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ABSTRACT PD control is a widely used model-free method; however, it often falls short of guaranteeing
optimal performance. Optimal model-based control, such as the Linear Quadratic Regulator (LQR), can
indeed achieve the desired control performance, but only for known linear systems. In this paper, we present
a novel approach for designing optimal PD control for unknownmechanical systems.We utilize a conditional
Generative Adversarial Network (GAN) and a Long Short-Term Memory (LSTM) neural network to
approximate an optimal PD control.We employBayesian inference to generate PD control that can be applied
at different operating points. This design mechanism ensures both stability and optimal performance. Finally,
we apply this control methodology to lower limb prostheses, and the results demonstrate that the optimal
PD control, using GAN and Bayesian inference, outperforms other classical controllers.

INDEX TERMS Optimal PID, Bayesian inference, generative adversarial network, deep learning.

I. INTRODUCTION
The design of controllers has traditionally focused on
improving the performance of classical controllers, such
as linear PD and PID controllers, which are widely used
in industry due to their well-known advantages. However,
recent research has explored non-linear structures and the
integration of advanced techniques like artificial intelligence
to improve the performance of controllers in the face of
external disturbances and parameter changes.

Some examples of such research include [1], which
mapped a PD controller onto a non-linear structure based on
fuzzy logic, achieving minimization of trajectory following
error. Reference [2] proposed the identification of an online
dynamic system to improve the performance of a PD con-
troller and demonstrated robustness to external disturbances
and parametric changes. Reference [3] showed improve-
ments in trajectory tracking under parametric uncertainty
by adding a compensator designed with neural networks to
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a PD controller. Similarly, [4] added a disturbance can-
cellation term to a PD controller, defining three different
cancellation functions.

In particular, several investigations have explored optimal
PD upgrades based on Linear Quadratic Regulator (LQR).
For example, [5] presented amodel-free design of a stochastic
LQR controller for linear systems subjected to Gaussian
noise, from the perspective of primal-dual optimization,
which provides insight into understanding common Rein-
forcement Learning (RL) algorithms. Reference [6] proposed
an online iterative learning LQR with adaptive iterative
learning control to control the trajectory tracking of a leg
exoskeleton for rehabilitation. Reference [7] presented an
LQR controller based on a PD optimization controller to
improve the dynamic performance of an Automatic Voltage
Regulation (AVR) system. A biogeography-based optimiza-
tion (BBO) was used to tune controller gains, and the Mean
Absolute Percentage Error (MAPE) cost function was used
to ensure effective performance. Similarly, [8] introduced a
hybrid control methodology through the combination of a
traditional PID controller and an LQR optimal controller.
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The gain parameters of the classic PID controller were
determined using the elements of the LQR feedback gain
matrix. The performance of the LQR controller was improved
using the genetic algorithm optimization method, which
was adopted to obtain optimal values for the gain of the
LQR controller parameters. The PD-LQR controller has
been improved to work with non-linear systems, and some
improvements have beenmade to adapt to parameter changes,
such as [6]. However, there are currently no methods
that generate controllers adaptable to structural changes of
systems, especially those with more complex architectures.

Recently, the integration of artificial intelligence and
control theory has seen significant development, allowing
for the direct design of intelligent controllers. For example,
[9] applied neural networks to model uncertain nonlinear
functions and designed a controller by combining backstep-
ping and adaptive control. Similarly, [10] adjusted controller
parameters using the convergence of synaptic weights of
neural networks based on radial basis functions and adaptive
control with a reference model. Multilayer perceptron-based
neural networks and recurrent neural networks have been
used for modeling and identification of dynamic systems
by [11] and [12], and high-order recurrent neural networks
have been applied in adaptive control by [13], as well as
in reinforcement learning, where their analogy with optimal
control has been observed and exploited by [14] and [15].
The original GAN design was developed for generating

images from a latent space of noise [16]. To generate
an image with specific characteristics, conditional GANs
were introduced by [17], where the discriminator recognizes
conditional information as a necessary feature in incoming
images. Some of the most significant works on GAN,
primarily focused on image applications, include [18],
where antagonistic generative deep convolutional networks
(DCGAN)were proposed to improve the performance of con-
volutional neural networks (CNNs) in image representation;
[19] presents techniques to address the instability problems
of GAN networks; in [20], C-GAN was applied to generate
images conditioned to other reference images [21]. C-GAN
resolved the issue of encountering a condition that is not
directly related to an output by applying a low pass filter on
the gains produced [17]. In [22], LSTM-CGAN was used to
generate song lyrics.

