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ABSTRACT Money laundering is the process by which criminals move large sums of illicit money
to hidden locations and integrate them as legal funds through existing financial services. The United
Nations (UN) estimates that 2 to 5% of global GDP, which is approximately 0.8 to 2.0 trillion dollars, is
laundered globally every year. Therefore, accurately identifying such globally alarming activities is crucial
for enforcing anti-money laundering (AML) measures. Numerous techniques have been proposed to detect
money laundering from transaction graphs of money transfers between bank accounts by analysing the
structural and behavioural dynamics of their corresponding dense subgraphs. However, these techniques
often do not consider that money laundering usually involves high-volume flows of funds through chains of
bank accounts. Moreover, most AML approaches either result in lower detection accuracy or incur higher
computational costs, making them less reliable and suitable for real financial systems. Consequently, only a
fraction of money laundering activities can be detected and prevented. In this paper, we propose an efficient
approach to AML by employing semi-supervised graph learning techniques on a large-scale financial
transactional graph in both pipeline settings (i.e., graph embedding models are first trained to generate node
embeddings that are combined with additional topological graph features to train binary classifiers) and
end-to-end settings (i.e., node classification is performed by training SkipGCN, FastGCN, and EvolveGCN
without requiring separate classifiers) to identify nodes involved in potential money laundering activities.
We evaluate our approach on four datasets: AMLSim, Elliptic, IBM AML, and SynthAML, with a view to
scalability and practicality for real financial systems. Further, we provide local (e.g., how money is laundered
between nodes) and global (e.g., what factors contribute to money laundering) explanations of the predictions
by highlighting the predominant factors in money laundering cases and elucidating the mechanisms of
illicit fund transfers between nodes to enhance the interpretability and transparency of the AML models.
Experimental results suggest that our approach is scalable and effective at detecting money laundering from
real and synthetic transaction graphs.

INDEX TERMS Anti-money laundering, machine learning on graphs, graph embedding.

I. INTRODUCTION disguise the illicit origin of the property or of assisting any

Money laundering is a globally challenging economic
concern. The UN Vienna 1988 Convention describes it as
“the conversion or transfer of property, knowing that such
property is derived from any offence (s), to conceal or
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person who is involved in such offence (s) to evade the legal
consequences of his actions.”. Being a global issue, money
laundering results in approximately 0.8 to 2.0$ trillion being
laundered every year, which equates to 2 to 5% of the world’s
GDP [1], [2]. Being a global issue, money laundering results
in approximately 0.8 to 2.0$ trillion being laundered every
year, which equates to 2 to 5% of the world’s GDP [2].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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FIGURE 1. Main stages in money laundering activities (source: recreated based on [3]).

As shown in fig. 1, money laundering involves three main
stages: placement, layering, and integration. Placement is
introducing illicit funds into financial systems. Layering
is conducting complex transactions to obscure the origins.
Integration is withdrawing the proceeds from a destination
bank account and utilizing them for lawful purposes.

As shown in fig. 2, money laundering can be modelled
by two major topologies: in the first topology, there is one
source account, one destination account, and many middle
accounts that form a vertical chain. First, the source splits
the money among the middle accounts, which then sends the
money to the destination account. In the second topology,
there is one source account, one destination account, and a
horizontal sequence of middle accounts. Each middle account
transfers the whole amount of money to the next account
in the sequence until it reaches the destination. Based on
such topologies, a money transaction graph can be created
by representing a single account as a vertex and a transaction
between two accounts as an edge. Financial institutions
are responsible for forensic analysis and complying with
regulatory standards such as know your customer (KYC),
transaction monitoring, suspending suspicious accounts,
and submitting suspicious activities reports (SARs) to law
enforcement agencies.'

TFor example, the global framework for anti-money laundering (AML) is
regulated by the Financial Action Task Force.
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Preventing criminals from moving such illicit funds
through financial systems is known as anti-money launder-
ing (AML). Since failure to AML compliance may impose
severe penalties, financial organizations must identify illicit
activities reliably. For this, rigorous analysis is carried
out using sophisticated techniques to determine whether a
SAR needs to be filed or whether the account in question
should be suspended. However, the current AML approaches
face several limitations and challenges. One of the main
challenges is the lack of access to real financial transaction
data, which is highly restricted due to proprietary and privacy
reasons [2]. First, access to real financial transaction data
is highly restricted due to both proprietary and privacy
reasons [2]. AML efforts suffer from a lack of real data (or
at least, realistic synthetic data that mimics AML scenarios),
labels as well as annotations of important attributes of
real data [2]. This hinders the development and evaluation
of AML methods, as they cannot be tested on realistic
scenarios and data. The second challenge is the scarcity
and the imbalance of labelled data, e.g., as the normal
transactions and accounts vastly outnumber the illicit ones.
A concrete example of two parties sharing the same IP
address on a transaction graph does not necessarily mean they
are physically connected since their IP addresses might be
associated with a mobile network. However, highly skewed
labelled data exhibit limited adaptability and unreliable
results. The third challenge is that the ground truth of money
laundering is hard to obtain and verify, leaving most real-life
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FIGURE 2. Two common topologies of money laundering networks (recreated based on literature [4]).

data noisy and unlabeled or sparsely labelled. However,
the majority of the existing methods do money laundering
detection in a supervised manner. This reduces the reliability
and adaptability of the supervised learning methods, as they
may suffer from overfitting or underfitting problems.

A fourth challenge is the complexity and the scalability
of the graph model, which can contain billions of nodes
and edges.” This requires efficient and scalable methods
that can handle large-scale graphs and extract meaningful
and discriminative features from them. The fifth challenge
is that criminals often mask the true nature of their
transactions using complicated account layering or multi-hop
transactions, leaving the identification of money laundering
a complex problem. Our empirical study outlines that
most existing AML approaches yield either lower detection
accuracy or are inscalable to large graphs, making them
less reliable and impractical for real-life financial systems.
Further, most of the existing methods are either too simple or
too complex, resulting in lower detection accuracy or higher
computational cost, making them less suitable and practical
for real-life financial systems. As a consequence, the current
AML approaches can only prevent and detect a tiny fraction
of money laundering activities, leaving a huge gap between
the actual and the reported cases.

On a potentially positive note datasets such as Elliptic,
IBM AML, AMLSim [5], and AMLworld [2] have been
produced that build multi-agent virtual worlds, where some
of the agents are criminals with illicit income to launder.
These are a great addition to tackle data scarcity issues and to
advance AML research. Our empirical investigation suggests
that one possible solution to deal with noisy data could be
using the attention mechanism in the graph convolutional
kernel and controlling the message passing based on the type
of connection between these two parties and their (node)

2e.g., mappings of billions of edges between millions of entities.
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profiles. For labelled data scarcity, graph structural informa-
tion can help significantly boost the performance of an AML
model without much dependence on labels. On a similar note,
Schlichtkrull et al. [6] show that node features are important,
as domain knowledge of a node in a KG can be formulated
as node features for the graph model, and rich node features
are likely to boost the model performance. Our study found
that node features could be important attributes and rich node
features are likely to boost the model performance.

