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ABSTRACT Network Slicing is an enabler for new use cases and an improved network performance,
especially for 5G private networks, which opens new business opportunities for vendors and applications
for customers. On the other hand, the slicing mechanism adds another level of complexity to network
management that significantly increases total cost of ownership. Full automation is a must, which is also
evident in the standardization work on autonomous and zero-touch mobile networks under the umbrella of
3GPP and ITU organizations. Moreover, there is a clear methodological gap in research related to mobile
network slicing, i.e. capacity dimensioning and planning for such infrastructure. The concept of the network
modeling tool has been updated with an emphasis on adding functionality of mobile network capacity
dimensioning and planning, which is presented in this article. Data-driven framework with thoroughly
verified methods is outlined (e.g., Prophet, Neural Networks, VARMAX and its univariate equivalent -
ARMA). Special attention is paid to traffic forecasting as the basis for the dimensioning and planning process.
We evaluate how to use the framework as a scenario simulator to estimate the impact of traffic changes in
any slice on quality of service (namely throughput and delay) of all. Finally, we explain how this solution
realizes the concept of Digital Twin-based network simulator.

INDEX TERMS 5G mobile communication, autoregressive processes, capacity planning, digital twins,
network slicing, neural networks, quality of service.

I. INTRODUCTION
Wireless 5G technology with higher speeds, lower latency,
and higher availability (than 4G) enables new services with
stringent performance requirements, e.g., enhanced mobile
broadband, ultra-reliable, low-latency communications, and
massive machine-type communications [1]. Network Slicing
(NS) is a solution to manage these requirements and to
provide demandedQuality of Service (QoS). It is essentially a
network virtualization technique [2], which logically divides

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

physical network resources into logical network layers,
called slices. Resources can be dedicated to specific slices
in order to separate their traffic and/or to guarantee a certain
level of QoS, and can be shared between slices to increase the
efficiency of network utilization. Nokia Bell Labs estimates
that this addition of another level of complexity to network
management without automation will increase the total cost
of ownership of the network by 30% versus that of the initial
physical network [3]. On the other hand, full automation of
NS can lead to a 32% cost reduction.

With network growth, Communication Service Providers
(CSPs) have to regularly monitor and evaluate its capacity,
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and if that is declining, they perform a process of network
(re-)planning including capacity dimensioning [4]. The
dimensioning process is often done by vendor proprietary
tooling, based on underlying product capabilities and internal
know-how. It is also often done without any sophisticated
approach, but with the use of spreadsheets [5]. Furthermore,
this methodology is based on standard linear or queuing
models [6] that are adjusted and verified with network
simulations or laboratory tests. The impact of product
extensions, such as new or extended functionalities, is added
to the model as an additional linear block or coefficient,
and this approach may give inaccurate results with complex
deployments or the introduction of NS due to the effect of
multicollinearity [5].

On top of the issues with the dimensioning methodology
itself, there is an underlying concern that is related to its
inputs. To properly estimate required capacity, CSP or vendor
need to know what the traffic model would be, with the list
of services, their data volumes, and QoS requirements for
specific point in time in the future, e.g., from few weeks
to several months depending on the deployment plans. For
long-term planning, it is enough to take, e.g., CSP market
penetration plans, but not for short-term estimations or for
site specific scenario of time-variant wireless networks [1].
In this article, we evaluate possible data-driven models to

forecast slice level throughput and delay. The multivariate
approach is used to incorporate cell level specific radio
and traffic conditions and have accurate forecasts per
cell. We elaborate how such an approach can be used in
dimensioning and planning processes for natural network
evolution. Furthermore, we analyze how such approach can
be used in ‘‘what-if’’ analysis for over-natural traffic growth
scenarios, e.g., CSP plans to boost specific service usage or
new service creation plans. It is verified that modification of
traffic conditions in the model with simultaneous assumption
of unmodified environmental conditions provides statements
valid for throughput and delay processes observed in real-
world system, which proves that the proposed analog can
be used to explain and quantify that phenomena through
data-driven simulation of the sliced wireless networks.

Overall, this approach is a first step to a materialization of
the Digital Twin (DT) concept for communication networks.
According to definitions in the literature [7], our DT is a
virtual representation of a physical cell in the 5G base station.
Training DT with real data measured in each cell separately
creates dedicated/customized twins that can be used for
cell traffic and delay forecasting and also for performing
‘‘what-if’’ analysis. It can be also used in optimization system
suitable for recommendation of the capacity extensions, or for
slice planning related parameter settings.

The paper is organized as follows. Section II describes
research works that are related to 5G traffic forecasts,
NS dimensioning and planning, and Network Digital
Twin (NDT) concept. Section III explains the character-
istics of the real network data that have been used in
this research. Section IV elaborates the concept of using

the forecasting model as a simulator for desired/expected
scenarios. Section V describes the approaches to 5G data
modeling that have been studied. Section VI is the summary
of the results that have been achieved. Section VII concludes
this study.