In this paper, we aim to explore and analyze the use
of GAN in controller design. We first develop a reference
framework for implementing GAN in nonlinear system
control. As highlighted in works by [22] and [23], defining
useful truth spaces is necessary when dealing with problems
beyond conventional GAN applications. In our case, these
truth spaces are useful in controlling nonlinear systems.
We expand the latent space by adding the input (control
signal) and output (tracked trajectory) of the nonlinear
system. We exploit the capability of GANs to learn and
produce adaptable control schemes for parameter changes
through the particularity of C-GAN networks. Additionally,
we use GANs to generate controllers capable of adapting

to more complex systems than those with which they were
trained, provided that there is some structural compatibility.
To test this capability, we train the C-GAN network with
a truth space provided by information concerning a simple
pendulum. Later, we use the trained network to control a
lower extremity prosthesis testing robot.

The primary contribution of this paper is the development
of a novel controller that can generate control signals for
complex systems, such as the n-link rigid robot, after being
trained with a simple nonlinear system like the pendulum.
This controller’s adaptability to various systems is achieved
by utilizing the GAN’s conditional capacity, which is based
on the system’s stimulus-response. The paper’s contributions
can be further detailed as follows:

1) The proposed PD control ensures optimal performance
through GAN and neural network training.

2) The proposed mechanism offers a new approach to
model-free optimal control.

3) An optimization theory-based model-free stochastic
LQR for nonlinear systems is derived through zero-sum
games.

II. STABLE OPTIMAL PD CONTROL
The dynamics of a serial n-link rigid robot manipulator can
be described by the following equation:

M (q) q̈+ C (q, q̇) q̇+ G (q) + F = τ (1)

where q ∈ ℜ
n denotes the links positions, q̇ ∈ ℜ

n denotes the
links velocity, M (q) ∈ ℜ

n×n is the inertia matrix, C(q, q̇) ∈

ℜ
n×n is the centripetal and Coriolis matrix, G(q) ∈ ℜ

n is the
gravity vector, F ∈ Rn is the frictional term and the other
disturbances. τ ∈ ℜ

n is the input control vector.
A classical industrial PD control law for the robot is given

by

τPD = −Kp(q− qd ) − Kd (q̇− q̇d ) (2)

where Kp and Kd are positive definite constant matrices
that correspond to proportional and derivative coefficients,
respectively. qd is the desired joint position, while q̇d ∈ ℜ

n

represents the desired joint velocity. In regulation case, the
desired position is constant, i.e., q̇d = 0.
The following proof shows that the position regulation

error of the PD control law (2) is bounded within a ball with
radius d̄ . We use the Lyapunov function candidate as

VPD =
1
2
q̇TMq̇+

1
2
q̃TKpq̃, q̃ = q− qd (3)

The n-link rigid robot (1) has the following property [24],

q̇T
[
Ṁ (q) − 2C (q, q̇)

]
q̇ = 0 (4)

We use the following matrix inequality

XTY +

(
XTY

)T
≤ XT3−1X + Y T3Y (5)
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where X ,Y , 3 ∈ ℜ
n×k are any matrices, 3 is any positive

definite matrix, to q̇T (G+ F) , then

q̇T (G+ F) ≤ q̇TK1q̇+ (G+ F)T K−1
1 (G+ F) (6)

where K1 > 0
Using (4) and (6), the derivative of (3) is

·

V PD = −q̇TKd q̇+ q̇T (G+ F) ≤ −q̇T (Kd − K1) q̇+ d̄

(7)

where (G+ F)T K−1
1 (G+ F) ≤ d̄, d̄ can be regarded as

upper bound of G+F . If we choose Kd > K1, the regulation
error q̃ is bounded (stable), and ∥q̇∥(Kd−K1)

converges to d̄ .