Inspired by the successes of recent graph-based approaches,
the potential of topological node features, and the draw-
backs of existing approaches, we employ semi-supervised
learning techniques on large transaction graphs to detect
money laundering. We hypothesize that similar to network
analysis that involves predictions over edges, nodes in
a transactional graph displaying distinct characteristics
from regular nodes can be classified as potential money
launders. Our semi-supervised learning approach involves
using topological node features and annotations from alerts
to embed graph nodes into a lower-dimensional vector space.
The embeddings, along with other features are then used
to train tree-based ensemble classifiers such as random
forest (RF), extreme gradient boosted trees (XGBoost), and
light gradient boosted machine (LightGBM) that predict the
suspiciousness of a target node in potential money laundering
activities based on its direct or indirect connections to nodes
that are known to be suspicious. The overall contributions of
this paper can be summarized as follows:

« We address a globally challenging economic concern
- money laundering with a view to its criticality and
importance towards deploying scalable and robust AML
models into real financial systems.

o« We employ state-of-the-art (SOTA) semi-supervised
learning techniques on transaction graphs, where
both spatial and temporal information, together with

VOLUME 12, 2024
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FIGURE 3. General workflow of rule-based suspicious activities reports (SARs) alerting.

topological graph node features, are modelled by
combining the power of graph-based representation
learning and tree-based ensemble models. Overall, our
approach, to the best of our knowledge, is a ““first-of-its-
kind” approach in which both pipeline and end-to-end
approaches are considered.

« Unlike existing approaches that evaluated their studies
on a limited number of datasets, our approach considers
evaluating the AML capability on several real and
synthetic datasets, including AMLSim, Elliptic, IBM
AML, and SynthAML, with a view to scalability and
efficiency.

o We provide comprehensive evaluations of our approach,
both quantitative and qualitatively.

« To improve the interpretability, we provide global (e.g.,
what factors contribute more in money laundering
scenarios) and local (e.g., how money gets laundered
between nodes) explanations.

o We provide guidelines on how an AML model can
be deployed and integrated into real financial systems
such as banks. Besides, we provide several outlooks
for network security and financial crime analysts if
they could employ semi-supervised graph learning on
large-scale transaction graphs for effective identification
of potential money laundering cases.

o We are in the process of making available Python note-
books and codes® that will help researchers reproduce
the result interactively or extend the implementation by
changing the network architectures or customising their
datasets.

The rest of the paper is structured as follows: Section II
critically reviews some related works. Section III describes
our proposed approach in detail. Section IV reports some
experiment results, including a comparative analysis with
baseline models. Section V summarizes this research with
potential limitations and points to some possible outlooks
before concluding the paper.

Il. RELATED WORK
Numerous approaches have been proposed to accurately iden-
tify money-laundering activities [7]. One of the earliest and

3GitHub: https://github.com/rezacsedu/graph_based_aml
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most common money laundering methods includes the rule
engine and the decision tree-based models and predominantly
relied on rule-based classification, as shown in fig. 3. Another
earlier approach to AML employs transaction monitoring
systems that use predominantly rules-based thresholding
protocols that are tuned to the volume and velocity of
transactions and employ tiered escalation procedures. Rules
are a set of logical expressions designed by human domain
experts to target a particular fraud problem. Rajput et al. [8]
developed an ontology-based expert system to detect suspi-
cious transactions. Although rules are efficient for simple
fraud detection, they are inefficient and do not scale in
complicated fraud or unknown fraud cases — especially for
large-scale graphs involving many nodes. Moreover, rule-
based algorithms are easy to evade by fraudsters or weak
against adversarial attacks [7].

Other approaches from a graph of money transfers between
accounts use a variety of methods ranging from simple
logistic regression (LR), support vector machines (SVM),
RF, and multilayer perceptron (MLP) to more sophisticated
approaches based on GNNs [9]. Several approaches consider
structural and behavioural dynamics of dense subgraph
detection [4], [7], [10]. Michalak and Korczak [10] used
fuzzy matching to capture subgraphs that are more likely to
contain suspicious accounts involved in fraudulent activities.
The approach proposed by Soltani et al. [4] finds structural
similarity-based pairs of transactions with common attributes
and behaviours that potentially involve money laundering.

Money laundering often involves high-volume flows of
funds through chains of bank accounts between entities [7].
From a transaction graph, many existing approaches, there-
fore, attempted to detect money laundering by employing
structural and behavioural dynamics of dense subgraph
detection. However, they do not take into consideration the
high-volume flows of funds across bank accounts. Some
other approaches tried to assess if the capital flow is
involved in money laundering activities using radial basis
function (RBF) [7]. However, methods that do not perform
flow tracking may yield lower detection accuracy and
cannot provide theoretical guarantees. The reason is that the
flow across multiple nodes is important for accuracy and
robustness against camouflage in money laundering activ-
ities [11]. Some recent approaches model the transactions
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in the form of multipartite graphs to detect the complete
flow of money from source to destination in an unsupervised
manner. FlowScope [7] is a recent flow-based approach,
which attempted to detect money laundering behaviour by
identifying the chains of transactions w.r.t flows.

Graph analytics techniques offer powerful representations
for financial transaction data, whereas graph-based data
representations resemble the connectivity of underlying data
objects. Graphs offer powerful representations for financial
transaction data, whereas graph-based data representations
resemble the connectivity of the underlying data objects.
Unlike approaches that consider structural and behavioural
dynamics of dense subgraphs, graph-based approaches,
such as graph neural networks (GNNs) [9] have benefited
from their representation learning capabilities (e.g., graph
embedding (GE) techniques) from additional graph features.
GNNs take into account both the numerical attributes of
graph nodes as well as the edges connecting them explicitly.
This makes GNNs an effective means to extract complex
patterns of interactions between them as shown in fig. 4. This
can result in an additional accuracy lift incorporating graph
features into traditional ML models [6].

Graph convolutional networks (GCN) [9] are applied for
financial crime detection in transaction networks involving
money laundering detection [5], [12], phishing detection
on the Ethereum blockchain [13], detection of fraudulent
transactions [14], and for detecting patterns associated with
financial crimes [15]. In particular, in a recent study,
Altman et al. [2] have outlined that a lower illicit ratio
and a longer period of laundering patterns scenarios pose
greater challenges in terms of true detection of money
laundering because. They showed that GNN models can
recognize laundering patterns in extremely imbalanced multi-
graph datasets. Subsequently, graph analytics techniques on
graphs have emerged as an increasingly effective means for
AML. Another GNN architecture called graph substructure
network (GSN) [16] is proposed that can take advantage
of pre-calculated subgraph pattern counts to improve the
expressivity of GNNs. Further, since large transactional
graphs contain billions of nodes and edges, approaches like
GraphSAGE [17] and FastGCN [18] exhibit both efficiency
and scalability when it comes to graph representation learn-
ing [18]. Since transaction graphs are often large, scalability
is crucial. Therefore, recent approaches, e.g., FastGCN
achieved high accuracy on large benchmark datasets while
outperforming GCN and GraphSAGE by up to two orders of
magnitude [5].