II. RELATED WORKS
A. 5G TRAFFIC FORECASTING
Network traffic can be forecasted using the so-called offline
methods or online methods [8]. Offline methods collect
information about the entire time-series and then make
forecasts. Otherwise, online procedures learn only about a
particular data segment and sequentially update the model
parameters based on the revised data. Nowadays, plenty of
papers about the 5G network dimensioning refer to Machine
Learning (ML) methods. One of the most commonly used
ML techniques is neural networks with Long Short-Term
Memory (LSTM) units [8], [9], [10]. However, in the case
of LSTM-based neural networks, many authors decide to
make one-step-ahead forecast (i.e., prediction for the next
time step), which is impractical. The concepts behind the one-
step-ahead and multiple-step-ahead predictions are presented
in Fig. 1 in [11]. For more details about one- and multiple-
step-ahead forecasting, see [12] and [13]. Neural networks are
powerful technology used for a broad spectrum of problems.
Unfortunately, for the time-series forecasting problem, the
creation of the proper structure and training of the neural
network can be challenging. Some of the authors present
models that should be further developed to improve the
quality of forecasting.

The disadvantage of methods based on neural networks is
the inability to present probabilistic uncertainty quantifica-
tion [14]. The situation is different in the case of statistical
methods. The idea of forecasting traffic using time-series
models has been successfully used for several years - even
in the case of earlier generations of telecommunications
networks.

The most popular univariate time-series models for a
network traffic forecasting are: Autoregressive Integrated
Moving Average (ARIMA) models [15], [16], [17], [18] and
the Exponential Smoothing techniques (or their advanced
versions) [18], [19], [20]. Most papers utilizing time-series
models consider only the one-dimensional case. Some of
them mention the possibility of performing similar analyses
for multivariate data.

In recent years, one can find also techniques that are
based on time-series modeling and deep learning methods
at the same time. In this way, they can exploit the
strengths of both approaches. The authors of [21] introduce
Thresholded Exponential Smoothing and Recurrent Neural
Network (TES-RNN), that is, a method that uses Exponen-
tial Smoothing and RNN for motion prediction. Another
example of using Artificial Intelligence (AI) procedures with
time-series modeling for traffic forecasting is to use Discrete
Wavelet Transform (DWT) to decompose the time-series
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and then model a linear component using ARIMA and
forecast a non-linear traffic component by an LSTM [22]. The
disadvantage of both methods is that Exponential Smoothing
and ARIMA approaches work only for one-dimensional data.

Scientists also use other methods to forecast network traf-
fic: e.g. classification methods, information theory methods,
(hidden) Markov models, Gaussian processes, and Poisson
models [9], [14], [23], [24]. In the literature, we can also
find articles that use supervised methods to forecast network
traffic [8], [25], [26], [27]. These methods include support
vector machines, k-nearest neighbors, decision tree, linear
regression, AdaBoost and random forest. A disadvantage of
these methods is that we must additionally transform the
dataset manually to indicate weekly patterns in the data.
However, adding too many shifted values for each variable in
the model can result in a curse of dimensionality. The curse
of dimensionality means that increasing the dimensionality
makes those data sparse. Considering the periodicity in both
daily and weekly is significant, as network congestion has
seasonal behavior. For example, thesis [9] shows how the
average traffic value changes at certain times of the day.
In addition, the author notes that intraday traffic volatility
differs between weekend data and data collected during the
working week. Therefore, taking these relationships into
account can improve the quality of forecasting.

In our research, we focus on proposing multidimensional
models for network traffic forecasting that take into account
the occurrence of seasonal data patterns. In fact, the general
model should include the existence of dependencies between
Key Performance Indicators (KPI) and delay and throughput
within all considered network slices. A review of the literature
enables us to conclude that there is a research gap on this issue
that needs to be developed.

B. NETWORK SLICING DIMENSIONING & PLANNING
There is already extended work on AI based solutions used in
NS management. It can be used in all network management
phases (preparation, planning and operation) [6]. Moreover,
it has the potential of handling complicated decision-making
problems in a dynamic network environment e.g. for trans-
mission power allocation in cellular networks and resource
allocation in network slices [1].
In [1], the authors show that ML algorithms enable

cell level modeling basing on their specific characteristics,
enabling heterogeneous network planning with consideration
of local requirements [1]. Another example is where the
planning of Radio Access Network (RAN) slices is done with
the use of game theory [28]. Supervised DNN is proposed
for spectrum allocation, aiming to minimize costs, maximize
radio resource utilization, and guaranteeing desired service
level agreements in [29].

