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ABSTRACT Multi-camera multi-object tracking (MC-MOT) has become pivotal in various real-world
applications within computer vision. Despite extensive research, solving the data association problem
remains one of the most formidable challenges in MC-MOT pipeline. This challenge is compounded
by factors such as varying illumination, diverse walking patterns, and trajectory occlusions. In recent
years, graph neural networks (GNNs) have emerged as promising tools for enhancing data association.
However, prevalent graph-based MC-MOT methods often rely on computationally inefficient min-cost
flow approaches for cross-camera association, with static graph structures that lack adaptability to new
detections. Moreover, these methods typically process cameras in pairs, leading to localized solutions rather
than a holistic global approach. To address these limitations, we propose a two-stage lightweight cross-
camera tracker designed to achieve a global solution efficiently. Our approach prioritizes the quality of
local tracklets, enhancing them through supervised learning on multi-source datasets using the DeepSort
model. For multi-camera association, we leverage the dynamic connectivity of Message Passing Graph
Neural Networks (MPGNNs) to jointly learn features and similarities previously untapped in this domain.
Our proposed model significantly improves detection accuracy and feature extraction, outperforming current
MC-MOT algorithms on cross-camera benchmarks. This advancement marks a notable step forward in the
field, offering more precise tracking capabilities and demonstrating the potential of integrating state-of-the-
art techniques for enhanced performance in complex tracking scenarios.

INDEX TERMS Deep learning, computer vision, multi-object tracking, object detection, multi-camera
multiple object tracking, graph neural network.

I. INTRODUCTION
The MC-MOT aims to deduce an entire cross-camera
trajectory for each target. It has numerous implications,
including crowd behavior analysis [1], [2], in-store consumer
behavior analysis [3], city traffic control [4], and pedestrian
monitoring [5], [6], visual tracking [7]. Many issues still need
to be resolved, even though recentMC-MOT approaches have
shown promising results in a number of large-scale datasets.
The current studies [8], [9] typically solve the MC-MOT
in two steps: (1) the local tracklet generation phase tracks
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each target that is detected and generates a local trajectory
within a single camera, and (2) the cross-camera tracklet
matching phase compares local tracklets from all the cameras
to generate a full trajectory for each target across the entire
multi-camera network. Due to many practical issues, such
as inconsistent lighting conditions, varying object movement
patterns, or the occlusions of the objects between the cameras,
the data association (tracklet matching) has become a more
challenging task. Data association is a vital stage in assessing
the performance of an MC-MOT pipeline.

Despite years of effort, MC-MOT remains unsolved due
to unknown target counts, and the complexity of predicting
trajectories in multi-camera setups [10], [11]. This leads to
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disruption in the relationship between an object’s trajectory
representation and its prior feature vectors, which results
in incorrect identification (ID) assignments. For an online
tracking system, failures in data association at a certain
frame could have long-term negative implications. As a
result, enhancing data association is vital to deciding how
well an MC-MOT algorithm performs with the least model
complexity that is better suited for real-time applications.

The first task of the two-stage MC-MOT approach is to
generate local tracklets. However, most of the existing two-
stage MC-MOT methods [12], [13], [14], [15], [16] consider
the detector and feature extractor trained on single-domain
(data collected in one ambient) datasets for local tracklet
generation. However, a single domain offers few training
samples and scene details. Despite strong performance on
a seen domain (trained and tested on the same source
dataset), most see a sharp fall in performance on unseen
domains (trained and tested on different source datasets).
The feature extractor will inevitably search for people in
new scenarios in practical applications. Therefore, learning a
model with excellent domain generalization (DG) capabilities
is essential. The DG uses numerous datasets from various
distributions, offering more training data that include a
wide range of variances that helps to improve the model
generalization capability. The performance of two-stage MC-
MOT highly depends on the quality of local tracklets.
Therefore, enhancing the quality of local tracklets is essential.
Aiming at this, our study offers a completely new approach by
generalizing the detector and feature extractor by training it
on multi-source datasets. The existing study led us to address
the following research questions, as follows:

1) By Supervising the detector on multi-source datasets
improve the detector’s generalization capability?

2) How does the improvement in detector quality and
quantity help in improving tracking accuracy?

3) Is improving local tracklet quality contribute to
improve multi camera multi object tracking accuracy?

4) Does improving the data association help in improving
overall tracking performance?

Deep learning models are indeed resource-hungry, they
can provide significant performance improvements with
appropriate training data and computational resources.
Also, tracking performance highly depends on the quality
and quantity of the detections provided by the detectors.
However, the existing person detection models are lacking
in generalization capability. This makes room for further
improvement in the detector’s performance. For MC-MOT,
as getting more precision detection is important, generating
local trajectory from each camera is equally responsible
in achieving good MC-MOT tracking accuracy. However,
the conventional MC-MOT methods have considered the
self-local tracker, which is tailored on single person Re-
ID dataset, that lacks the diversity. Also, such trackers
consider only the high score detection bounding boxes
and discard the objects detected with low score, which
leads to true object missing from data association even

after being detected. Therefore, there is a need for two
state data associations while generating local trajectories.
Despite extensive research, solving the data association
problem remains one of the most formidable challenges in
MC-MOT pipeline. In recent years, graph neural networks
(GNNs) have emerged as promising tools for enhancing
data association. However, prevalent graph-based MC-MOT
methods often rely on computationally inefficient min-cost
flow approaches for cross-camera association, with static
graph structures that lack adaptability to new detections.
Moreover, these methods typically process cameras in pairs,
leading to localized solutions rather than a holistic global
approach. There is a need for new data association techniques
which can provide dynamic global trajectory in multi-camera
networks.