In low-labelled data scenarios, unsupervised techniques
can learn low-dimensional representations of nodes by
leveraging graph structures and features. Semantic Web (SW)
technologies address data variety and offer a unifying data
model by which transaction data can be mapped in a graph
structure called knowledge graphs (KGs) [19]. A KG can be
defined as G = {E, R, T}, where G is a labelled and directed
multi-graph, and E, R, T are sets of entities, relations, and
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triples, respectively. A triple in G can be formalized as
(h,r,t) € T, where h € E is the head node, ¢ € E is the tail
node and r € R is the edge connecting & and ¢(i.e., relation r
holds between & and #) [20]. Nodes in a KG represent entities
and edges represent binary relations between entities. The
effectiveness of a GE model depends on its capability to learn
useful representations of the nodes that play a significant role
in any downstream learning tasks such as link prediction.

A GE technique aims to embed entities and relations in
a KG into a low-dimensional dense feature space while
preserving its properties [21]. GE models involve three steps:
entity and relation representation, scoring function definition,
and learning entity and relation representation [21]. Trans-
lation embedding methods, e.g., TransD and TransE [22]
create embeddings by representing relations as translations
from a head entity to a tail entity [23]. Embeddings are
optimized w.r.t proximity measure 2 @ r ~ ¢ to preserve the
relationship in the graph. The resulting embeddings of entities
and relations provide denser representations of the domain,
making them suitable for a variety of downstream tasks.
However, most translation embedding methods have limited
capacity in modelling complex relations [22]. To address
these shortcomings, GraphSAGE [17] is proposed, which
learns embeddings of unlabeled nodes by utilizing the
graph structure and node features. GraphSAGE can extract
embeddings of unseen nodes without requiring retraining.
Unlike Node2Vec which learns a lookup table of node
embeddings, GraphSAGE learns a function that generates
embeddings by sampling and aggregating attributes from
each node’s local neighbourhood and combining those with
node’s attributes [17].

Transaction graph data often have a complex temporal
dependency, where historical transactions have an impact
on current transactions, e.g., transactions have complex
spatial correlation [24]. However, the majority of GE models
take into consideration only spatial information thereby
ignoring temporal information, even though each transaction
has an associated timestamp. Spatio-temporal variants of
GNN [25] are employed in several applications starting
from predictive learning in urban computing [26] to money
laundering fraud detection [24]. EvolveGCN [27] is proposed
to extract node embeddings by integrating both spatial and
temporal information. EvolveGCN uses a recurrent neural
network (RNN) to evolve the parameters of GCN along the
temporal axis, providing flexibility for modelling temporal
data without relying on node embeddings.

Attention-based architectures that are employed by lever-
aging attention mechanisms also show potential when dealing
with arbitrarily structured graphs. Following a self-attention
strategy, hidden representations of each node in the graph
are computed by attending to its neighbours. One particular
approach is called dynamic graph transformer (DGT) [28].
It consists of two modules: fansformer module that captures
cross-domain knowledge using attention mechanism, and the
pooling that generates informative node embeddings using
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the final attention layer. Further, attention architectures have
several interesting properties. For example, the attention
mechanism is efficient as it is parallelizable across node-
neighbour pairs, it can be applied to graph nodes having
different degrees by specifying arbitrary weights to the
neighbours, and the underlying model can be applied to
inductive learning problems [2]. Further, attention-based
approaches are generalizable to unseen graphs. Subsequently,
they are for node classification [2].

ill. METHODS

We employ semi-supervised graph learning techniques on
transaction graphs to identify nodes involved in potential
money laundering. We employ both pipeline and end-fo-
end approaches as outlined in fig. 5 and fig. 6, respectively.
In the pipeline setting, an embedding model is first trained
to generate node embeddings that are used, along with
additional node features, to train binary classifiers along
with other local graph features. For the latter, the node
classification is performed in an end-to-end setting, without
having to train a classifier.

A. PROBLEM FORMULATION
We employ semi-supervised learning that uses annota-
tions from alert data and embeds graph nodes into a
lower-dimensional vector space, which are used to train a
binary classifier to predict the suspiciousness of a node w.r.t
its direct or indirect connections to nodes that are known to be
suspicious. To apply semi-supervised learning, we randomly
remove a certain percentage of nodes from the graph along
with all edges connected to them. Next, we train a GE model
on the remaining sub-graph. During inference, we generate
embeddings for the removed nodes using the trained GE
model that is used to predict the labels of the held-out nodes
once they are re-inserted back into the network.

Let a graph G = (V, E) where V represents accounts and
E represents transfers. We split V into three sets: X and Y,
which contain the outer accounts with net transfers into and
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out of the bank, respectively, and W, which contains the inner
accounts of the bank. For any v;, v; € V where (i,)) € E, ¢;;
denotes the amount of money transferred from account v; to
vj. Given this setup, we can represent a directed KG as a set
of triplet facts (h, r, t) € F such that G = (V, E, F) denotes
alink r € R from the head 7 € V to the tail € V. Let I" be
the embedding model that maps each node v; of the graph to a
vector v; € R9, where d is the dimension of the embeddings
and N is the number of nodes. This embedding I" captures
the information of the graph and is used to generate a set of
vectors V for all nodes. It is to be noted that depending on the
embedding method I" and embedding dimension, different
embedding vectors can be generated for the entities. The task
is then training a classifier f on V to predict if a node is of
suspiciousness, where the prediction y; for embedding vector
v; for the i node can be defined as follows:

N - 1, if flagged, e.g., SAR or illicit

Yi=foi) = [O, other%gise. : M
B. GENERATING DIRECTED GRAPHS
We generate a directed transactional graph from transactions,
alerts (e.g., transactions containing flags SARs/illicitness),
and party datasets, followed by preprocessing and encoding
categorical features. Then, we generate nodes and edges that
are used to form a directed graph. Finally, we annotate the
nodes with alert datasets or additional features (i.e., labelled
SARs indicating whether a node was involved in any of the
known money laundering schemes or illicit).

C. GRAPH EMBEDDINGS

Since ML classifiers require fixed-length vectors as input,
we employ different unsupervised graph representation learn-
ing techniques such as Node2vec, Attri2Vec, GraphSAGE,
and DGT models to generate node embeddings. They
represent the neighbourhood of a node and their relations to
the neighbouring nodes. Using Node2Vec, a corpus of text C
is generated by performing uniform random walks starting
from each entity in the graph [29]. Then, C of edge-labelled

50017



IEEE Access

M. R. Karim et al.: Scalable Semi-Supervised Graph Learning Techniques for AML

Transaction datasets Directed transaction graph

Alerts

)

Transactions

" Training graph
embedding model

Edges

Accounts

Nodes

Node embeddings

0.5546
-0.6132
0.8691
07128
-0.8579
0.8933
0.8635
-0.9268
0.7753

Node classification

| Tree-ensemble classifier (e.g., XGBoost)

FIGURE 5. Workflow of pipeline methods for identifying money laundering nodes.

random walks are used as the input for learning embeddings
of each node using skip-gram (SG)-based Word2vec [30]
model. From a given a sequence of facts (wy, wp, ..., wy) €
C, SG aims to maximize the average log probability L,
according to the context within the fixed-size window [30]:

1 N
Ly=x2 2. logp(wuglw), @

n=1 —c<j<c,j#0

where ¢ is a context. Negative sampling is used to set
p (wn+j|wn) by replacing logp (wo|wy) with a function to
discriminate the target (w,) and by drawing & words from a
noise distribution P, (w) as follows [30]:

k
logo (V:J_val) + Z]Ew,- ~P(w) [loga (—vg,';vw,)] . (3
i=1

The embedding of a concept ¢ occurring in corpus
C is the vector Vg in eq. (3) derived by maximizing
eq. (2). Both Word2vec and Node2Vec algorithms follow
a 2-step representation learning technique. Step 1 involves
the use of second-order random walks to generate sentences
from a graph, where a sentence is a list of node IDs.
A corpus (the set of all sentences) is then used to learn
an embedding vector for each node in step 2. Each node
ID is considered a unique token in a dictionary having a
size of number of nodes N in G. Attri2Vec [31] is trained
to learn node representations with non-linear mapping on
node content attributes. To capture structural similarity in
learned node representations, Attri2Vec employs DeepWalk
to make nodes sharing similar random walk context nodes
represented closely in the subspace. For each (target, context)
node pair (v;, vj) from random walks, Attri2Vec learns the
representation v; for the target node v; by using it to predict
the existence of context node v; using a three-layer network.
The representation of a node v; in the hidden layer is obtained
by multiplying its raw feature vector in the input layer with
the input-to-hidden weight matrix W, [31].

For a large set of ““positive” (target, context) node pairs
from random walks and an equally large set of ‘“‘negative”
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node pairs randomly selected from G according to a certain
distribution, GraphSAGE learns a binary classifier that
predicts whether arbitrary node pairs are likely to co-occur
in a random walk on graph [17]. GE models we consider so
far take into consideration only spatial/structural information,
thereby ignoring temporal information. We learn knowledge
from such a dynamic graph, with the hypothesis that the AML
could benefit from it since DGT can capture both spatial and
temporal information simultaneously [28].

Let node v{ and v} be involved in a transfer at time 7,
where their common connections had multiple transactions
in previous timestamps. This temporal relation can be
modelled as |~ — u™" and u| ™% — u, 2. To extract spatial-
temporal knowledge, node encodings are aggregated within
a substructure node set into node embeddings. Attention is
applied to exchange information across nodes. An attention
layer is represented as [28]:

DOKROT
H? = att (H(l*”) = softmax (QT) v @)

where H? and H!~D is the output embedding for the /
and (I — 1) layer, respectively; d is the dimension of
node embedding, att signifies the self-attention operation;
QW KD v ¢ REGE2DIxd are query-, key-, and value
matrices for feature transformation and information exchange
represented as [28]:

Q" = HI-DW?,

K" = HI-DwW), o)
D _ gt-Dywd

v — H( )WV ,

where Wg), W%), W(é) € R¥*4 gre the learnable parameter
matrices of the /-th attention layer. In an attention layer,
Q" and K® calculate the contributions of different nodes’
embeddings, while VO projects the input into a new feature
space that is combined as of eq. (4) to acquire the output
embedding of each node by aggregating the information of
all nodes adaptively [28]. Input to transformer H® represents

an encoding matrix of the target edge X (e{gt) by setting

VOLUME 12, 2024
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FIGURE 6. Workflow of end-to-end approach based on GCN for identifying money laundering nodes.

d = denc. The output of the final attention layer H®) is
extracted as the output node embedding matrix Z, where each
row represents a node embedding vector.

D. COMPUTING GLOBAL TOPOLOGICAL FEATURES

Global topological features in a directed graph such as
shortest paths, centrality, communities, in-flow/out-flow,
and triangle counts may provide useful signals, especially
communities within a graph, where suspicious parties within
the same community might be more likely to be globally
suspicious too. Such features may help ML models perform
better in financial crime detection. We employ the Dijkstra
shortest-path algorithm as the means to calculate how close
is a party of interest to a party that has exhibited suspicious
behaviour in the past. For a directed graph G, the shortest path
from a node u to another node v is computed as [32]:

d(u) = min d)+ w(u, v), (6)
veNT(u)

where d(u) is the shortest distance from the source node to
node u, NT(u) is the set of out-neighbors of node u, and
w(u, v) is the weight of the edge from node u to node v.
We employ the PageRank as the centrality algorithm which
measures the influence of a specific graph node on other
nodes. We hypothesize that page ranks of individual nodes
can be a useful feature for the classifiers — especially when
combined with the information if the influential parties were
known to be suspicious for known or past money laundering.

For a directed graph G, the PageRank of a node is
calculated as the probability of a random surfer landing on
that node after following a series of links [33]:

PR(v)
k!

PR(u) = % +d , (7

veN ~(u)
where PR(u) is the PageRank of node u, d is the damping
factor, N is the number of nodes in the graph, N (u) is the
set of in-neighbors of u, and ;' is the out-degree of node v.
We employ weakly connected components (WCCs) for the
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community detection. WCss are used to determine groups of
nodes sharing common characteristics or heavily interacting
with each other within G. The set of WCCs for G is computed
as [32]:

WCC(G)=CCV(G) | Yu,ve C,u~»vVvVv~u, (8)

where WCC(G) is the set of WCCs and V(G) is the set
of vertices for G, and u ~- v signify the existence of
directed path from u to v. The underlying properties of a
community such as its size, the number of transactions within
the community, how many parties within the community have
had an SAR filed on them, and who are the most influential
parties within the community are calculated as additional
features for the classifiers.

In a directed graph G, a triangle is formed by a directed
cycle of length three, and each vertex in the cycle has a
reciprocal edge with another vertex in the cycle. Triangles
can help detect anomalies or outliers in G, e.g., if a node has
a much higher or lower triangle count than its neighbours,
it might indicate that it is behaving abnormally or differently
from the rest G [34]:

1
TG =3 2, T, ©)

ueV(G)

where T'(G) is the total number of triangles in G, V(G) is the
set of vertices, and T'(u) is the number of triangles that pass
through vertex u. Term 7 () in the above formula is calculated
as follows [34]:

Tw= > d7w).

veN*(u)

(10)

where N1 (u) is the set of out-neighbors of u and d < (v) is the
number of reciprocal edges incident to v.

E. TRAINING OF CLASSIFIERS
We train RF, LightGBM, and XGBoost ensemble models on
learned embeddings. Internal nodes in a decision tree (DT)
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represent feature values w.r.t boolean conditions and leaf
nodes represent predicted labels. From a set of embedding
vectors V, a DT iteratively splits X* into multiple subsets
w.r.t to threshold values of features at each node until each
subset contains instances from one class only. Each branch
in a DT represents a possible outcome, where the interaction
between prediction ¥ and feature X} is 7 = f (x}) =
>V, ¢l {X7 € Rj}, Ry is the subset of the data representing
the combination of rules at each node, and /{.} is an identity
function [35].

In the case of tree ensemble models, the prediction function
f(x*) is the sum of individual feature contributions plus
the average contribution for the initial node for the dataset
and K possible class labels that change along the prediction
path w.r.t objective function (e.g., gini impurity or entropy)
causing the split [35]:

M
FG) = e + Do (x. k), (11)
k=1
where cpy is the average of the entire training set X
dataset (initial node), M is the total number of features.
For graph-based node classification, which is technically
predicting the label of a node u at time ¢, we follow
the usual training procedures for EvolveGCN [27] and
FastGCN [18], followed by the standard GCN-like approach:
the activation function of the last graph convolution layer
is set to sigmoid so that /! is a probability vector over two
probable classes (i.e., licit and illicit).