C. NETWORK DIGITAL TWIN
In article [30], the authors have introduced the NDT
concept that enables the development of more efficient

network control and tools for modern communication net-
works, including, e.g. troubleshooting, traffic engineering,
‘‘what-if’’ analysis, network planning, anomaly detection -
see. Fig 1, Fig, 2 and Tab. 2 in [30]. Moreover, they have
argued that recent advances in ML enable building some of
NDT’s core components as a data-driven networkmodels that
can operate in a real time, including a routing optimization in
a QoS-aware use case. The other researchers reported on a
novel framework of digital twin manager dedicated to handle
conflicting network applications [31], and also designed
a digital twin suitable for ‘‘what-if’’ analysis in Border
Gateway Protocol (BGP) optimization [32]. Finally, the
paper [33] commenting on 5G/6G network softwarization and
intelligentization, outline the role of digital twin architecture
for network autonomy, predict an emergence of a service
layer in 6G networks compatible with digital twin and able to
realize proactive analytics, including generative intelligence
functionality.

III. DATASET
The dataset used in this research consists of hourly averaged
time-series from thirty-three 5G Base Transceiver Sta-
tions (BTS) working in a live network deployment. This data
was collected from each BTS and each configured cell within
the BTS, from a period of whole month - March’23. Each cell
is specified by various configurational properties (e.g.: cell
duplex mode, channel bandwidth, etc.) and performance
measurements ( KPIs calculated from counters). Counters
describe the events in a mobile network on low level [34]
(like the average downlink Radio Link Control (RLC) delay
in gNodeB Distributed Unit per slice).
Subscribers in this network cluster have been divided into
four groups:

• Slice A - mobile subscribers with high priority
• Slice B - mobile subscribers with medium priority
• Slice C - mobile subscribers with low priority
• Slice D - fixed wireless access subscribers with lowest
priority

A. FEATURE SELECTION
The features used in modeling are shown in Fig. 1. Full name,
description and unit for each variable is provided in Tab. 1.
Presented KPIs have been selected according to the best

knowledge of the telecommunication expert. Thanks to them,
it is possible to create multivariate models including traffic
load and radio environment metrics [35] that have a direct
effect on throughput and delay (described in next subsection).

The variables can be divided in two areas:
• traffic conditions: #UEs (number of User Equipments),
DV (Data Volume), PRB (Physical Resource Block)
utilization,

• environmental conditions: CQI (Channel Quality Indi-
cator) and BLER (Block Error Rate).

Metrics marked in Fig. 1 as Total are calculated for all
slices andmetricsmarked as Slice are calculated for each slice
separately.
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TABLE 1. The variables used in the modeling.

FIGURE 1. Model scheme for throughput and delay forecasting.

FIGURE 2. Pearson correlation matrix of the considered features.

B. CONFIGURATION CHANGES
Preliminary trajectory analyses have shown that some
time-series contain structural changes (e.g., Fig. 2). The
reason for most cases is a configuration change applied
by the network operator. Due to this, it is necessary to
collect configuration data that describes software changes
or information about feature activations. Thanks to that,
segments of the data with an unchanging structure can
be extracted. In this research, the dates of the significant
configuration changes in the network are checked to extract
unchanged segments that are eventually used for modeling.

C. THE DEPENDENCIES OF FEATURES
The correlation analysis begun with the presentation of
the correlation matrix. Fig. 3 shows Pearson correlation
coefficient [36], that describes the linear dependence between

the data. Data has been divided into stationary segments i.e.,
parts without configuration changes.

The correlation matrices show that linear relations for
many pairs of variables can be observed. What is important,
there is a high correlation factor for particular pairs of delays
and throughputs for different network slices. Due to that,
there is a need to create a general model to include the
relationships between all slices.

D. INFORMATION ABOUT WEEKDAY
The inclusion of information about weekdays enables the
examination of network traffic diversity between weekdays
and weekends. This aspect was also raised by other
authors [37]. Fig. 4 shows the boxplots for weekday and
weekend of normalized throughput that is aggregated from
all BTSs and cells within dataset (noralization is made as
follows: the minimum value is subtracted and divided by the
range).

Different ranges can be observed for weekdays and
weekends. The variation becomes apparent with the analysis
of the values for the following days separately. The most
valuable information can be extracted when analyzing a
single cell (e.g., Fig. 5, Fig. 6).

Similar analysis has been performed for delays. Fig. 6
shows that weekly patterns can differ for various cells.
Weekly periodicity can be seen for individual weekdays.
In Fig. 6, the 4th and the 11th of observations correspond to
Sunday. We can observe that for them the throughput values
are increased. In current research for short-term modelling
the 24h cell level data is taken for training, however for
long-term predictions (which are planned in future research),
this weekday effect should be taken into account.