So, for any bounded disturbance F , the PD control (2) with
Kp > 0 and Kd > K1 ensures stability in the closed-loop
system. However, the performance may vary across different
operating points and in the presence of different disturbances.
The goal of the paper is to design an stable and optimal
controller, which will satisfy both stability conditions,
Kp > 0 and Kd > K1, and an optimal index, such as LQR,

min
u
J = min

u

∫
∞

0
(xTQx + uTRu)dt (8)

where the state x =
[
qT , q̇T

]T
, the control u = τ in (1), R

and Q are given positive definite constant matrices.
In order to obtain the optimal control for the robot (1),

we first rewrite (1) in the following nonlinear system,

·
x = f (x) + g(x)u (9)

where x =
[
qT , q̇T

]T
, f (x) =

[
q̈T , −M−1 (Cq̇+ G+ F)

]T
,

g(x)u =
[
0, 0,M−1(q)τ

]T
. (9) can be linearized at an

operating point x1 = (q1, q̇1) as

ẋ = A1x + B1u (10)

where

A1 =
∂f (x)
∂x

|x=x1 , B1 =
∂g(x)u

∂u
|x=x1

The optimal control is

u1 = −K1x, K1 = R−1BT1 P

AT1 P+ PA1 + Q− PB1R−1BT1 P = 0 (11)

However, this paper deals with unknown quantities such
as M (q) , C (q, q̇) , g (q) , and F (q̇) in the robot model (1).
Consequently, f (x), g(x), A, and B also remain unknown for
any operating point. To address this, we employA1 and B1
from (10) for designing a model-based optimal PD controller.
Subsequently, we utilize the optimal controller (11) to
develop a model-free optimal PD control using deep learning
methods.

FIGURE 1. C-GAN based optimal PD control.

III. OPTIMAL PD CONTROL USING CONDITIONAL
GENERATIVE ADVERSARIAL NETWORK
The optimal PD control utilizing LQR requires the linearized
system (10) at a specific operating point x1. When the
robot model (10) is partially unknown, or the operating
points are altered, the LQR controller becomes unavailable,
necessitating the design of a new optimal controller. To tackle
this issue, we propose a gain generation scheme based on
a conditional generative adversarial network (C-GAN) that
provides a data-driven optimal PD control, independent of the
robot model or operating points. In this approach, we employ
a generative adversarial network (GAN) to realize the optimal
PD control.

The fundamental idea is to use a model to learn the
probability distribution of the optimal controller at the
operating point x1. We use GAN to generate p (ui) . We use
a two-player game [25], wherein one player is a generator
that creates samples aiming to have the same distribution as
the training data, while the other player is a discriminator
that evaluates the samples to determine their authenticity. The
generator is trained to deceive the discriminator.

To generate the controller gains using input (u) and output
(x) data, a conditional GAN (C-GAN) is utilized. The
C-GAN comprises six essential blocks: latent space (noise),
conditioning signal space, truth space (mode-based LQR),
generator, discriminator, and loss function. The structure of
the C-GAN optimal PD control is illustrated in Figure 1.

The basic idea of a GAN is a two-player game [25]. One
player is a generator that creates samples intended to have the
same distribution as the training data, while the other player
is a discriminator that examines the samples to determine if
they are real or fake. The generator is trained to deceive the
discriminator. To generate the controller gains using input
and output data, a conditional GAN (C-GAN) is used. The
C-GAN includes 6 essential blocks: latent space (noise),
conditioning signal space, truth space (mode-based LQR),
generator, discriminator, and loss function.