In single-camera MOT, the association itself is a difficult
task. However, in MC-MOT environments, this effort is
made considerably more complicated due to inconsistent
lighting conditions as well as differences in occlusion
and viewpoint across the cameras. In reality, there are
other situations (appearance change/cloth change) that are
even more complicated than just creating more new IDs,
which could seriously impair tracking accuracy. Also, the
performance of an MC-MOT algorithm is greatly influenced
by cross-camera data association. We find many works
focused on enhancing the cross-camera data association,
such as greedy approximation [17], min-cost conventional
graphs approach [18], and 3D pose estimation from multiple
views [19]. Also, the assignment problem has been addressed
by the majority of earlier methods using features that come
from an underlying object detector, for example, by using
nearest neighbors, clustering, or a case of non-negative
matrix factorization, etc. In recent years, the use of GNN
for prediction has gained more popularity [20], [21], [22],
[23]. Specifically for MOT, recent work [24], [25], [26], [27]
formulates data association as an edge classification task
with GNNs, where each node denotes an object, and each
edge relating to two nodes represents the similarity between
detection and tracklets.

With the goal of having robust data association, our
study offers the data association module built on the
GNN structure for the MC-MOT task. The GNN is useful
for learning features and similarities simultaneously. The
concept of simultaneously learning the feature representation
and similarity has already been put forth, and it has been
shown to be effective in a variety of contexts, including
vehicle re-identification [28], human pose recovery [29],
and single-camera MOT [25], [30], [31], [32]. However,
to the best of our knowledge, it has not yet been taken
into account for the MC-MOT task. We treat each local
tracklets as a node of the graph and leverage its appearance
and spatial information at time step t. Instead of doing
association by pairs, we use a Dynamic message-passing
network (MPN) to execute learning directly in the graph
domain and offer a single global association solution for
all cameras. In comparison to state-of-the-art approaches,
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this dynamic graph formulation with a generalized local
tracklet model improves ID assignment by exploiting feature
representation and similarity measures simultaneously.

The major contributions:
• We demonstrate that supervising it on multi-source
datasets improves the performance of local tracklet
generation and detection.

• For the first time, we have employed GNN into an
MC-MOT domain for feature extraction and similarity
measure simultaneously.

• Link prediction with dynamic MPGNN formulation is
introduced as a new MC-MOT framework for cross-
camera tracking.

• The MPN is integrated with the proposed dynamic
graph, enabling the dynamic accumulation of spatial
and temporal information to produce new graph rep-
resentations, those results in extremely accurate link
predictions.

• A comprehensive ablation study and comparison with
cutting-edge methods demonstrate the effectiveness of
the proposed technique.

II. RELATED WORKS
The convention techniques targeted for accurate, robust, and
fast-tracking of multiple targets, especially as they transited
across multiple cameras. Several research efforts expended
over the years to effectively address various challenges while
tracking persons in a multi-camera network. The existing
literature offered two primary methods for solving multi-
person tracking in multi-camera environments. The first
approach involved the collection of detections from all
the cameras and then computing the similarity among the
detections to generate a complete multi-camera trajectory for
each individual (global approach). The second approach was
distributed/two-stage approach, in which a local trajectory
from each view was generated, and then using the re-
identification model, the correspondence between the local
trajectory was estimated to generate a complete global
trajectory.

A. GLOBAL APPROACH
Numerous studies employed a global approach to tracking,
wherein all input detections were regarded as nodes in
a graph, and the connections between nodes represent
their level of similarity. The approach introduced by Bred-
ereck et al. [12] involved using a greedy matching tech-
nique for single-camera tracking, followed by obtaining 3D
geometric positions through triangulation between cameras
to track corresponding objects across multiple cameras for
improved tracking performance. In order to improve this
similarity metric, an advanced feature extraction algorithm
was necessary to extract the most salient features from the
detections. The work presented by Chen et al. [6] utilized
a Re-ID feature extraction technique to determine the edge
weights, which were then subjected to a min-cut/max-flow
algorithm for tracking. A different team of researchers [54]

from UCF presented an algorithm for optimizing the global
maximum clique called GMMCP. This algorithm calculated
edge weights by considering both appearance similarity
(through histogram comparison) and motion similarity
(through constant velocity). Their previous work [55], which
introduced the GMCP algorithm, served as the basis for this
paper. The main distinction between the two algorithms was
GMMCP calculated the cost function for multiple tracklet
cliques at once. Interestingly, Duke University researchers
also published a paper [56] in a similarmanner. Although they
employed the same global information association strategy
as [54], they only used detection appearance features for
edge weight calculation. Themethod proposed by Ristani and
Tomasi [10] involved the use of a person detector to extract
bounding box observations from video streams. Additionally,
a feature extractor was employed to gather motion and
appearance features from these observations, which were
then transformed into correlations and labeled via correlation
clustering optimization. Finally, post-processing steps were
carried out to fill in any missing detections and eliminate
tracks with low confidence levels.

B. TWO-STAGE APPROACH
Another set of research focused on a two-stage approach
called tracklet-tracklet matching, which meant tracklets
generated from every camera were matched to find a
global trajectory. Following this, Xu et al. [16] proposed a
Hierarchical Composition of Tracklet (HCT) framework to
match local tracklets by utilizing multiple cues of targets
such as appearances and their ground plane locations. The
appearance features were easily influenced by the changes
in illumination, pose, and viewpoint, which were most
common in the multi-camera network. To build a robust
model, Lee et al. [57] put forward a resilient technique for
tracing a person’s identity across several cameras utilizing
unsupervised online learning. In this, local tracklets were
generated by employing a method that utilized multi-kernel
adaptive segmentation to track individuals with the assistance
of local object detection, thereby generating an ideal fore-
ground mask for feature extraction in ICT. They incorporated
a color transfer method to address the issue of varying
illumination in ICT. Additionally, they leveraged pose-
invariant appearance features to overcome pose and camera
viewpoint discrepancies between neighboring cameras, and
the integration of context features boosted the performance
of ICT. However, the model showed poor performance when
regional color and texture features were extracted from a
small area (i.e., a person visible in a small size). Xu et al. [58]
hypothesized considering semantic attributes would serve
as powerful cues for associating human trajectories across
cameras. They employed a scene-centered spatio-temporal
parsing graph which first estimated the 3D geometry of
the scene from multiple camera views. This enabled them
to project the camera views onto a common 3D reference
frame centered at the scene. Next, spatio-temporal parsing
was applied to extract human poses and movements from the
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TABLE 1. Literature summary of MC-MOT Algorithms.