IV. FORECASTING AND DIMENSIONING FRAMEWORK
Following the emergent conceptions, a forecasting and
dimensioning framework is proposed (Fig. 7) which is a
data-driven model embodying the Network Digital Twin
idea described in [30]. In fact, designed framework can
work independently as a forecast and ‘‘what-if’’ analysis
module relevant for (sliced) network dimensioning and traffic
engineering or can serve as one of the core components of
multifunctional NDT. This framework has been developed in
modules to enable easy verification, management and scaling
to specific use cases.
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FIGURE 3. Illustrative trajectory of normalized throughput for Slice D.

FIGURE 4. Boxplots for normalized throughput by network slice.

FIGURE 5. Boxplots for normalized throughput by network slice (cell-1).

It is worth tomention that theDT-based simulations require
integration with the data platform [38], to perform model

FIGURE 6. Normalized throughput for Slice D for two selected cells.

retraining whenever the relation between the inputs and
outputs might change (e.g. configuration change, software
upgrade, etc.) or might be different (e.g. configurations that
have not been in the training data). Therefore, it has to be
taken into account how the connection between the physical
and the digital network should be maintained. In our case,
the plan is to incorporate it into a continuous delivery cluster
similar to the one described in [34].

A. SCENARIO FORECASTING MODULE
The heart of this module is the forecasting model, which
is trained on real traffic and environmental data. This
multivariate model forecasts throughput and delay with cell
and slice granularity. Once used in the dimensioning process,
it makes the need for an a priori defined traffic model
obsolete [39]. Several methods have been verified and as
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FIGURE 7. Forecasting and dimensioning framework.

a result the most promising have been described in the
following sections.

The ‘‘what-if’’ scenario simulation can be performed with
the use of such a pre-trainedmodel. According to the scenario
requirements, the historical model inputs are modified to
estimate slice throughput and delay in the future. Because
some of the input features are correlated (as described
in III-C), any modification of the inputs must consider their
relation (which is elaborated in VI-C).

B. CAPACITY DIMENSIONING MODULE
Usage of real data pre-trained cell models in the dimensioning
process leads to accurate traffic forecasting and enables
capacity estimation for future development of the network.
Taking the assumption that the service usage will grow
with the same pace as of now, the model can be taken
to predict the future capacity. In this work, short-term
forecasting (24h) is evaluated, because of the limited
amount of data with unchanged BTS configuration (III-B).
However, long-term forecasting is planned to be evaluated in
future work.

To estimate required capacity and infrastructure, through-
put and delay are forecasted per slice. Afterwards, for
each cell configuration and each slice, it is checked when
the slice capacity or slice QoS delay requirements will
be reached. Knowing the time of reaching capacity limits,
system configurational changes can be proactively done to
increase slice capacity. This approach can also be used
for long-term dimensioning (planned in future work), in a
way that the forecasted time of reaching delay limit will
show when the network extension will need to be made and
capacity at the end of the forecast will show how large the
infrastructure extension should be.

With the extension of ‘‘what-if’’ analysis, capacity
dimensioning can be performed for simulated scenarios
assuming different ways of network traffic demand evolution,
e.g., higher grow for specific slice due to planned new
offering from CSP.

V. METHODS
Several multivariate predictive models for throughput and
delay forecasting have been verified (e.g., Prophet model
for a single variable forecasting). Initial selection has been
narrowed to the multivariate ARMA model and neural
networks.

A. VARMAX
A time-series {Xt} is a m-variate ARMA(p,q) process (called
also vector ARMA, VARMA) if it is formulated in the
following way:

8(B)Xt = 2(B)Zt , (1)

where {Xt } is a stationary solution of difference equa-
tions (1), where

• 8(z) := I − 81z − . . . − 8pzp, where 81, . . . , 8p are
m× m matrices,

• 2(z) := I − 21z − . . . − 2qzq, where 21, . . . ,2q are
m× m matrices.

Moreover:
• I is m× m identity matrix,
• B is the backward shift operator,
• {Zt} is multivariate white noise sequence.
For more details about VARMA model, definition of

multivariate white noise, and methods for estimation of
parameters, see [40]. In this research, VARMAX model,
that is vector ARMA model with additional exogenous
components, has been used. The utilized tools enable to fit
ofmultivariatemodel usingMaximumLikelihood Estimation
(MLE) via the Kalman filter by the assumption that {Zt} has
multivariate Gaussian distribution.

Data preprocessing starts with seasonal decomposi-
tion to achieve stationarity. The MLE-based procedure
selects the model coefficients for the appropriate model
orders (p, q). Different pairs (p, q) have been evaluated
and the one that minimizes the information criteria has
been selected. The information criteria considered are
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as follows: Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Hannan-Quinn Information
Criterion (HQC) [41]. Finally, the VARMAX(p, q) model is
fitted for selected p and q. The test set is the last 24h of data.
The other data is considered as a training set.