1) Latent space. The latent space is noise space, it is

Z = {zi}, zi ∼ N (0, 1) (12)

where zi are components, zi are normally distributed random
numbers with normalized amplitude under Z =

Z
max{|Z |}

.
2) Conditioning signal space. The C-GAN utilizes

information from the dynamic system in two ways. Firstly,
when the parameters of the dynamic system can be identified,
C-GAN can directly use the parameter vector as
a conditioning vector. Secondly, when the parameters are not
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available, C-GAN can utilize input-output data as conditional
information. Both of these approaches can be considered
as processes of nonlinear system modeling. In this paper,
we assume that the parameters are unknown, and therefore,
we employ the control signal u applied to the system as an
input signal, and the state of the system x as the output to
establish the conditional signals.

3) Truth space: The truth gains are the solution of optimal
PD control based on (A1,B1) and the Riccati equation. The
truth probabilistic space is defined as (KT ,ET ,PT ), where
KT is the sample space of truth gains, ET is the event variable
at the operating point x1, and PT is the probability function
given by

PT : ET → [0, 1], PT (ET ) =

∫
prdτ

where pT is the probability distribution of the truth gains,
ET ∼ pT

4) Generator: The generated probabilistic space is defined
as (KG,EG,PG), where KG is the sample space of generated
gains, EG is the event that stabilizes the nonlinear system in
the neighborhoods of the operating point x1, and PG is the
probability function given by

PG : EG → [0, 1], PG(EG) =

∫
pGdτ

where pG is the probability distribution of the generated gains,
EG ∼ pG. The generator is an application that associates an
input of the latent space Z as in (12), with a gain of the space
KG, conditioned by the control u and the state x,

G : Z × U × X → KG (13)

5) Discriminator: The discriminator is responsible for
distinguishing between the input vectors ET ∈ KT and
EG ∈ KG. It computes the probability p(a ∈ K ) of correctly
identifying whether a comes from the true distribution KT
or the generator’s distribution KG. It also takes as input
the conditioning signals for both input and output, which
complement the generated gain vector. The discriminator
produces ‘‘valid’’ gains if its distribution matches that of the
true distribution. This mapping can be expressed as follows:

D : K × U × X → P (14)

where P is a probability. The discriminator is defined as a
function that takes a gain k ∈ K as input and outputs the
probability that k ∈ KT . This function can be parameterized
with θD as:

p(k ∈ KT ) = D(k, u, x; θD) (15)

or

p(k ∈ KG) = 1 − D(k, u, x; θD) (16)

6) Two-Player Game: The two-player game is represented
by equations (26) and (15), which are both differentiable with
respect to their inputs and parameters. Each player has a cost
function that depends on the parameters of both players. The

discriminator aims to minimize JD(θD, θG) by optimizing
over θD alone [26]. Conversely, the generator seeks to
minimize JG(θD, θG) by adjusting its own parameters θG

only. We define θD ∈ 2D and θG ∈ 2G as the discriminator
and generator strategies, respectively. The strategy spaces are
denoted by 2D and 2G.
We define the probability distribution function of the

generated space pG as a function parameterized by the
parameters θG, pG(KT , θG). The training goal is to estimate
θG, which can be achieved by maximizing the likelihood
between the spaces KT and KG:

θG∗
= arg max

θG
EKT∼pT log pG(KT ; θG), (17)

which can be considered as a minimization of the diver-
gence KL

θG∗
= arg min

θG
DKL(pT (KT )||pG(K ; θG)). (18)

whereDKL is the Kullback-Leibler divergence (KL distance),
defined by

KL (p (a | x) ∥p (b | x)) =

n∑
i

pi (b | x) log
(
pi (b | x)
pi (a | x)

)
(19)

Then the generator produces KG with the same probability
distribution of pT

pT (K ) = pG(K , θG) (20)

The player cost functions are

JD, JG : θD × θG → R (21)

Then we have a local Nash equilibrium (θD, θG) if

∂JD

∂θD
= 0,

∂JG

∂θG
= 0 (22)

and

∂2JD

∂θD
2 ≥ 0,

∂2JG

∂θG
2 ≥ 0 (23)

Since the discriminator function can be interpreted as a binary
classifier to distinguish between true and false, it is beneficial
to use the cross-entropy function for binary classification as
the cost function for the discriminator, as suggested by [25].
The cross-entropy function can be defined as follows:

JD = EkT∼pT (kT )[logD(kT , u, y; θD)]

+ Ez∼pz(z)[log(1 − D(G(z, u, y; θG)), u, y)]

Then,

JD = EkT∼pT (kT )[log(p(kT ∈ KT )]

+ Ez∼pz(z)[log(p(kG ∈ KG)]

Considering the game as zero-sum,

JG + JD = 0 (24)
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FIGURE 2. Optimal PD control using neural networks.