projected camera views. Then the pose estimation algorithm
is used to detect key points in the human body, and a motion
analysis algorithm is employed to track these points over
time. The result is a sequence of human poses andmovements
that were represented in the scene-centered reference frame.
First, clusters were created based on the extracted poses, and
then associating these clusters across different camera views
based on the spatio-temporal relationships between the poses,
giving cross-camera trajectory for each person. The methods
discussed so far used a global description to create tracklets,
but this approach failed to capture the local similarity between
targets, making the methods vulnerable to occlusion and
fast motion. To address this issue, You et al. [48] proposed
an online Optical-based Pose Association (OPA) technique
for multi-target multi-camera tracking. OPA used local pose
matching to tackle the occlusion problem and optical flow to
reduce the distance caused by fast motion. OPA employed
OpenPose to generate a human pose for each proposal
and PWC-Net to produce an optical flow for adjusting the
estimated pose from the previous frame. The modified Object
Keypoint Similarity method computed the similarity between
the pose of the current frame and the adjusted pose from the

prior frame. The optical-based pose similarity was combined
with the visual and bounding box spatial similarities to
create the final similarity matrix, which was used in the
Kuhn-Munkras algorithm for data association. However, the
model showed poor performance for a crowded scenario that
demanded the robust detection or data association method.
After multiple attempts in research to enforce limitations
like sparsity and time conflict, an elegant solution for
implementing the principle of matching consistency is yet to
be discovered.

The methods discussed so far follow the tracklet-tracklet
matching approach. These methods faced two major prob-
lems: 1. As targets were observed in varying numbers of
cameras, the local tracklets corresponding to each target were
uncertain and differed in quantity. As a result, determining the
appropriate number of tracklets to merge and form a global
trajectory became a challenging task. 2. It was difficult to
impose such a matching consistency principle systematically
(e.g., if certain tracklets were grouped together to form a
global trajectory for a specific target, then different sets of
grouped tracklets should be mutually exclusive). To address
the above problems, He et al. [35] proposed a novel
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approach that formulates the cross-camera tracklet matching
problem as a Tracklet-to-Target Assignment (TRACTA)
problem, where each tracklet was allocated to a distinct
target. They utilized the Restricted Non-negative Matrix
Factorization (RNMF) algorithm to determine the optimal
assignment. Despite achieving promising results, TRACTA
was incapable of correctly identifying targets that had a
similar appearance and were located close to each other.
Therefore, it was necessary to incorporate more distinct
features that can help distinguish between these targets.
Already GNN proved their significance in SC-MPT to
leverage the benefits of GNN intoMC-MPT and to improvise
the data association. Quach et al. [59] tackled the challenge
of data association by framing it as a link prediction
task on a graph. In their approach, the graph’s nodes
corresponded to individual tracks, and a predictor was created
using a novel dynamic graph formulation. This formulation
incorporated temporal data of an object over a period of
time, as well as its connections to other objects, in order to
improve identification assignment. By utilizing the feature
representations and moving patterns of each object, their
method outperformed existing state-of-the-art techniques.
Although better-discriminating features were obtained with
the attention model, the complexity of the model also
increased. Following the GNN with a less complex model
providing robust features would be appreciable for the real-
time task.

The current available MC-MPT approaches had a high
level of computational complexity and were not adequately
robust in the previously mentioned challenges. In [60],
a real-time Attribute Recognition-basedMC-MPT (AR-MC-
MPT) framework was proposed that aimed to overcome
these limitations. This framework employed an end-to-end
approach for object detection, feature extraction, and attribute
recognition. By applying attributes, the online tracking
performance of MC-MPT was significantly improved in
the aforementioned challenges. The AR- MC-MPT pipeline
comprised three modules. The first module employed a novel
one-shot Single-Camera Tracking (SCT) architecture named
Attribute Recognition-Multi Object Tracking (AR-MPT),
which performed object detection, Re-ID feature extraction,
and attribute recognition using one backbone via multi-task
learning. To handle instances of one identity detected in
overlapping areas of cameras, hierarchical clustering was
performed in the second module. Finally, the third module
employed a new data association algorithm using spatial
information to reduce matching candidates. Additionally,
an efficient strategy was proposed in the data association
algorithm to remove lost tracks by striking a balance between
the number of lost tracks and the maximum lost time.
The proposed model significantly reduced complexity and
achieved a 20% improvement in IDF1 score over the existing
methods.

Despite having several successful solutions for MC-MPT,
one of the key disadvantages of the existing technique
was that there was often a trade-off between accuracy and

computational efficiency in existing methods. Some methods
sacrificed accuracy for faster processing time, while others
prioritized accuracy at the cost of computational efficiency.
Since object tracking was a real-time application balancing
the trade-off between accuracy and complexity was much
essential. Also, there was still room for further improvement
in tracking accuracy in a cross-camera network. In Table 1,
we provide a comprehensive list of all reviewed trackers, and
a detailed comparison of each tracker on six different factors
are summarized.