IV. EXPERIMENTS
In this section, we report our evaluation results.

A. DATASETS
We evaluated our approach on four datasets: AMLSim,
Elliptic, IBM AML, and SynthAML [36]. The IBM AML is
a synthetic financial transaction dataset generated using an
agent-based generator, followed by calibrated to match real
transactions as closely as possible. This dataset has 6 versions
that are divided into two groups of three: i) group HI has a
relatively higher illicit ratio, and ii) group LI has a relatively
lower illicit ratio. Both HI and LI internally have three sets
of data: small, medium, and large. All these datasets are
independent, e.g. the small datasets are not a subset of the
medium ones. For our study, only the HI-medium version
is used with a focus on node classification (given it has
higher illicit ratios), leaving the LI version for future study.
The SynthAML is also a synthetic dataset for benchmarking
statistical and machine learning (ML) methods for AML.
It employs Synthetic Data Vault (SDV) to tune a probabilistic
model with real data from Danish bank Spar Nord with
approx. 440,000 clients.

SynthAML contains 20,000 AML alerts and over 16 mil-
lion transactions in two tables. The alert dataset has an alert
ID, the date the alert was raised, and the outcome of the alert.*

4i.e. if the alert was reported to the authorities or dismissed.
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Each transaction has four features: i) a transaction timestamp,
ii) the transaction entry (credit vs. debit), iii) the transaction
type (card, cash, international, or wire), and iv) the transaction
size (measured in log Danske Kroner and standardized to
have zero mean and unit variance). The AMLSim dataset,
which is generated with a multi-agent simulation platform is
tailored for an AML problem. Each agent behaves as a bank
account transferring money to other agent accounts in which a
few agents conduct nefarious activity modelled on real-world
patterns. We generate a dynamic directed transaction graph
containing semi-realistic suspicious activities, based on the
following information and graph generation process:

« Accounts: whose transactions are monitored.

o Alerts: transactions that are frequently or periodically
monitored and triggered alerts (illicit or SARs) accord-
ing to AML guidelines.

o Transactions: list of all transactions (both normal and
SARs) including sender and receiver accounts.

Each node represents an account that has an account
number, account type, owner name, and date/time created.
Nodes are designated with cash in, cash out, debit,
payment, transfer or deposit activities and are of
either organization or individual types. Each edge has a
transaction ID, amount, and timestamp. Data is sparsely
labelled with flagged transactions (e.g., transactions that vio-
late volume and velocity rules) and SARs (e.g., transactions
that are confirmed for suspiciousness). Elliptic dataset® is
a graph network of Bitcoin transactions with handcrafted
features constructed using publicly available information.
This anonymized data set is a transaction graph collected
from the Bitcoin blockchain. The dataset maps Bitcoin
transactions to real entities in two categories: licit and
illicit [37]:

« Licit: licit transactions contain usual exchanges, wallet

providers, miners, licit services, etc.

o Illicit: illicit transactions contain scams, malware,

terrorists, ransomware, Ponzi schemes, etc.

The graph contains 203,769 node transactions and 234,355
directed edge payments flow out of which 2% are illicit and
21% are licit. The remaining 77% of samples are labelled as
unknown transactions. Each node has 166 features associated,
where the first 94 features represent local information (i.e.,
time-step, number of inputs/outputs, transaction fee, output
volume and aggregated figures, e.g., average BTC received
and spent by inputs and outputs, the average number
of incoming and outgoing transactions). The remaining
72 features represent aggregated features that are obtained
using one-hop backwards/forwards transaction information
from the centre node (i.e., min/max standard deviation
and correlation coefficients of neighbour transactions w.r.t
number of inputs/outputs, transaction fee, etc.). Time steps
are associated with each node, representing an estimated time
when the transaction is confirmed. 49 timesteps are evenly
spaced with an interval of 2 weeks.

5 https://www.kaggle.com/datasets/ellipticco/elliptic-data-set
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Using the SynthAML dataset, we generate a directed
transaction graph similar to the AMLSim dataset. Then,
similar to Jensen et al. [36], we focus on node classification
based on synthetic data only, where we classify alerts based
on their outcomes. As for the training set, alerts raised
between January 1, 2020 and December 31, 2020, were
used. As for the test set, we used alerts raised between
January 1, 2021 and December 31, 2021. However, unlike
using statistical graph features like min, mean, median, max,
standard deviation, counts, and sum per transaction type and
entry for all transactions associated with each alert, which
yields as many as 7 x 2 x 4 = 56 features per alert. As for
the IBM AML dataset, we split the transaction indices after
ordering them w.r.t their timestamps similar to [2], where
the data split is defined by two timestamps: #; and #,. Train
set includes transactions before time #;, the validation set
includes transactions between times #; and t,, and the test
set includes transactions after #,. These yield three dynamic
graphs at times #1, t2, and 13 = fmax.

B. EXPERIMENT SETTINGS

First, each dataset is subset chronologically for training,
validation, and testing (e.g., 60%, 20%, and 20% splits
or temporal splits w.r.t associated timestamp). As for the
pipeline methods, Node2Vec, Attri2Vec, GraphSAGE, and
DGT models are trained to generate node embeddings
that are used to train the classifiers.® As for the end-
to-end approach, SkipGCN [9], EvolveGCN [27], and
FastGCN [18]. SkipGCN and FastGCN are trained in batch
to reduce training costs through neighbourhood sampling,
while EvolveGCN is trained to capture the dynamism by
evolving GCN parameters using the AdaGrad optimizer with
varying learning rates and batch sizes. Schlichtkrull et al. [6]
show that if there are more than three convolutional layers,
node features will be over-smoothed, e.g., all the nodes
on the graph look similar. Inspired by this, we configured
GCN, FastGCN, and EvolveGCN to have three convolutional
layers. Further, since classes are imbalanced in both datasets,
we trained SkipGCN, FastGCN, and EvolveGCN using
weighted cross-entropy loss to provide higher importance to
minority class (i.e., illicit/SARs).

We used open-source StellarGraph library’ for computing
node embeddings, which is based on BiasesRandomWalk and
Word2Vec from the Gensim library. Attri2Vec was trained
using a skip-gram model with a window size of 5, a graph
walk depth of 5, and 500 walks per entity. DGT model was
trained® by varying the number of layers L between [1,5].
While generating graph-based features, the damping factor
for PageRank is set between [0.75 and 0.85]. For the sake
of semi-supervised learning, we randomly removed 10-20%
of the nodes from each experiment and trained the GE
models on the reduced sub-graph. We generated embeddings

5GitHub: https://github.com/rezacsedu/graph-based-aml
7https://github.com/stellargraph/stellargraph
8https:// github.com/yuetan031/TADDY _pytorch
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for the removed nodes using the trained GE model during
inference and used these embeddings to predict the labels of
the originally held-out nodes after re-inserting them back into
the network. Since our semi-supervised learning techniques
use both labelled and unlabeled data, a model can suffer
from overfitting, especially when the labelled data is scarce
or noisy, or when the unlabeled data is not representative
of the target distribution. To mitigate this, we employ two
strategies: aside from [/, 12, and dropout regularization,
we employ consistency regularization using Mean Teacher
which enforces the model to learn only smooth and robust
features during node embeddings. Second, we employ a
self-training technique to iteratively label the unlabeled data
using the model’s predictions, followed by adding the most
confident ones to the training set.