The objective function of the GAN is

min
G

max
D

V (D,G), V (D,G) = JG = −JD (25)

Once the GAN has been trained, G becomes a mapping
from the latent space to the generated gain space, conditioned
by the response of a dynamic system. Specifically,

KG = G(Z , u, x, θG) (26)

where θG is the parameter vector.

IV. OPTIMAL PD CONTROL USING NEURAL NETWORKS
The above GANmethod provides us with the probability dis-
tribution p (u1) of the optimal controller. However, we require
the probability distribution under different operating points
x or various unknown uncertainties, denoted as p (ui | u1).
The use of these signals as conditioning factors for the GAN.
By employing the signals (u, x), the generator can identify
the system online and produce a gain corresponding to an
LQR controller, without requiring the linearization of the
network or the identified model, as in the case of instant
linearization [27].
To achieve this, we employ Bayesian inference to gen-

erate the probability distribution of the optimal controller
p (ui | u1) at different operating points xi

p (ui | u1) = p (x | ui) p (ui) =
p (u1 | ui) p (u1)∑

p (x)
∝ p (u1 | ui) p (u1) (27)

where ui is the optimal controller at the operating point xi,
or at the operation condition (with unknown disturbances).
p (ui | u1) is the probability property (posterior distributions)
of ui under the the probability distribution u1. p (u1) is
from the GAN model (prior distribution), p (u1 | ui) is the
likelihood, which will be modeled by deep neural networks
in the case of u1. The structure of the GAN based method is
shown in Figure 2.

We use the following neural network model to generate the
likelihood p (u1 | ui) . The inputs to the generator of GAN
(u, x), are also the input to the neural networks. LSTM is
a suitable method for identifying nonlinear systems when
the data is sequential [28]. The assumption that (u, x) are
sufficient for identifying the system. Because

p (a | b) =
p (b, a)
p (b)

, E [b|a] =

∑
x

bp (b|a) (28)

the neural network modeling in fact is to minimize the
likelihood distribution error as,

L =

n∏
i=1

p
(
θ i, x i

)
=

n∏
i=1

p
(
θ i|x i

)
p
(
x i
)

(29)

The objective of calculating p (x | ui) for the neural network
is to update the weights value. In order to maximize the
likelihood, we use the logarithm cost function,

E = − lnL = −

n∑
i=1

N∑
k=1

ln p
(
θ ik |x

i
)

−

n∑
i=1

ln p(x i) (30)

where N is the training data number.
1) Given that the control u and the system response x are

available, the structure of the GAN for identification can be
implemented as follows:

x̂ = σ (WO(k)[x(k − 1), u(k)]) tanh(x(k)) (31)

where

x(k) = σ (WF (k)[x(k − 1), u(k)])x(k − 1) (32)

whereWF andWO are the weights of the LSTM.More details
of the (31) and (32) equations are found in [28].
2) To compensate for the mapping between the identified

system and the gain KG, multilayer perceptrons are used as

K̂G = F(W9) (33)

where W is the weight matrix and 9 = [u, x]T is the input
vector.

The calculation process is shown in Algorithm 2.