III. METHODOLOGY
As shown in Figure 1, we follow two stage MC-MOT
approach. In the first stage, the local tracklets are generated.
In a multi-camera network, each person is under the coverage
of C cameras, represented by the set C = c1, . . . ,Cn. The
local tracklets are generated from each camera. We use
the DeepSort tracker with YOLOX as the detector and
adopt the CNN architecture proposed in [61] for feature
extraction. Both the detector and feature extractors are
supervised on multi-source datasets. At time step t, the
multi-object tracking is enforced to generate the set of
local tracklets, i.e, L tc = l tj . Then the dynamic graph is
initialized with the feature embeddings of each tracklets at
time t. Further, in the second stage for cross-camera tracklet
association, our method embeds a set of local tracklets into a
dynamic message-passing neural network, which generates
richer tracklet representations and computes the similarity
simultaneously between the set of unassigned local tracklets
l tj and set of known tracklets UC

c=1U
t−1
k=1L

(k)
c obtained from

previous time steps. Followed by the similarity of two local
tracklets is given as input to the classifier, which provides the
best link prediction accuracy. A detailed description of each
module is provided in the subsections.

A. LOCAL TRACKLET GENERATION
We use the DeepSort [62] for single-camera tracklet gen-
eration. We provide a concise overview of DeepSORT,
presenting it as a dual-branch framework comprising an
appearance branch and a motion branch. The performance of
the tracking highly depends on the detector used to localize
the object in a multi-camera network. We use YOLOX for
person detection to generate optimal object detection. The
detector is trained on four public benchmarks to make it
more generalizable. We employ the CNN architecture with
low computational complexity recommended in [61] for the
extraction of appearance feature and the feature extractor is
fine tuned onmulti-source datasets. In the appearance branch,
for each frames detections, a deep appearance descriptor
(a simple Convolutional Neural Network) pretrained on
the person re-identification dataset is employed to extract
appearance features. This process utilizes a feature bank
mechanism to store the features from the last 100 frames for
each tracklet. As new detections emerge, the smallest cosine
distance between the feature bank Bi of the ith tracklet and the
feature fj of the jth detection is calculated. The distance serves
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FIGURE 1. Proposed framework for multi-camera multi-object tracking.

as the matching cost throughout the association process as
shown in Equation 7.

d (i, j) = min
(
1 − f Tj f

(i)
k )|f (i)

k ϵBi
)

(1)

In the motion branch, the Kalman filter algorithm [24]
is employed to predict the positions of tracklets in the
current frame. This process involves a twophase approach,
comprising state prediction and state update. During the state
prediction step, it forecasts the current state as:

x̂ ′
k = Fk x̂k−1 (2)

P̂k = FkPk−1FTk + Qk (3)

Here, x̂k−1 and Pk−1 represent the mean and covariance
of the state at time step k − 1, while x∧k and Pk denote the
estimated state at time step k. The state transition model is
represented by Fk , and Qk stands for the covariance of the
process noise. In the state update step, the Kalman gain is
computed based on the covariance of the estimated state Pk
and the observation noise Rk as:

K = P′
kH

T
k

(
HkP′

kH
T
k + Rk

)−1
(4)

Here, HT
k represents the observation model, which trans-

forms the state from estimation space to observation space.
Subsequently, the Kalman gain K is employed to update the
final state:

xk = x̂ ′
k + K

(
zk − Hk x̂ ′

k
)

(5)

Pk = (I − KHk)P′
k (6)

B. DYNAMIC MESSAGE PASSING NEURAL NETWORK
In order to predict and assign IDs to new nodes in graph Gt
at time step t, we learn dynamic graph representation with
two-time steps

{
G(t−2),G(t−1)

}
. Therefore, we conduct MC-

MOT experiments by learning dynamic graph representation
with time step L=3. As shown in Figure 1, a graph G(t) =

(V(t); E(t)) (V is vertices, E is edges) is built at a specific
time step t, with the vertex set Vt Containing all the tracklets
tracked up to that point. The number of vertices in our
graph is expanding over time because new vertices are being
added at each time step t, as shown by the equation V(t) =

V(t−1)
⋃

N(t), where N(t) stands for the set of new vertices.
The graph estimation at time step t follows three steps such
as (1) graph construction and initialization, (2) message
passing, and (3) classification. In the first step, the graph is
constructed by initializing each node with its feature vector
obtained by CNN. Then in the message-passing step, each
node exchanges a message (feature) with its neighborhood
for L iteration. The feature embedding obtained at the last
iteration is passed to the classifier for prediction.

1) DYNAMIC GRAPH CONSTRUCTION AND INITIALIZATION
Each node (tracklets) is initialized by the feature vector hvi ,
that is obtained by passing nodes features through a learnable
encoder Ev as defined in Equation 7:

hvi = Ev(CNN (vi)) (7)

The initial edge embeddings are created by combining the
visual and spatial characteristics of the two nodes that the
edge connects. Equation 8 specifies the appearance similarity
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computation between two nodes.

1fi,j = Cosine(CNN (vi),CNN (vj)) (8)

It is necessary to transform detection coordinates to a
common ground plane to determine the relative spatial
distance between detections from various cameras. Each node
will have its detection coordinates (xi, yi, w, h) that are
projected to the ground plane using the homography matrix
of a camera as defined in Equation 9.

(Xi,Yi) = Hci (xi + wi/2, yi) (9)

where, Hci is the homography matrix of camera ci. In accor-
dance with Equation 10, we determine the relative spatial
similarity between two nodes.