B. NEURAL NETWORKS
The second part of our research focuses on testing various
neural networks structures containing different layers and
units. The multi-step forecasting approaches are developed.
Due to the length of available data, forecasts for the next
24h based on the last 24h are made. The last 48 hours for
both segments are test data. The other data are the training
and validation set. The maximum number of training epochs
is set to 1000. However, if the loss for the training set does
not decrease per 20 epochs, the learning is stopped. The data
is normalized and seasonally decomposed before training
the neural networks. Preliminary tests indicate that breaking
delay and throughput into seasonal and residual factors lower
the loss. Seasonal decomposition is made in the same way
as in the case of VARMAX. The effectiveness of time-series
decomposition before neural network training is confirmed
by the other authors [42].

1) LSTM
Recursive neural networks are often used for time-series
forecasting. However, for long sequences, the so-called
gradient-vanishing problem can occur, which is associated
with the low values of partial derivatives calculated for
weights, which causes them not to update. For recursive
networks, a long time horizon T means that observations
x1 and xT are distant. To counteract the vanishing gradient
LSTM unit can be used. The network utilized these units is a
modification of standard RNN. In general, LSTM introduces
three logic gates: Input gate, Forget gate, andOutput gate that
decide which information is to be ‘‘remembered’’ and which
is ‘‘forgotten’’ in subsequent steps. For more details about
RNN and LSTM, see [43] and [44].

The structures of neural networks mentioned in this section
use only LSTM units and dense layers. Neural networks
with the number of LSTM layers not exceeding 3 have
been tested. The use of shallow structures is justified by the
shorter training time of the model. Furthermore, they can be
developed in the case of inefficiency (i.e., high loss). The
considered set of hyper-parameters is presented in the Tab. 2.
Based on the conducted tests, it can be concluded that the

best model has only one hidden layer (Fig. 8) with Adam as
an optimizer, Mean Absolute Error (MAE) as a loss function,
and learning rate equal to 0.01. This structure is chosen as the
most accurate because the values of MAE and MSE are the
lowest for most samples.

2) CNN-BILSTM
The structures based on a composition of convolutional layers
and Bidirectional LSTM (BiLSTM) has been considered

TABLE 2. Hyperparameters for structures utilized LSTM block.

FIGURE 8. The neural network structure that uses LSTM unit(s).

in this work. In a convolutional neural network (CNN),
neurons are connected only to a filter - a particular area
in the preceding layer. It is a difference between classical
dense neural networks - for them all neurons are fully
connected. Formore details about CNN andBiLSTM see [43]
and [45], respectively. As in the previous subsection, different
combinations of parameters can be checked. The most
accurate model has the structure visible in Fig. 9. The
parameters of the structure are shown in Tab. 3.

VI. RESULTS AND DISCUSSION
A. MODEL PER NETWORK SLICE
First, we focus on developing the method of modeling
throughput and delay for each network slice separately. The
scheme of the model for each network slice is the same
as in Fig. 1. In general, throughput and delay depend on
the past values of endogenous KPIs and present values of
exogenous variables. In addition, throughput and delay also
depend on their past values. For modeling and simulation,
we use Python.

1) VARMAX
As we mentioned earlier, for the VARMAX model, the data
should be complete and stationary in a weak sense. Every
component of a multidimensional time-series is decomposed
using a simple approach based on the moving average. The
period is 24 hours.

The important step after seasonal decomposition is station-
arity verification. We propose to test the stationarity using
the Augmented Dickey-Fuller (ADF) test [46]. The results
of forecasting for one illustrative cell for slice A are visible
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FIGURE 9. The neural network structure that used CNN-BiLSTM unit.

TABLE 3. Parameters for the best CNN-BiLSTM structure.

FIGURE 10. The forecast for normalized delay for Slice A using
VARMAX(2,0).

in Fig. 10 and Fig. 11. For this cell, the optimal orders are
p = 2, q = 0 (for these values, the smallest AICwas noticed).

The results presented previously are made for data which
is seasonally decomposed and differentiated (if necessary).
However, reducing the number of variables can be beneficial,

FIGURE 11. The forecast for normalized throughput for Slice A using
VARMAX(2,0).

because it could make parameter estimation faster. Two
scenarios of input data preparation for VARMAX modeling
have been considered (Tab. 4). In the first scenario, a standard

TABLE 4. Scenarios for VARMAX modeling.

preprocessing is used while in the second one - the
Principal Component Analysis (PCA) is used to make the
dimensionality reduction. For more information about PCA,
see [47].

Fig. 12 shows the comparison of the computational time
for both scenarios. The computational time for Scenario 2
takes into account making PCA, modeling and forecasting.
Moreover, the values of normalizedMAE (nMAE) calculated
for all cells are similar for both scenarios (for both throughput
and delay).

