units [29], [30]. These
datasets encompass the actual and planned system operations
spanning from January 1, 2019, to December 31, 2022,
with an hourly resolution. The full dataset is partitioned
into training, validation, and testing sets. Data from 2019 to
2021 are used for training, the first two months of 2022 are
used for validation, and the rest of 2022 data are used
for testing purposes. Based on the results of the validation
dataset, we picked nine thermal units to predict and fix their
commitment status when solving the reduced MILP. The
selection of those units is based on their relative importance to
the total operational cost of the UC problem and the number
of binary variables that every unit represents. The subset of
nine thermal units whose commitment status is fixed in the
reduced MILP problem represents 1.8 GW of power and
129 binary variables.

B. ANNS TUNING
The validation dataset was used for three purposes: (i) to
select the generation units whose statuses are to be predicted;
(ii) to select the generation units corresponding to each
agent of the MADRL scheme; and (iii) to tune the ANN’s
hyperparameters. In the end, six ANN agents represent the
on/off status of the nine units.We grouped some units because
they are in nearby areas and tend to behave similarly. Table 1
shows each agent’s number of units and capacity.

Some of the hyper-parameters tuned are the number of
filters and stacked residual blocks, kernel sizes, and dilation
factors. The length of the input (the amount of data to consider
from the past) is also an adjustable hyperparameter. Table 2
shows the search space for every parameter and their final
values.

TABLE 1. Number of units and capacity per agent.

TABLE 2. Hyper-parameter values for the ANNs.

Moreover, an ablation experiment using the validation set
is presented in Table 3, exploring different input lengths. The
prediction performance is evaluated using metrics such as
accuracy, precision, recall, and specificity [31]. Thesemetrics
provide insights into the effectiveness of the proposed model
in correctly predicting the status of the thermal units. The
results of the input lengths tested indicated that the 168-
length input yielded the best overall performance. Notably,
while specificity and accuracy exhibited relatively consistent
performance across different input lengths, both recall and
precision demonstrated significant variations. This can be
attributed to an imbalance observed in certain power plants
between on and off statuses, posing a challenge for the
neural network to capture the minority class effectively.
Nevertheless, as we have seen with the specificity and
accuracy, adopting a strategy of setting zeros in the UC
instances leads to high performance. This approach improves
the model’s effectiveness, reduces the impact of challenges,
and enables the network to achieve outstanding performance.

It is important to consider that the inclusion of a large
number of power plants in the UC can adversely affect
the performance of the MADRL model and computational
efficiency. Therefore, it is necessary to investigate the optimal
number of power plants to be included in the UC for optimal
model performance and computational efficiency.

The training iterations are customized by implementing
an early stopping criterion of 50 iterations. We use ReLU
activations for the neurons and Adam optimizer for train-
ing, which has an adaptive learning rate to enhance the
convergence of the networks [32]. The average execution
time of each training iteration is 6.1 seconds. It is important
to consider that a TCN architecture processes sequences
much faster than recurrent networks. Fig. 4 shows the
evolution of training and validation cumulative reward for the
final ANNs.
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TABLE 3. Best results for different length inputs.

FIGURE 4. Evolution of training and validation reward for the
selected ANNs.

V. RESULTS
A. PREDICTION PERFORMANCE OF THE OFFLINE STAGE
As the unit commitment cases in PLEXOS and their results
are publicly available on the website of the Chilean ISO [30],
we can readily compare the commitment statuses of the
selected units predicted by the MADRL model against actual
PLEXOS results.

Results are shown in Table 4. For the test set, the
obtained results underscore the model’s capability to accu-
rately predict periods where the thermal units are off,
as evidenced by high accuracy and specificity values.
However, it is relevant to note that recall and precision
exhibit values around 0.76. Nonetheless, as we mentioned
before, adopting a strategy of fixing zeros in the UC
instances enhances the model’s capability, mitigating the
impact of this challenge and allowing the network to excel in
performance.