1Si,j =
∥∥(Xi,Yi) ,

(
Xj,Yj

)∥∥ (10)

In order to initialize the edge, the concatenation of 1fi,j
and 1Si,j is sent to a learnable edge encoder Ee as defined in
equation 11 that further updates the edge embeddings during
the message passing step.

h(vi,vj) = Ee
(
1fi,j, 1Si,j

)
(11)

2) MESSAGE PASSING NETWORK
Once the graph is constructed and initialized with initial state
embeddings, MPN propagates the neural information with
adjacent nodes and edges over the graph Gt at time t. This
message exchange helps to update the nodes and edge state.
Every node and edge compute the messages it has delivered
and received at each propagation step, then aggregates the
messages it has received, and lastly, update its representation
by fusing the new data with the old. Node update and edge
update are the two stages of the message passing step, and
both updates are performed across L iterations. The edge
connecting two nodes (vi, vj) and its embeddings are updated
as defined by Equation 12 for each iteration of L ϵ [1, L]:

hl
(vi,vj)

= υe

[
hl−1
vi , hl−1

vj , hl−1
(vi,vj)

]
(12)

where, υe learnable edge encoder(FC+ReLU).
Each node’s embeddings are updated by aggregating the

incoming messages as defined by Equation 13.

hlvi =

∑
jϵN (vi)

ml
(vi,vj)

(13)

where N is neighbor nodes and

ml
(vi,vj)

= υv

[
hl−1
vi , hl

(vi,vj)

]
Ue and Uv are the edge, node update functions exchange

the message across Gt for its state update. The message
exchange for nodes and edges happens simultaneously in Gt .
The learnable encoders used by the network and classifier are
considered from [63].

C. LINK PREDICTION
Once the nodes and edges update their states for the L
iteration, the feature embedding from the last iteration is
used for prediction. For each ground truth label y(vi,vj), the
model is trained to predict the probability ŷ(vi,vj) of an edge
belongs to the same identity. With y(vi,vj), serving as labels,
it can be viewed as an edge classification task. According to
each edges prediction, the graph is trimmed during inference.
At iteration l, the classification of a given edge is calculated
as defined in Equation 14:

ŷ(vi,vj) = C
(
hl
(vi,vj)

)
(14)

where C is the classifier (FC + ReLU) followed by the
sigmoid function yields a single prediction value.

1) TRAINING
Training loss of a graph Gt at time t is computed using
cross-entropy (CE) loss function for all edges and iterations
as defined in Equation 15. By doing edge classification,
we ultimately learn a strategy that can directly predict graph
partitions.

LGt =

L∑
l=1

∑
(vi,vj)ϵE

CE
(
ŷ(vi,vj), y(vi,vj)

)
(15)

2) INFERENCE
Our objective is to collect as many connected components
(CCs) as possible by grouping the nodes in the graph Gt
that correspond to the similar person identification at time
t. First, the local tracklets are generated to infer these graph
components that will form the vertices, and the connections
between them are edges. The messages are exchanged with
its N neighborhoods for L iterations. We take into account the
MPN model’s output at the last iteration for edge prediction.
As a result, we can calculate the likelihood that each edge
in a graph Gt will be active or not active using the formula

ˆyL
(vi,vj)

ϵ [0, 1]. The final prediction is binarized to classify
whether the edge is active or non-active.

ˆyB
(vi,vj)

=

{
0 ˆyL

(vi,vj)
< 0.5

1 otherwise

ˆyB
(vi,vj)

It signifies whether the edge between the two nodes
is active or inactive. While the active edges are preserved, the
inactive edges are trimmed.

Post-processing is the last phase of inference. We operate
on the presumption that each node can link to additional M-
1 nodes, where M is the total number of views. The node
that does not comply with this condition and if there exists
a bridge, by removing one bridge having minimum predicted
probability, the condition can be satisfied. If there is no bridge
in the graph, an edge with a minimum predicted probability
could be removed to hold the condition.
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TABLE 2. Dataset split for training and Inference for EPFL and CAMPUS datasets, in each dataset setting (d1, d2, d3, d4), the green tick indicates the
inference set, and the black color tick mark represents the train set.

D. CONNECTED COMPONENT
We estimate the CCs over the graph at each time step t
after the classifier identifies clusters of nodes with multiple
views of the same individual. A graph’s component, or split,
is referred to as a CC if there is a path connecting every pair of
nodes. As a result, we obtain a list of connected components
at each time step t. Thus, each component will be assigned a
global identity number.

IV. RESULTS AND DISCUSSION
In this section, we conduct an experiment to demonstrate
the benefits of training the detection and feature extractor
on multiple datasets. Also, the effectiveness of the dynamic
graph model with MPN to perform cross-camera association
and prediction is examined. The performance of MC-MOT
tracking is evaluated using CLEAR MOT metrics that
evaluate for MOTP, MOTA, ID switch, IDF1, precision,
and recall. The Multi-Camera Tracking Accuracy (MCTA)
is compared with prior arts for overlapping and non-
overlapping scenarios.

A. DATASETS AND IMPLEMENTATION DETAILS
1) DETECTOR
The detector is YOLOX with YOLOX-X as the backbone
and COCO-pretrained model as the initialized weights. For
pedestrian detection, we use a YOLOX detector. To increase
the detector’s generalizability, we train it on a huge dataset
(109,471 total images) made up of four publicly available
pedestrian benchmarks: the CrowdHuman [64], the CUHK-
SYSU [65], the PRW [66], and the Caltech dataset [67]. The
detector is trained by setting the detection threshold to 0.5.
The input image size is 1440 × 800and the shortest side
ranges from 576 to 1024 during multi-scale training. The
data augmentation includes Mosaic and Mixup. The model
is trained on 8 NVIDIA Tesla V100 GPU with batch size
of 48. The optimizer is SGD with weight decay of 5 × 104

and momentum of 0.9. The initial learning rate is 103 with 1
epoch warmup and cosine annealing schedule and trained the
detector for 50 epochs.