FIGURE 12. Comparison of computational time between VARMAX and
VARMAX PCA.

It can be seen in the boxplots of normalizedMAE (Fig. 13).
Thus, the algorithm from Scenario 2 may have a practical
application due to the fast computational time. The downside
is that using PCA makes the parameters of the model less
interpretable.

2) NEURAL NETWORKS
For neural networks data is decomposed in the same way
as for the VARMAX model. The set of hyperparameters
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FIGURE 13. Normalized MAE for delay (upper panel) and throughput
(bottom panel) per network slice. MAE is normalized by dividing by range.

(i.e., structures described in Sec. V-B) is chosen based on
additional tests. In the first step, broader hyperparameter
space is considered, but for smaller datasets. Based on
this, the best hyperparameters set for our research has been
selected (Tab. 5).

TABLE 5. List of the best structures used LSTM units.

FIGURE 14. Throughput forecast for Slice A using model_3.

For the illustrative cell used in Sec. VI-A1, Model 3
outperforms the others, as it minimizes normalized MAE
and normalized Root Mean Square Error (RMSE). The
throughput and delay forecasts for Slice A are shown in
Fig. 14 and Fig. 15.
The target is to select a model that minimizes the learning

time and the prediction error. Based on these criteria,
a probable nominee for the winning structure is Model 3.

FIGURE 15. Delay forecast for Slice A using model_3.

FIGURE 16. Comparison of the modeling and forecasting time (Slice D).

The same type of analysis has been done for CNN-
BiLSTM. The results obtained for a particular BTS and cell
could depend on the specificity of the selected multivariate
time-series.

For that reason, in the next step evaluation metrics are
calculated and modeling time for the remaining samples and
for each network slice is compared (Fig. 13 and Fig. 16).

3) COMPARATIVE STUDY OF UNITS MODELS
Our research shows that, depending on the network slice, the
VARMAXmodel (with or without PCA) or the LSTM-based
network can be a better predictor (Fig. 13). The forecast
made by the more complex CNN-BiLSTM network is less
accurate. Moreover, CNN-BiLSTM has the longest modeling
and forecasting time (see, Fig. 16).

B. GENERAL MODEL FOR ALL NETWORK SLICES
Taking into account the need to test the impact of changing
individual variables on traffic, a general model has been
created. It contains information about all network slices
within a specific cell. One approach could be to aggregate
unit models, but a general model (including variables for
all network slices) is more interpretable. The general model
schematic is given in Fig. 17. The time-series decomposition
and the order selection procedure for the VARMAXmodel is
the same as in Sec. VI-A.
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FIGURE 17. Schematic of the general model including each network slice.

For a general model based on neural networks, the
same structures as in Sec. VI-A are tested. The most
accurate LSTM-based neural network is Model 11 and CNN-
BiLSTM-based:Model 2. The analysis of computational time
of model fitting and forecasting leads to the same conclusions
as for unit models: VARMAX is the fastest, and CNN-
BiLSTM-based neural network is the slowest (Fig. 18).

FIGURE 18. Comparison of the modeling and forecasting time.

Boxplots with normalized RMSE error are shown
in Fig. 19. It can be seen that the differences between the
general VARMAX model (G) and the unitary model (U)
are low for each network slice. It is different for LSTM-
based models. However, it is worth noting that the best
structures for units and general differ in the parameters set
(for the unit case, the best structure is Model 3, and for
general the best results provides Model 11). Furthermore,
the selection of initial weights is random, which can affect
network training. Generally, the lowest error is for different
variants of VARMAX models or LSTM-based networks.

General models can successfully replace individual equiva-
lents. It is worth adding that in some cases VARMAX using
PCA enables us to get the best forecasts. However, the results
are not easily interpretable if the dimensionality reduction is
utilized during the modeling. Depending on the functionality
that should be obtained, one may consider including PCA in
the model or not.

It is impossible to assess (based only on visual inspection)
whether the differences between the prediction errors of
different models are statistically significant. At the end
of the research, the Friedman test and the Nemenyi post
hoc test were used to check when prediction errors vary
significantly. For more details on the tests, see [48]. The
statistics and p-values for the Friedmann test are visible
in Tab. 6.

TABLE 6. The Friedmann test. Metric: normalized MAE, normalization by
dividing by range.

P-value is close to 0 for each network slice. This means
that the null hypothesis can be rejected. Therefore, for each
network slice, at least one model normalized MAE differs
significantly.

For verification of the differences between the pairs, the
Nemenyi post hoc test is performed. The results for Slice A
are presented in Tab. 7. If the p-value is less than 0.05 it means
that the two algorithms differ significantly at the significance
level of 0.05. Otherwise, there are no statistically significant
differences.