The open-source implementations were used to train the
RE? LightGBM,'? and XGBoost!! ensemble classifiers. The
best hyperparameters were selected via random search and
5-fold cross-validation settings. We evaluated the per-
formance of each trained classifier w.r.t area under the
precision-recall curve (AUPR), Matthews correlation coeffi-
cient (MCC), and F1 scores.

C. ANALYSIS OF NODE CLASSIFICATIONS

Table 1 summarizes the results of the prediction task based
on pipeline methods. As for the pipeline methods, the
combination of DGT and XGBoost outperforms all other
combinations across datasets. The results also reveal that
each classifier performs worse when trained on embeddings
generated by the Node2Vec and Attri2Vec models. Although
we observed slightly different results for the IBM AML
and SynthAML datasets, the overall trend is similar. When
our pipeline approach was tested on SynthAML [36] dataset,
it turned out that the best XGBoost classifiers significantly
outperformed their best classifiers RF and LightGBM,
showing an Fl-score of 0.726 against the same score of
0.64. Besides, the DGT + XGBoost slightly outperformed
the GNN-based models when tested on the IBM AML
HI-Medium version.

On the other hand, end-to-end methods outperform every
pipeline method, as marked in green in tables table 2 and 3.
The EvolveGCN model outperforms all pipeline methods
with tree-ensemble classifiers, indicating the effectiveness
of end-to-end methods compared to their pipeline counter-
parts. Moreover, EvolveGCN consistently outperforms both
Skip-GCN and FastGCN, although the improvement is not
very substantial.

When it comes to comparative analysis between pipeline
and end-to-end methods, the performance of GraphSAGE
and XGBoost is comparable to that of DGT 4+ XGBoost.
However, when local and global topological features were

9https ://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html/

10https://1ightgbm.readthedocs.i()/en/stable/
1 https://XGBoost.readthedocs.io/
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TABLE 1. Node classification results for pipeline methods.

AMLSim Elliptic IBM AML SynthAML
GE model Classifier AUPR F1 MCC | AUPR F1 MCC | AUPR F1 MCC | AUPR F1 MCC
RF 0.751 0.760  0.651 0.806 0.817  0.622 0.637 0.647  0.529 0.661 0.643  0.547
Node2Vec Light GBM 0.753 0.760  0.649 0.800 0.813  0.623 0.640 0.651  0.528 0.662 0.640 0.536
XGBoost 0.806 0.801  0.752 0.885 0.874 0.673 0.642 0.649  0.531 0.668 0.649  0.552
RF 0.775 0.782  0.669 0.821 0.832  0.665 0.647 0.656  0.546 0.668 0.641  0.545
Attri2Vec Light GBM 0.769 0.791  0.657 0.823 0.832  0.659 0.651 0.657  0.547 0.669 0.643  0.542
XGBoost 0.806 0.801  0.752 0.902 0.894 0.673 0.652 0.658  0.551 0.671 0.652  0.549
RF 0.802 0.804 0.675 0.891 0.882  0.778 0.667 0.668  0.567 0.683 0.692  0.563
GraphSAGE | LightGBM 0.794 0.809  0.685 0.883 0.874  0.750 0.669 0.671  0.568 0.682 0.688  0.557
XGBoost 0.815 0.816  0.701 0.912 0.905 0.782 0.669 0.671  0.569 0.694 0.687 0.576
RF 0.813 0.825  0.693 0.907 0.897  0.753 0.677 0.675  0.576 0.687 0.694  0.581
DGT Light GBM 0.805 0.811  0.677 0.894 0.862 0.733 0.679 0.680  0.579 0.689 0.691  0.585
XGBoost 0.833 0.832 0.715 0.918 0.915  0.792 0.683 0.684 0.582 0.712 0.713  0.593
XGBoost* 0.852 0.846  0.727 0.925 0.918  0.802 0.725 0.7014  0.623 0.727 0.726  0.618
XGBoost! 0.864 0.859  0.738 0.939 0.932 0.814 0.736 0.712 0.632 0.738 0.737  0.627

added along with node embeddings, we observed noticeable
improvements in pipeline methods that we discuss in
section IV-F.

D. ANALYSIS OF NODE EMBEDDINGS

One of the factors that we explored in our experiments was the
embedding dimension, which is the number of features used
to represent each node in the graph. We tested different values
of d for each GE model, ranging from 32, 64, 128, 256, 300.
We then visualized the node embeddings in a low dimensional
space using t-SNE, as shown in fig. 7. The plots reveal that
there are clear differences between the embeddings of normal
and illicit classes, meaning that the embeddings capture
some information that can help identify fraudulent or SAR
accounts/nodes. Moreover, we observe that the embeddings
generated by GraphSAGE and DGT models are more
clustered and separated than those produced by Node2Vec
and Attrib2Vec models. This indicates that GraphSAGE
and DGT models learn more meaningful and discriminative
representations of the nodes, which can benefit a classifier in
detecting fraud and nodes.

E. EFFECTS OF TEMPORAL INFORMATION

In table 1, we present the results of applying the XGBoost
model on all datasets. We compare the performance of the
XGBoost model when it uses different types of node features
as input. We show that the performance of the XGBoost
model is improved when it uses the temporal information
that is learned by the DGT model, which is highlighted in
grey in the table. This indicates that the DGT model can
capture the temporal dynamics of the graph and generate
more informative and discriminative features for the nodes.
The XGBoost model that uses the DGT features outperforms
other pipeline methods that use static or semi-static features,
such as Node2Vec, Attrib2Vec, or GraphSAGE.

We also observe that the combination of GraphSAGE
and XGBoost model achieves the best performance on the
Elliptic dataset, which suggests that the GraphSAGE model
can leverage the node attributes and the graph structure to
generate more expressive and relevant features for the nodes.
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We attribute the success of these dynamic models to the fact
that the input features contain useful information about the
nodes and their relationships and that the transformers can
learn more abstract and higher-level features that are crucial
for distinguishing between normal and illicit nodes. These
results also demonstrate that the representation learning
capability of these models is dependent on the quality of
the input features and that the learned representations are
reflected in the classification outcomes.

F. ANALYSIS OF COMBINED FEATURES’ EFFECTS

In this section, we analyse how the node embeddings obtained
from different models can be combined with other types
of features to enhance the node classification performance.
Pareja et al [27] showed that adding aggregated information
to the original inputs, such as the node degree or the node
label, can improve the F1 scores for anomaly detection
tasks. Motivated by this idea, we experimented with different
combinations of node embeddings, local node features,
global topological features, and original input space, and
we retrained individual classifiers on the extended feature
space. We show examples for the AMLSim dataset, where
we used the local node features and global topological
features. We compared the results with the baseline methods
that use only node embeddings or only original inputs as
features. Figure 8 illustrates the effects of combining node
embeddings and other features such as local graph features,
and topological graph features on all datasets: AMLSim,
Elliptic, IBM AML, and SynthAML.