2) FEATURE EXTRACTOR
The CNN architecture recommended in [61] is employed
for extracting appearance features, and it undergoes training
using multi-source datasets such as Market1501, CUHCK03,
and the MARS person re-identification dataset, encompass-
ing 1,117,655 bounding boxes corresponding to 4,229 pedes-

trians. Local tracklets, representing ReID feature vectors,
are obtained at each timestep using the DeepSort Tracker.
These 512-dimensional tracklets initialize the graph. On top
of OSNet, a classification layer (linear fully connected +

softmax) is added. Person matching relies on cosine distance
utilizing 512-dimensional feature vectors from the last fully
connected layer. The batch size and weight decay are set to
64 and 104, respectively, with images resized to 256 × 128.
For training from scratch, SGD is employed, optimizing the
network for 350 epochs. The learning rate begins at 0.065 and
decreases by 0.1 at the 150th, 225th, and 300th epochs. Data
augmentation involves randomflip, random crop, and random
patch. For fine-tuning, the network is trained using AMSGrad
with an initial learning rate of 0.0015 for 250 epochs. The
learning rate undergoes decay using the cosine annealing
strategy, without restarting. During the initial 10 epochs, the
ImageNet pre-trained base network is frozen, allowing only
the randomly initialized classifier to be open for training [68].
Data augmentation in this phase includes random flip and
random erasing [69].

3) DYNAMIC MESSAGE PASSING GRAPH NEURAL NETWORK
The GNN is trained to learn features and similarity measures
simultaneously. We use four benchmarks, CAMPUS [16],
EPFL [39], MCT [6], and PETS09 [1], to evaluate the MCT
performance for overlapping and non-overlapping scenarios.
The scenes used for training and inference are shown in
Table 1 and Table 2 for EPFL, CAMPUS, and MCT datasets,
respectively. To evaluate the performance of the PETS09
dataset, we have utilized the model-trained CAMPUS. In
MC-MOT, by learning a dynamic graph representation with
two-time steps, G (t − 2) ,G (t − 1), we can anticipate and
assign IDs to new nodes in Gt at time step t. Thus, to learn
every parameter of the learnable encoders and the classifier,
training data are divided into mini-batch with a chunk size
of 3, and a mini-batch gradient descent using the Adam
optimizer is used. The proposed method is implemented in
the PyTorch on NVIDIA GForce GTX, 1080. The training
process involves a maximum of 100 epochs, utilizing a
batch size of 512 chunks. It’s important to note that padding
is applied to amalgamate these chunks, accommodating
varying numbers of nodes, into a cohesive batch for training.
Subsequently, we select the top-performing model based on
validation set results for evaluation across four benchmark
datasets. The scenes used for training and inference are
shown in Table 2 and Table 3 for EPFL, CAMPUS, and
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TABLE 3. Dataset split for training and Inference for MCT datasets,
in each dataset setting (d1, d2, d3, d4), the green tick indicates the
inference set, and the black color tick mark represent the train set.

MCT datasets, respectively. To evaluate the performance
of the PETS09 dataset, we have utilized the model-trained
CAMPUS dataset.

B. ABLATION STUDY
In this section, we analyze and justify the competitive
performance that ourmethod achieved. This section primarily
seeks to illustrate the following desirable qualities of the
proposed technique. (1) Robust feature representations. (2)
Consistent object detection and tracking (3) Lightweight
tracker.

1) ROBUST FEATURE REPRESENTATIONS
It is a fact that the accuracy of data association is highly
influenced by the model considered for feature represen-
tation. To improve feature extraction ability, we train the
detector and feature extractor on multi-source datasets. Then,
conduct a comparative study on the features extracted by
the model trained on a single source vs. multiple sources.
As shown in Figure 2, the features extracted by the models
are utilized to generate a heatmap. The heatmaps in the first
row (Figure 2 (a)) are generated using the model trained
on a single source. We find background influence in feature
learning (as highlighted in yellow). In contrast, second-row
(Figure 2 (b)), heatmaps are generated using the model
trained on multiple sources. Figure 2 illustrates that the
features extracted by the model trained on multiple sources
are better clustered than the one trained on a single source.
Also, the background feature influence is reduced when the
model is trained with multiple sources.

Further, the better feature representation ability of the
proposed approach is analyzed by plotting t-SNE. The
representations of all the nodes over the entire video sequence
produced by our method and the original node features
obtained by the feature extractor are plotted in Figure 4 (a)
and Figure 4 (b), respectively, while Figure 4 (c) represents
the features obtained by the detector. The t-SNE plot shown
in Figure4 (a) signifies that MPGNN-generated features are
better clustered than the original. Similarly, the original
features extracted by the ReID model trained on a multi-
source dataset are better cluttered than the detector-generated
features.

Also, the impact of using GNN to generate a rich
representation for cross-camera tracking is analyzed with
qualitative track results shown in Figure 3. The first image

TABLE 4. MOT metric comparison with and without the inclusion of
dynamic GNN evaluated on Auditorium sequence from CAMPUS dataset.
IDF1- identification F1 score, IDP- identification precision, IDR-
identification recall, IDs-ID switches.

TABLE 5. Track quality measures on EPFL dataset. IDf1-identification F1
score, MT- mostly tracked, ML-Mostly Lost, IDs-ID switches.

is the tracking results obtained using the feature extractor,
excluding the learnable encoders. In contrast, the second-
row image is the tracking results with the inclusion of
a dynamic GNN. In frame 2487, we find more persons
missed from tracking (highlighted with a red dotted box),
whereas the proposed model notably covers the number
of missed detections (frame 2487 second row). Further,
we quantitatively justify the role of GNN in cross-camera
tracking by the results shown in Table 4. The results obtained
with DMGNN are evident that the inclusion of a dynamic
GNN has been helpful in extracting better features for
discrimination than barely using the features from simple
CNN.