The results for the remaining slices are similar (also for
delay). General and unit models created by the same methods
do not differ significantly in any case. The most common
differences are between CNN-BiLSTM (both U and G) and
othermethods. The prediction errors for theVARMAXmodel
and the LSTM-based network are statistically different only
for throughput in Slice A.

C. THE CONCEPT OF SIMULATED SCENARIO
1) REAL DATA EVALUATION
To check the validity of the simulator and to assess its
limits of applicability/ability to preserve the physical context,
experiments on the actual data have been conducted. First, the
moments of increasing DV from the data have been extracted.
There are two types of changes during these moments,
a single peak and a change in the DV, after which the
DV remains elevated. Both types were marked accordingly.
An illustrative example of a single jump in DV-B is shown
in Fig. 20.
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FIGURE 19. Comparison of normalized RMSE per slice. RMSE is normalized by dividing by range; (G) - general
model, (U) - unit model.

TABLE 7. P-values for the Nemenyi post-hoc test. Metric: normalized
MAE, normalization by dividing by range. Variable: throughput, Slice A.

The complete procedure is as follows:

• fit model for data before DV change (blue part),
• set initial state for simulation by taking true values of
data volumes for each slice and PRB utilization (red
part). Input values for BLER are forecasted by the
standard procedure described in Sec. V-A,

• forecast next 24 hours (green part).

The simulations are based on the VARMAX(1,0) model.
We also performed tests for neural networks based on
LSTM units, however, the results turned out to be worse.

FIGURE 20. The illustrative trajectories for data volumes per network
slice.

However, testing of deeper structures of neural networks can
be considered as a future work.

Information on the actual value of PRB utilization is
included in the initial state. The reason is that with DV
change, the utilization of radio resources changes correspond-
ingly. A simulation that contains only changes in DV would
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FIGURE 21. Throughput forecast for Slice A using VARMAX.

TABLE 8. The values of information criteria and evaluation statistics for a
sample from Fig. 21.

FIGURE 22. Normalized MAE, normalization by dividing by range.

TABLE 9. Simulation scenarios.

not reflect reality. An example forecast based on real data
is shown in Fig. 21. In this scenario: DV_A increases by
267.2%, DV_B increases by 7.98%, DV_D increases by
13.7%, and PRB utilization increases by 80.75%. It is worth
noting that a large increase in DV in Slice A is associated with
a significant increase in PRB utilization.

The values of information criteria and evaluation statistics
for a sample from Fig. 21 are presented in Tab. 8. As can be
seen, the errors are low and R2 is high.

To compare the results for all samples, two metrics are
used, namely MAE and RdR score introduced in [49]; RdR
score is a normalized value based on DTW and RMSE. It tells
us whether the forecast based on ‘‘our model’’ outperforms

FIGURE 23. Modified RdR score for all selected samples; reference:
ARMA.

FIGURE 24. Schematic of the simulator.

the results obtained for other considered approaches. After
small modifications, another version of RdR score was
considered, such checks if ‘‘our model’’ is better than
its univariate equivalent (ARMA for data after seasonal
decomposition). In general, modified RdR score can be
defined as follows:

RdRscore =
RMSEscore + DTWscore

2
, (2)

where

RMSEscore = 1 − normalized(RMSE),

DTWscore = 1 − normalized(DTW ).

The value of normalized(RMSE) is the RMSE for ‘‘our
model’’ normalized by subtracting the minimum value
of the reference and dividing by the reference range.
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FIGURE 25. Comparison of the histograms of normalized throughputs and delays: forecasts (simulated scenario) vs. training set (the last 24h).

The reference limits are the values of the RMSE for an
ARMA. The definition of normalized(DTW ) is analogous.
MAE is normalized by dividing by range to make the results
for all samples comparable.

The normalized MAE values are shown in Fig. 22.
As can be seen, the forecasts have a small normalized MAE.
Slightly worse than the others are the errors of the model
for the delay in Slice D. However, the median of errors
is small.

The conclusion of these boxplots is that it is possible
to make a simulation that reflects reality using VARMAX.
Nevertheless, it was also verified if the VARMAX model
performs better in simulation case than univariate approach
(ARMA). To do that, the RdR is recalculated as follows:
max(0,RdR · 100%). The results for all samples are visible
in Fig. 23. After comparison of the results for VARMAX
simulation and its one-dimensional equivalent (ARMA),
significant improvement can be seen for both delay and
throughput for Slice A and Slice D and imperceptible
improvement for Slice B.

2) SIMULATIONS
Evaluation of the model allowed us to determine its
effectiveness in the problem considered. The next step is to
perform simulations in which the DV values are modified by
the user. The considered cases are presented in Tab. 9. The
schematic of simulator is visible in Fig. 24.