Algorithm 1 Optimal PD Control Using Neural Networks
1: Sampled p(u1) from the GAN model
2: Calculated posterior p(ui|u1|)
3: Calculate the x̂(k) from neural model
4: Use x̂(k) as the observations to construct p(u1||ui)
5: Use p(u1||ui) to actualize the prior p(ui)
6: Calculate the new posterior p(ui|u1|)
7: Analyze the KL distance like KL =

−ln[p(ui|p(u1)/p(u1)] using the actual distribution
on the data p(ui)

Given that the stochastic gains p (ui) from GAN, it is
expected that the optimal gains will align with the character-
istics of the identified system p (x | ui). Moreover, we have
investigated the potential of achieving excellent tracking
performance for a more complex system than the one used to
train the GAN. This approach aims to develop an adaptable
controller capable of handling variations not only in system
parameters but also in system complexity, leveraging the
nature of GANs. Importantly, the generator produces gains
based on the same distribution as the truth space formed by
LQR-conditioned controllers.
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V. ANALYSIS OF CONVERGENCE AND STABILITY
Analyzing convergence and stability is a fundamental aspect
when designing and implementing control systems. In the
context of the proposed LSTM-GAN optimal PD control,
it is crucial to ensure that the system remains stable and
converges towards the desired output. The convergence of the
generator and discriminator networks plays a pivotal role in
achieving optimal gains to stabilize the system and ensure its
high performance. Therefore, a comprehensive analysis of the
LSTM-GAN’s convergence and stability is essential to assess
the effectiveness and reliability of this control approach.

Several methods can be employed to scrutinize the conver-
gence and stability of the LSTM-GAN, including examining
training curves, evaluating loss functions, and monitoring the
generator and discriminator networks’ outputs. Additionally,
techniques such as Lyapunov stability analysis can be used
to assess the stability of the closed-loop system. Conducting
a thorough analysis of convergence and stability offers
valuable insights into the performance and dependability of
the LSTM-GAN optimal PD control, thus facilitating its
practical implementation.

Nonlinear dynamic systems can be represented by several
piecewise linear dynamic systems through the piecewise
affine modeling technique. This approach involves partition-
ing the state space of the nonlinear system into multiple
regions and approximating the nonlinear dynamics with
linear models within each region. Each region corresponds to
a specific operating points under which the system dynamics
can be considered linear.

We define the linearized system at the time slot τi = [t i0, t
i
f )

as

fi = Aix + Biu+ ζi (34)

where Ai =
∂f (x,u)

∂x |x=x
(
t i0
), Bi =

∂f (x,u)
∂u |x=x

(
t i0
), and ζi is

linear approximation error. We define the Heaviside unitary
function as rect(τ ) = H (t − t0) − H (t − tf ). With these
definitions,

fi = f (x, u, t)rect(τi) =


0, t < t i0

f (x, u, t) t i0 < t < t if
0 t > t if

(35)

So only in the time slot τi, fi is equal to f . In a finite time
interval (0,T ), there are finite time slot τi, i = 1 · · ·N ,

ẋ = f (x, u, t) =

N∑
i=1

f (x, u, t)rect(τi) =

N∑
i=1

(Aix + Biu) + ζ

(36)

where ζ =
∑N

i=1 ζi. The accuracy ζ of the approximation
depends on the choice of partitioning and the quality of
linearization at each region.
Lemma 1: For two random variables kT ∈ KT and kG ∈

KG, their distribution functions are φpT ∈ pT and φpG ∈ pG.

If their distributions are similar as

||φpT − φpG || < δ (37)

where ||φpT − φpG || =

√(∑2
i (φi,1 − φi,2)2

)
is the Frechet

Inception Distance (FDI), δ > 0, and high-order distance is
bounded as

ξ + δ < ϵ

where δ is the bound of FDI, ξ is the distance norm of higher-
order moments, ϵ the distance norm bound of all moments,
then kG and kT satisfy

||kG|| ≤ ||ϵ|| + ||kT || (38)

Proof: If two distributions pT and pG are equal, then

||φpT − φpG || = lim
n→∞

√√√√( n∑
i=1

(φi,pT − φi,pG )2
)

= 0 (39)

If the distributions are not equal, but similar, the Frechet
Inception Distance (FDI) is

||φpT − φpG || =

√(∑2

i=1
(φi,pT − φi,pG )2

)
+ limn→∞

√(∑n

i=3
(φi,pT − φi,pG )2

)
= 0

(40)