2) CONSISTENT OBJECT DETECTION AND TRACKING
The detection quality is analyzed by visualizing the detection
results of YOLOX by training it on a crowd-human dataset.
Also, to evident the improved generalization capability of the
detector, the qualitative results are analyzed. As shown in
Figure 5, the variation is found in the pedestrian detection
results when the YOLOX is trained only on crowd humans
and on multiple datasets. The qualitative results are shown
in Figure 5 for the auditorium sequence from CAMPUS and
the basketball sequence from the EPFL dataset. Figure 5
(a) illustrates the detection results obtained from a model
trained on one dataset, whereas Figure 5 (b) represents the
detection results of the generalized model. The bounding box
in red represents missed detections. The respective person
in the same frame has been detected by the generalized
detector. These qualitative results reveal that the detector
trained on a multi-source is more beneficial than training on
a single source. The tracking performance directly depends
on the quality of detections provided for the data association
stage. Therefore, the generalized detector will contribute to
enhancing the tracking performance.

Additionally, the detector’s performance is assessed by
quantitatively analyzing the results obtained from EPFL
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FIGURE 2. Heatmap visualization (left to right- original image, heatmap, overlapped image): (a) Generated using
single source model (b) Generated using multi-sourced model.

FIGURE 3. Qualitative track results: (a) tracking using baseline model (excluding GNN) model (b) tracking using dynamic GNN model.

FIGURE 4. Terrace video sequence: (a) MPGNN features (b) ReID model features (c) YOLOX features.

dataset. This evaluation is conducted using both single
and multi-source supervised models, and the corresponding
findings are presented in Table 6. The result obtained using
multi-sourced model reveals the improved generalization
ability of the detector.

To show the consistent tracking achieved by the pro-
posed method, the qualitative results of a laboratory and
terrace video sequences are shown in Figure 6, Figure 7.
A square with four grids represents the same person tracked
in four different cameras. Each person is localized, and
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FIGURE 5. Qualitative object detection results on Auditorium and Basketball sequence (a) YOLOX trained on a single dataset. (b) YOLOX trained on
multiple datasets.

TABLE 6. The detector’s performance on EPFL dataset using both single
and multi-source supervised models. All the results are in [%].

unique identification (ID) number is assigned. The tracker
achieved consistency in tracking by assigning the same
person ID. Our tracker is efficient in tracking during partial
occlusion scenarios (frame 282, c003, ID 0) and marginal
overlapping of multiple persons (frame 2020 in all cameras).
However, our tracker also has some shortcomings, such
as some false negatives detected (on frame 1300, c002,
ID 2) due to over-supervising the model and IDs during
tracking.

The quantitative results of CAMPUS and EPFL datasets
are shown in Table 5 and Table 7. The proposed tracker
proved its significance by improving the track quality (MT,
ML, PT) and less the number of IDs. The evaluation covers
multiple matrices that help the research community conduct
a comparative study.

Furthermore, our proposed method yields SCT results
on EPFL, CAMPUS, and PETS datasets, as presented in
Table 8. The quantitative outcomes for single-camera MOT
demonstrate the robustness of our approach in tracking
individuals within a single camera. The inclusion of a
generalized detector and ReID model has contributed to

TABLE 7. Track quality measures on CAMPUS dataset. IDf1-identification
F1 score, MT- mostly tracked, ML-Mostly Lost, IDs-ID switches.

these promising results. Moreover, the implementation of a
MPGNN further augments the feature representation ability.
As a result, our approach attains higher MOTA and IDF1
scores, accompanied by commendable track quality metrics
(MT, ML, PT) and zero instances of IDs.

3) LIGHTWEIGHT TRACKER
The tracker is built following tracking by detection paradigm,
in which we have considered a single-stage detector, i.e.,
YOLOX, which is computationally less complex and faster
than two-stage detectors. The current best performing
MC-MOT tracker is DyGLIP [59] that has considered
Mask-RCNN for detection. In comparison to Mask-RCNN
YOLOX is much faster and anchorless. Also, we have
considered the CNN architecture proposed by [61] for
feature extractions, which takes 1.9 million parameters.
Whereas, the CNN considered in DyGLIP [59] is trained
on imagenet dataset and it takes 2.2 million parameters.
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FIGURE 6. Qualitative results of Laboratory video sequence (random frames are considered for visualization).

FIGURE 7. Qualitative results of Terrace video sequence (random frames are considered for visualization).

TABLE 8. Performance of the proposed method on single-camera MOT on EPFL, CAMPUS, and PETS.

In addition, our proposed dynamic graph neural network has
only 0.2M parameters, making the model light and faster
in training.

C. COMPARISON WITH PRIOR ARTS
The performance of our approach is evaluated on CAMPUS,
EPFL, and PETS09 datasets containing overlapping fields

of view (FOVs). We also check the tracking performance
on the MCT dataset collected in non-overlapping FOVs.
We contrast our method with other MC-MOT approaches,
such as KShortest Path (KSP) [38], Hierarchical Composition
of Tracklet (HCT) [16], Spatio-Temporal Parsing (STP)
[58], and Branch-and-Price (B&P) [18], TRACTA [35],
which tracks for overlapping FOVs between various camera

63328 VOLUME 12, 2024



S. Bilakeri, K. A. Kotegar: Learning to Track With Dynamic Message Passing Neural Network

TABLE 9. Comparison of evaluation results on EPFL dataset with the
Prior-Art techniques (all the results are in %).

TABLE 10. Comparison of performance on PETS09 dataset with the
Prior-Art techniques (all the results are in %).

views. The MC-MOT evaluation results of EPFL, PETS09,
and CAMPUS are summarized in Tables 9, 10, and 11,
respectively. Our proposed method was compared with state-
of-the-art methods using the evaluation metrics that were
available. As a result, Tables 9, 10, 11, and 12 contain a
variety of evaluation metrics for comparison.