We can observe that adding local node features and
global topological features to the node embeddings could
help slightly increase the classification accuracy, making it
similar to end-to-end methods that use graph neural networks.
Specifically, we can see that the node classification accuracy
with the DGT embeddings + local graph features + XGBoost
combination improved (marked in light orange in table 1
and fig. 8a) by 1 to 2% for all datasets compared to the
baseline methods. The node classification accuracy further
improved by 1.5% for all datasets with the most impactful
features (among DGT embeddings, local node features, and
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TABLE 2. Node classification results in end-to-end settings: AMLSim and Elliptic datasets.

AMLSim Elliptic
Model AUPR F1 MCC AUPR F1 MCC
Skip-GCN | 0.834 (0.792) 0.915 (0.875) 0.881 (0.763) | 0.928 (0.793) 0.916 (0.873) _ 0.854 (0.763)
FastGCON | 0.841 (0.804)  0.927 (0.890)  0.903 (0.781) | 0.933 (0.805) 0.925 (0.881)  0.875 (0.781)
EvolveGCN | 0.869 (0.813)  0.934 (0.902)  0.891 (0.773) | 0.941 (0.813)  0.934 (0.891)  0.891 (0.773)
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FIGURE 7. t-SNE projection of the node embeddings for the AMLSim dataset into lower dimensional space.

topological features) + XGBoost combination (marked in
green in table 1 and fig. 8b), making the node classification
results comparable to EvolveGCN, which is the SOTA
method for dynamic graphs. These findings suggest that the
node embeddings learned by the dynamic models can be
enriched by incorporating other features that capture the local
and global properties of the nodes and that the extended
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feature space can help the classifiers distinguish between
normal and illicit nodes more effectively.

We also observed for the IBM AML and SynthAML
datasets that the encapsulation of node embeddings with
the additional node features and full feature space, helped
the pipeline methods outperform their end-to-end coun-
terparts. Even though the micro averages for all pipeline
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TABLE 3. Node classification results in end-to-end settings: for IBM AML
and SynthAML datasets.

IBM AML SynthAML
Model AUPR F1 MCC | AUPR F1 MCC
Skip-GCN 0.663 0.664 0.562 0.685 0.677  0.562
FastGCN 0.675 0.678  0.595 0.705 0.692  0.583
EvolveGCN 0.695 0.698  0.615 0.726 0.727  0.675

approaches are above 0.93, they are not very informative for
highly imbalanced datasets. Nevertheless, in financial crime
forensics, the minority illicit class is of primary interest.
Therefore, we report the minority F1 scores for all datasets
we experimented with.

G. EXPLAINING MONEY LAUNDERING

The black-box nature of a GNN or GE model'? may raise
concerns about transparency and accountability when an
AML model is deployed in a real financial system. The
latent factors learned by a GNN or GE model are not easily
interpretable. Thus, predictions made by such a complex
model cannot be traced back, making it unclear how or why
they arrived at a certain outcome [19], [38]. On the other hand,
disentangling them can provide insights into what features
were captured by the representations and relevant for the
tasks [19].

Explainable artificial intelligence (XAI) aims to make
Al systems more transparent and understandable to humans
by interpreting how black-box models should make deci-
sions [19]. An interpretable AML model can reveal the
factors that impact (e.g., statistically significant features)
its outcomes and explain the interactions among them [19],
[39]. Thus, an interpretable ML model that emphasizes
transparency and traceability of its logic can explain why
and how it arrived at certain decisions, reducing negative
consequences. In the context of our anti-money laundering
scenario, local interpretability can provide reasons for a
decision made for a specific party or reference to similar
cases, allowing the identification of unique characteristics of

12Complex ensemble or DNN models oftentimes tend to be less and less
interpretable and may end up as black-box methods.
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a party or multiple parties in a small group like communities.
In contrast, global interpretability could show the overall
behaviour of an AML model at a high level. While local
explanations focus on explaining individual predictions,
global explanations explain entire model behaviour.

A transaction graph can be viewed as the discrete symbolic
representation of knowledge about different types of trans-
actions. Therefore, we employed graph-based explanation
techniques such as GNNExplainer [40] and SHAP to
compute the contributions of the neighbouring node types
and edges when predicting the suspiciousness or involvement
of a targeted node/party with money laundering. To provide
local explainability, we highlighted some nodes that are
flagged with ““alert types” such as gather scattered,
scattered gather, and cycles for the AMLSim
dataset in fig. 9.

As shown in fig. 9a, ttgather scattered is when launder-
ers (node in colour) collect small amounts of cash from
various sources'? and deposit them into a single account
or location. This reduces the risk of detection by avoiding
large cash transactions that may raise suspicion. As shown
in fig. 9b, ttscatter gathered is when launderers (node in
colour) transfer the gathered money into multiple accounts
across countries or jurisdictions (e.g., offshore accounts,
shell companies, or foreign investments). This increases the
complexity and anonymity of the money trail, making it
harder to follow and recover. As shown in fig. 9c, ttcycles
is when launderers (node in colour) repeat the process
of gathering and scattering money multiple times, using
multiple intermediaries involving different currencies.'* This
further obscures the origin and destination of the money and
creates layers of transactions that can confuse or mislead
investigators. The feature impact plot for the XGBoost
classifier is depicted in fig. 10, showing which features
contributed most.

13 aunderers may gather scattered cash from human trafficking, drugs
sales, or tax evasion and deposit into a bank account.

14They may cycle money through various banks or individuals using wire
transfers or cryptocurrencies.
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FIGURE 9. Different (alter) types of transactions in the AMLSim graph.

As shown, node embeddings, followed by other derived
and global topological features for individual nodes such
as the shortest path to a node known as SAR, triangle
counts, number of communities a node part of, central-
ity score, PageRank (learned from centrality measures),
indegree, outdegree, account type (i.e., individual/private or
organizational), transaction type (e.g., cash in/out, transfer,
debit, parent, deposit), and amount (e.g., amount in $), are
more important than local graph features. It is to be noted
that some features such as account number, owner name,
transaction ID, etc. are excluded from the original feature

space as they do not carry meaningful information for GE or
a classifier.
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H. AML MODELS IN REAL FINANCIAL SYSTEMS

Since financial fraudulent activities are getting rampant,
financial institutions should deploy accurate and robust
AML models to satisfy the regulators. Such AML models
are expected to exhibit fewer false positives (e.g., alerts
that eventually turn into real money laundering) and fewer
false negatives (e.g., real money laundering cases that
were not detected). False positives are more critical since
inaccurate detection will tend human experts to flag too many
transactions as illicit, leading to higher human investigation
costs (ref. fig. 3). Further, deploying and inferencing money
laundering in real-time based on large-scale transaction
graphs could be very challenging for many reasons. For
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f(x) = 3.57
[0.55, ..., -0.35] = embeddings
0.75 = page_rank

2.25 = traingle_count

1.55 = shortest_path

3.56 = centrality_score

2,453 = amount

1.05 = num_of_communities
15.0 = out_degree

1.0 = account_type

2.0 =in_degree

3.0 = transaction_type

125 other features

35 40

E[f(x)] = 3.65

T T T

4.5 5.0 55

FIGURE 10. Explaining a money laundering example for the AMLSim dataset using the SHAP waterfall plot for the
XGBoost classifier. The bottom starts as the expected output value; each row shows how the positive (red) or

negative (blue) contribution of individual features pushes the value from the expected output over the training set to
model output. Assuming the true class label is illicit, the positive values imply probabilities of > 0.4 that the party is truly

involved in money laundering.

example, criminals often mask the true nature of their
transactions using complicated account layering or multi-
hop transactions. This makes the identification of money
laundering a complex problem.