TABLE 4. Prediction performance of the MADRL-based offline stage.

Notice that Table 4 compares predictions made by the
MADRL model with simulation results of PLEXOS original
solution. The quality of the solutions in terms of the objective
function value and computational performance are discussed
next.

B. COMPUTATIONAL PERFORMANCE OF THE PROPOSED
MODEL
This section compares the normal MILP resolution, which is
the industry standard for this type of problem, against solu-
tions obtained with the proposed MADRL-based solution-
space reduction approach. It is important to note that the
resolution of the original PLEXOS instance, employed by the
Chilean Independent System Operator, serves as a pertinent

and robust benchmark for our methodology. In practical
terms, in the online model the on/off status determined by
each ANN-based agent is given to PLEXOS as a structured
CSV input file that the software will use to automatically
generate the set of corresponding constraints that reduce
the solution space. For the computational performance
comparison to be fair, we need to rerun the original
PLEXOS simulations (i.e. without reducing the solution
space) in the same computer where we are running the UC
optimization with a reduced solution space. Thus, as the
resolution of the unreduced PLEXOS instance is the being
the current procedure employed by the Chilean ISO, the
resolution of the original PLEXOS instance serves as a
benchmark for our proposed methodology. As the solution
times may take several hours, our testing is conducted
for a limited number of days. Also, to comprehensively
represent diverse hydrological conditions within a single
year, we conducted tests for 60 randomly selected days
from March to December 2022. This approach aims to
capture a wide range of scenarios and account for the
varying levels of hydroelectric production. Notably, October,
November, and December are characterized by increased
hydroelectric output due to snowmelt. Remarkably, our
proposed method exhibited consistent performance across
both rainy months and snowmelt periods, with no significant
differences observed. These results suggest that our approach
is robust and can provide reliable solutions regardless of the
prevailing hydrological conditions.

In the full MILP case, the average solution time
is 65.9 minutes. Meanwhile, the average solution time
for our proposed framework is only 48.7 minutes. This
represents an average reduction time of 26.1%. Of course,
the performance may vary depending on the UC instance
being solved. Fig. 5 shows boxplots for the MILP time
resolution. The interquartile range for the full case falls
between 30 and 100 minutes, whereas, for the proposed
model, it ranges between 25 and 65 minutes, demonstrating
the effectiveness of our method in terms of resolution
time. Additionally, we obtained an average speed-up of 1.6,
which further confirms the computational efficiency of
our approach. The significant reduction in computation
times and variance demonstrates our model’s efficiency and
reliability in delivering consistent performance under diverse
operational conditions. This reliability is crucial for power
system operators, especially in scenarios requiring quick
adaptation to changing hydrological conditions or demand
patterns.
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FIGURE 5. Solution time for the MILP-based UC.

FIGURE 6. Distribution of speed-up.

Fig. 6 shows the distribution of speed-up for our proposed
framework. It can be observed that the majority of the tested
cases have speed-ups ranging between 1 and 2. The speedups
can even reach values between 6 and 8 in certain instances.
We conducted a t-test to assess the time reduction achieved by
our method. A p-value of 6.46 ×10−3 indicates a statistically
significant reduction in time. Also, an F-test revealed that
there is a statistically significant reduction in the variance of
the solution time (p-value of 4.92 ×10−2).
The main objective of our work is to achieve a method that

would accelerate resolution times while not compromising
the solution quality in terms of the total cost. This means that
the solution provided by our method needs to fall between
the lower and upper bounds set by the original solution’s
gap. Fig. 7 shows the normalized cost for all test cases.
An upper and lower bound, calculated as an average between
the different bounds, is included. In most cases, the solution
falls within the established margins, and in some cases,
more cost-efficient solutions are achieved. Our findings,
particularly the operational cost efficiencies and the model’s
adaptability to different hydrological conditions, align with
the industry’s broader goals of enhancing sustainability and
reliability in power systems. By enabling more efficient
unit commitment decisions, our methodology supports the
transition towards greater integration of renewable energy
sources, contributing to reducing carbon emissions and
fostering a more sustainable energy landscape.