Each endogenous variable is forecasted in the VARMAX
model, but the values of exogenous variables should be
known at the current time for which we perform forecast-
ing. According to telecommunication know-how and after
preliminary analysis, the assumption is made that exogenous

variables (#UEs and CQI) do not change its behavior when
DV changes.

One dimensional Prophet model introduced in [50]
has been selected to forecast the #UEs and CQI in
the simulator. We selected Prophet because it is a sim-
ple and computationally efficient method dedicated to
univariate time-series prediction. What is important, the
Prophet considers the occurrence of seasonal components in
time-series.

To set the initial state in the case of endogenous variables,
the following procedure has been established. For the case
where there is no modification to the DV at time T − 1,
the prediction of endogenous variables at time T is made
using the VARMAX model and the initial state is just the
entire data set at time T − 1. It can be assumed to be
an initial reference state. If the user wants to simulate a
situation in which the DV for a given slice changes by x%,
then we set the initial state as (100 + x%) · y. Here y is
a predicted value of DV at time T (the reference state).
For BLER it is assumed that the initial state is equal to its
reference state.

If the initial values of DVs are calculated, then it is possible
to determine the value of PRB utilization. It was mentioned
that PRB utilization can be represented as a function
of data volumes. Various approaches for PRB utilization
forecasting have been considered, including: prediction using
functional dependence (polynomials, exponential function,
logarithm) or random forest models, multiple linear regres-
sion, ridge, and lasso. For more details on these models,
see [43]. The chosen methods are simple models that are
computationally efficient. KPIs are correlated, and predicting
the dependent variable is not a complicated task (therefore a
simple solution is preferred). The best results were obtained
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using a random forest, which takes as input the DV in each
Slice, BLER, CQI and #UEs.

In this paper, a single simulated scenario is presented.
Fig. 25 shows the values of normalized throughputs and
delays: the last 24h of the training set vs. predicted values.
The results correspond to the scenario in which DV-A and
DV-D increase by 100%. The predicted values show that
Slices A and D have increased TPut and delay, which
corresponds to increasedDV. Slice B also has a slight increase
in delay, which is due to the fact that the underlying resources
are shared. Furthermore, the distribution of the delay for
Slice D increased (more samples with higher delays) and this
is caused because this is the slice with the lowest priority
and all the traffic affects it. Finally, all these results are in
line with the understanding of telecommunications of this
scenario, which additionally proves the correctness of the
approach.

VII. CONCLUSION
The paper contributes to the fundamental problem of
complex system modeling and simulation [51], [52], [53],
especially for the application in wireless communication.
An advancement in computational power, numerical, and
AI/ML methods, and the huge amount of available experi-
mental data open new opportunities to study the emergence
of complex processes, which is a prerequisite to understand
and manage complex systems. In this sense, we provide
evidence that it is possible to retrieve and aggregate the
knowledge from experimental data in a form of empirical
model but with a phenomenological context. This results in
customization of the analog consisting of mimicking detailed
characteristics of the complex systems, feature typically
unavailable for mechanistic modeling [52]. This legitimizes
the use of our data-driven approach in the context of digital
representation of a real-world object (here: 5G network).
Finally, knowledge generalized in the form of data-driven
digital twin enables descriptive and predictive inference, and
also some actions which are now handled manually with
the use of expert knowledge, e.g., 5G network planning and
dimensioning.

In this article, we have described a framework for the
network dimensioning and planning process. Several multi-
variate methods for traffic forecasting have been evaluated,
from which VARMAX and LSTM presented the best fit to
the real network time-series. Cell environmental conditions
have been considered on top of the traffic model data. Two
approaches to cell level network slicing modeling have been
compared: slice specific and common for all slices. The
general model, which presents good accuracy, is more elastic,
and can be used for scenario simulation of the impact of
traffic changes in specific slice(s) or all slices, which was
also outlined in the article. The described framework can be
used for ‘‘what-if’’ analysis, e.g., to evaluate what capacity
extensions should be recommended and planned on the slice
and cell level for a specific scenario.

An extension of cell level modeling to BTS and network
level is planned as a next step of reported research.
Furthermore, the robustness for a selected approach and a
long-term planning case will be evaluated once a longer real
data sample is acquired. In addition, we can also simulate
the data generated in the adopted model for any arbitrary
period and scenarios (i.e. when some parameters of the model
change). This is the added value of using such a model.
In this case, the evaluation of long-term forecasting can be
performed if long-term data are available. We outlook that
forecasting of other metrics, such as energy consumption and
success rates (or loss rates, e.g. PDR), can be also added to the
framework in the future. However, as these signals have other
characteristics, we expect a need to use different models.
Regarding the simulation intelligence approach [51], initiated
here for the dimensioning and planning of a 5G wireless
network, it is possible to extend the data-driven model with a
broker module dedicated to optimized resource management
in the sliced network [54].
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