Most of the existing studies evaluated their performance on
highly challenging video sequences such as Basketball and
passageway. These sequences are heavily crowded, and the
visibility of a person is not much clear in the passageway
dataset. As shown in Table 9, our approach improved
MOTA by 8.9% and 21.6% on passageway and basketball
sequences over the second-best methods. The HCT and OPA
methods rely on associating individuals using similarities
in appearance and pose, which are derived from their
personal characteristics. However, these approaches exhibit
limited performance in crowded scenes due to the poor
distinction in location differences. Additionally, they struggle
with insufficient lighting conditions and uniform clothing.
Furthermore, these methods require a longer processing time
due to the extraction of multiple features. In contrast, our
method exploits the target correspondence by exchanging
messages between each node. This approach proves to be
robust even in scenarios where individuals are captured under

TABLE 11. Comparison of evaluation results of the CAMPUS dataset with
the Prior-Art techniques (all the results are in %).

varied illumination and are located in close proximity to
each other. Regarding cross-camera association, OPA adopts
a research approach that involves generating target trajec-
tories within each individual camera and then performing
associations across multiple cameras as a whole. However,
this method fails to utilize the complementary information
present between cameras, leading to missed detections and
identity switches. Consequently, OPA yields a lower MOTA
value. Similarly, the performance of Gan et al. [71] falls
short compared to our method. Gan et al. [71] extract
visual features from each detected subject individually, which
leads to instability in the features themselves. Consequently,
these unstable features pose challenges for cross-camera
associations. Overall, the comparative results demonstrate
that the proposed method is superior to the existing
techniques.

Whereas on the PETS09 dataset, the proposed tracker
faced frequent IDs. Thereby, the model tracking accuracy is
in second place among the prior arts. As listed findings in
Table 10, the detection performance is still outperforming
existing methods.

The tracker achieved remarkable progress in MOTA,
precision (MOTP), and tracking quality (MT, ML) as
demonstrated in Table 11. These video sequences are
collected in challenging scenarios such as light variation,
partially in similar cloth patterns, and occluded by vehicles.
The proposed tracker achieved improved performance on
all the metrics compared to existing techniques. Moreover,
the majority of these comparative methods employ a
two-stage approach, which involves feature extraction for
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TABLE 12. Comparison of evaluation results of MCT dataset with the Prior-Art techniques.

each estimated local trajectory and similarity measure for
cross-camera trajectory. Whereas, our method extracts the
features and similarity measures simultaneously without
relying on unsupervised similarity metrics such as Euclidean,
cosine, etc.

FIGURE 8. Train and Validation loss of MCT dataset.

FIGURE 9. Train and Validation accuracy of MCT dataset.

The robustness of the proposed tracker is evaluated on
the dataset collected under non-overlapping FOVs, and the

MCT is one such dataset. The tracking results on the
MCT dataset are reported in Table 12. The performance
of the tracker is evaluated for MOTA, MOTP, detector
precision, and recall. The results evidence the robustness of
the proposed tracker over all the metrics compared to existing
methods.

Our proposed model has achieved remarkable results,
achieved 100% precision and recall on subsets Dataset2 and
Dataset3 of the MCT dataset. These subsets predominantly
have 2 to 3 persons per frame, with no challenging scenarios
such as occlusion, motion pattern changes, or appearance
variations. Therefor the detector has shown tremendous
detection accuracy. Which in turn helped to achieve 99.9%
of MOTA. However, other subsets exhibit higher density
per frame (25 persons per frame), leading to intrinsic
occlusion among multiple people. Additionally, there are
partial appearance similarities among individuals in the other
subsets. Despite these challenges, our model’s performance
remains strong, especially on Dataset2 and Dataset3. The less
challenging nature of the video sequences in Dataset2 and
Dataset3 contributes to the high precision and recall accuracy
observed in these subsets. This emphasizes the importance of
considering varying degrees of complexity in dataset subsets
when evaluating tracking algorithms. The train-validation
loss curves and train-validation accuracy curves are shown in
Figure 8 and Figure 9, respectively. This signifies that there
is no model overfitting on the dataset happened. The model
has converged with less variance between train and validation
loss.

Our approach surpasses the second-best method, DyGLIP,
by using the efficient YOLOX detector trained on
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multiple datasets for improved generalization. Instead
of employing complex structural and spatial attention
networks, we utilize a dynamic MPGNN with 0.2 million
parameters. Our method achieves superior performance
while maintaining lower complexity compared to existing
approaches.

V. CONCLUSION
We presented a lightweight graph-based MC-MOT tracker
built on tracking by detection paradigm. An anchorless detec-
tor (YOLOX) combined with a lightweight feature extraction
model (OSNet) helped reduce the model complexity. Also,
the generalization capability is enhanced by supervising
it on multi-source datasets. Further, the addition of a
message-passing graph neural network enhanced the feature
representation ability, which helped in reducing missed
detections and attained improved tracking performance. The
obtained tracking results on popular multi-camera datasets
reveal the significance of our approach. The performance
of our tracker has improved over the prior arts both
for overlapping and non-overlapping FOVs. We anticipate
that the tracker’s excellent accuracy and ease of use will
make it appealing in practical applications. The strongly
observed limitation of our study is, since our study strongly
depends on appearance features that might affect the tracking
performance when the same person appears with change in
cloth pattern across multiple cameras is the limitation of
our study.

The multi-camera multi-person tracking is conducted by
proposing the dynamic graph neural network in a two-stage
approach. The following future directions can be explored on
our method.

• In the presented work, we consider the appearance
features extracted from the message-passing neural
network. Since the cross-camera has drastic changes
in illumination, person viewpoint, and non-overlapping
scenarios, the complete scene itself is different. There-
fore, combining some other features, such as IoU, along
with the appearance feature, would enhance the tracking
performance further.

• The presented method can be applied to single-camera
multi-person tracking by training and testing it on MPT
challenge benchmarks.

• Graph neural networks have gained attention in many
computer vision tasks. Since our method is an edge
prediction task which is more like a classification
task. This method can be considered to solve any
classification problems (e.g., Face recognition).
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