FIGURE 7. Normalized cost.

FIGURE 8. Comparison between saving time, speed-up and operational
cost.

Fig. 8 compares the speed-up, time savings, and opera-
tional cost. Significant time savings are observed when using
our model, obtaining, in some cases, more than 40 minutes
of reduced execution time. In the few instances where the
speed-up is less than one, the time difference does not exceed
3 minutes. Furthermore, these cases have a lower operational
cost than the full case. The synergy between time savings
and acceptable cost variation vividly underscores the efficacy
and feasibility of our innovative methodology tailored to
address the unit commitment problem within hydrothermal
power systems. This approach holds substantial promise for
real-world adoption in the Chilean context, positioning it as
a viable and practical solution.

In summary, our results validate the MADRL-based
approach as a powerful tool for improving the computational
efficiency of the UC problem in hydrothermal systems
without compromising on solution quality. The demonstrated
computational improvements and cost efficiencies highlight
the potential of this methodology for real-world application,
offering significant contributions to the fields of machine
learning and power system optimization.

53274 VOLUME 12, 2024



P. Guerra et al.: Improving the Computational Efficiency of the UC Problem in Hydrothermal Systems

VI. CONCLUSION
This article presented an innovative approach that utilizes
artificial neural networks to enhance the resolution process
of the UC problem in hydrothermal systems. Using ANNs,
we accurately determine the thermal units’ on/off status,
reducing the solution space of the UC problem by employing
ANN-based agents and leveraging historical power system
operational data. These statuses serve as inputs to solve
the UC hydrothermal problem, employing a solution space
judiciously reduced for efficiency.

Our study demonstrates a practical application of MADRL
in solving the UC problem in hydrothermal power systems
and enriches the theoretical landscape of machine learning
by showcasing the adaptability and efficacy of MADRL
in complex, real-world scenarios. This work bridges the
gap between advanced computational techniques and power
system optimization, offering new theoretical insights that
underscore the potential of machine learning models to
enhance decision-making processes in energy systems signif-
icantly.

All tests were conducted on actual instances of the
Chilean National Electric System’s 168-hour ahead gen-
eration scheduling processes. Our results demonstrate that
the proposed method significantly accelerates the resolution
times of practical instances of the unit commitment problem.
Furthermore, most evaluated cases indicate that the cost
associated with our approach remained within the established
error margins, highlighting the method’s feasibility and
potential for practical application.

A potential limitation arises when the system faces atypical
hydrological conditions. While the state of the reservoirs is
used as input to account for hydrology, accurately predicting
this variable is challenging. This can pose difficulties for
the model, especially under extreme hydrological scenarios.
Moreover, the current phase of energy transition, marked by
the phasing out of thermal power plants and the integration
of new technologies, demands regular updates to the model.

In practical terms, our framework is engineered to stream-
line the UC problem resolution. The retraining of offline
agents depends critically on access to current hydrological
data, a vital factor in hydrothermal systems. It’s essential
to acknowledge that power systems are changing, with
significant transitions like the decommissioning of thermal
plants and the adoption of innovative technologies. Such
changes require periodic retraining of the model, ensuring
its continuous alignment with the evolving dynamics of the
system.

Avenues for further research include exploring new
strategies for fixing binary variables, which could lead to
further efficiency in solving the UC problem. Also, it is
worth mentioning that including too many power plants
impaired the generalization of the ANN, resulting in poorer
performance. Thus, systematically exploring the optimal
number of agents and power plants associated with each
one could improve the performance. Moreover, incorporating
additional operational constraints during the neural network

training could enhance the accuracy of predictions and the
method’s applicability in real-world contexts.
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