The more trainable parameters an AML model will have,
the larger its size will be, making the deployment infeasible
for devices with limited memory and computing, e.g., IoT
devices [38]. Additionally, since real-time graph updating is
a heavy operation in most cases, deploying large models even
on cloud infra can lead to poor response times due to network
latency. This is unacceptable for many real-time applications
like our money laundering scenario [19]. One potential
solution is employing real-time prediction in batches to
reduce the overhead. Further, for a financial system, the
simpler the AML model the better from an operational point
of view. However, the simple model might not be able to
capture all the useful signals and may not effectively capture
true money laundering. We would argue on selecting the best
model, which is efficient and light at the same time, yet yields
both lower false positives and false negatives. There should
be a balance between selecting the best model regarding
its effectiveness for AML and its underlying deployment
infrastructure.
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Nevertheless, since pipeline methods involving GE and
classification take considerably longer time than their end-
to-end counterparts, our empirical study recommends that
the end-to-end approach to AML may be more efficient in
terms of accuracy and computation time. Based on these
considerations, integrating an end-to-end AML model into a
real financial system would be more convenient. Moreover,
scalable model deployment and inferencing pipeline backed
by GPU support ensure faster inferencing in a real-time
setting.

V. CONCLUSION AND OUTLOOK

In this paper, we employ semi-supervised graph learning
techniques on financial transaction graphs to detect potential
money laundering activities, involving gather scattered, scat-
ter gathered, and cycles. We trained Node2Vec, Attri2Vec,
GraphSAGE, and DGT embedding models to embed graph
nodes into a lower dimensional vector space. RF, XGBoost,
and LightGBM classifiers were then trained on embedding
space to predict the suspiciousness of a node being involved in
money laundering. Besides, we trained SkipGCN, FastGCN,
and EvolveGCN in the end-to-end setting for the same. Our
findings on several datasets show that graph analytics can be
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an effective means for identifying laundering transactions.
The representation learning power of GE and GNN-based
models applied to graphs tends to improve node classification
accuracy. Nevertheless, the global and local factors that we
identify can help highlight the predominant factors in money
laundering cases and elucidate the mechanisms of illicit fund
transfers between nodes to enhance the interpretability and
transparency of an AML model.

Even though combining embeddings with local and global
node features significantly boosted the performance of
pipeline methods, end-to-end methods consistently outper-
formed all pipeline methods, albeit the XGBoost model
benefited from temporal information captured by different
embedding models. Therefore, an end-to-end approach to
AML may not only be more efficient w.r.t accuracy and
computation time but also integrating an end-to-end AML
model into a financial system would be more convenient.
On the other hand, since graph analytics to AML is relatively
new research, leaving much room for improvements. First,
there are many other techniques employed by criminals to
hide their illicit funds. Therefore, it is crucial to have effective
AML laws and regulations, as well as vigilant and cooperative
authorities to combat this global problem. Second, our
semi-supervised learning approach to publicly available
data is less sensitive, hence there is no risk of exposing
sensitive information. However, similar to deep models
that are vulnerable to adversarial attacks, AML detection
mechanisms are susceptible to attacks too, e.g., an adversary
having access to a model could manipulate transactions to
trick the AML detection system into misclassifying illicit
transactions as licit [41].

Third, in real banking settings, money launderers may
take advantage of disclosing private transactions across
banks and splitting transferred amounts into intermediaries.
Differential privacy [42] could be a potential approach. Some
attacks can be prevented by not disclosing the data, > by using
cryptographic primitives, and by making available the model
to trusted authorities only. Nevertheless, research [4] has
outlined the incorporation of effective differentially private
graph topology and model-sharing techniques in distributed
banking settings. Further, a functional encryption schema
by leveraging similarity calculations is investigated [44] to
provide the financial authorities access to data in a federated
learning setting in banks. In such a setting, the vector size
would be as large as the number of accounts in the bank.
In contrast, using KGE methods that are compatible with new
privacy and data accessibility constraints, the size could be
reduced significantly.

In this regard, a variant of the fast random projection
described below could be a potential idea to obtain transac-
tion/edge embeddings:

1) Each node 7 in the subgraph and its direct neighbours

receives an initial random embedding e, ¢ from a public

15For example, what if attackers have access to the model to perform input
reconstruction or membership inference [43].
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hash function on the node, under the constraint that no
output is null.

2) For each node n in the subgraph, denoting N the set of
its direct neighbours, and w;_,; the amounts sent from
account i to account j (i.e., the weight on oriented edge
from i to j, for any nodes i, j, and setting that weight to
0 when the nodes are not connected), n receives a new
embedding: e, 1 := ZmeN em.0-Wm—sn (as for outgoing
transaction embeddings: e, | 1= ZmeN em.0 - Wnom)-

3) Vectors from step 2 are then normalized; each node
n in subgraph receives embedding: e, 3 H::.ﬁ’

where ||.||2 is the euclidean norm and e, j, is the
embedding (resp. e, out for outgoing transactions).

In future, we intend to introduce sophisticated attacks
on the model, followed by exploring defence strategies.
This will enable us to perform both inner-products and
similarity calculations on embedding vectors, e.g., o (n, m) =
(€nini €min) X {enouts emout) by comparing nodes n from
bank 1 and m from bank 2. In such a setting, nodes showing
high similarity values should be labelled as suspicious
accounts which might be part of the same money-laundering
network, having the bulk of their transactions from and to the
same neighbours.

Fourth, with the rapid development of a cashless
society engaged in global economic exchange, the advent
of cryptocurrency has catalyzed a paradigm shift in peer-
to-peer transactions and extranational financial governance.
Cryptocurrencies not only impose great challenges to
AML but also increase difficulty across cryptocurrency
types. Another challenge is temporal dynamics with the
emergence/disappearance of new entities in the blockchain.
Weber et al. [5] have shown that at timestep the market
may appear to follow Dark Market shutdown, where no
models (including EvolveGCN or DGT) would be able
to capture such high volatility and consequently may not
perform well.

Fifth, real-life data is more noisy and full of uncertain-
ties. Therefore, sophisticated methods need to be developed
to capture complex laundering patterns with extremely low
illicit ratios [2]. This could be the case for synthetic data
too, where even efficient AML models may face challenges
regarding true detection of money laundering in the presence
of lower illicit ratios and longer periods of laundering
patterns [2]. A concrete example outlined by Altman et al. [2]
is the LI version of the IBM ML dataset. Thus, we intend
to focus on such datasets as well, with a focus on node
classification.

Sixth, itis hard to initialise the node features. Therefore,
we would like to employ self-supervised pre-training for the
sake of feature initialisation. We believe that above mentioned
reactive and proactive measures would help improve both the
representation learning capability and adversarial robustness
of an AML model. Nevertheless, we hope the approach
presented in this paper will make non-trivial contributions
and give network security and financial crime analysis some
insights into how to employ semi-supervised graph learning
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on large-scale transaction graphs for effective identification
of potential money laundering cases.
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