Combine (37) and (40),

||φpT − φpG || =

√√√√( 2∑
i=1

(φi,pT − φi,pG )2
)

+ ξ < δ + ξ < ϵ

This means ∀a ∈ KT ∃ā ∈ KG, then ||pT (a) − pG(ā)|| ≤ ϵ,or
||kT − kG|| ≤ ϵ. Using the triangle inequality

||kT − kG|| ≤ ||kT || + ||kG|| ≤ ϵ (41)

(41) is (38).
Theorem 1: If the distribution of LQR-PD φpT , and the

distributionsGAN-PDφpG , are similar as (37), then theGAN-
PD control

u = −kGx (42)

can stabilize the linearization model

ẋ = Atx + Btu (43)

asymptotically.
Proof: For the linear system (43), we define the

Lyapunov function as

V = xTPx, P = PT > 0 (44)

Applying C-GAN control (42) to the linearization model (10)
or (43),

V̇ = (Atx − BtkGx)TPx + xTP(Atx − BtkGx) (45)

From Lemma 1, kG satisfies (41),

||kG|| = ||ϵ|| + ||kT ||
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where ϵ = kG− kT , is the error between the LQR PD control
and C-GAN PD control. The LQR PD is

u = −kT x, kT = R−1BTP (46)

where P satisfies the Riccati equation,

ATP+ PA− PBR−1BTP+ Q = 0 (47)

Q ≥ 0 and R > 0 are the matrices in the cost function

J =

∫
∞

0
xTQx + uTRudt

Because ϵ >, kT > 0,

kG = ϵ + kT

Using (46) and (47), (45) becomes

V̇ = xT (ATt P− ϵTBTt P− (R−1BTt P)
TBTt P

+ PAt − PBtϵ − PBtR−1BTP)x

= xT (−ϵTBTt P− kTT B
T
t P− PBtϵ − Q)x

≤ xT (ϵT ϵ + PBBTP− kTT B
T
t P− Q)x

≤ −xTWx

Using LaSalle lemma, x is asymptotically stable
Theorem 2: If the distribution of LQR-PD φpT , and the

distributionsGAN-PDφpG , are similar as (37), then theGAN-
PD control

u = −kGx (48)

can stabilize the nonlinear system (1) or (9) and have the
optimal performance (8).

Proof:We definite the Lyapunov function as

V = xTPx, P = PT > 0 (49)

From Lemma 1 the nonlinear system can be expressed as the
following piecewise linearization systems

ẋ = lim
n→∞

n∑
t=1

(Atx + Btu) + ζ (50)

We calculate the derivative of (49) along with (50),

V̇ = lim
n→∞

{ [∑n
t=1(Atx + Btu) + ζ

]T Px
+xTP

[∑n
t=1(Atx + Btu) + ζ

] }
Using the GAN-PD control (48),

V̇ = lim
n→∞

{
(
∑n

t=1(Atx − BtkGx) + ζ )TPx
+xTP(

∑n
t=1(Atx − BtkGx) + ζ )

}
(51)

From Lemma 2, kG satisfies

ϵ = kG − kT
||kG|| ≤ ||ϵ|| + ||kT |

Using Theorem 1, any 3 = 3T > 0, and Riccati equation

ATP+ PA− PBR−1BTP+ P3P+ Q = 0 (52)

(51) becomes

V̇ = lim
n→∞


∑n

t=1 x
T (At − Btϵ − BtkT )TPx

+
∑n

t=1 x
TP(At − Btϵ − BtkT )x

+xTPζ + ζ TPx


≤ limn→∞

∑n

t=1

{
xT ((At − Btϵ − BtkT )TP+ ζ T3−1ζ

+P(At − Btϵ − BtkT ) + P3P)x

}
≤ limn→∞

∑n

t=1
(xTQx + ζ T3−1ζ )

≤ − limn→∞

∑n

t=1
xTQx + ζ̄

where ζ̄ = ζ T3−1ζ is the upper bound of LSTM
approximation error. So

lim
t−∞

(
lim
n→∞

n∑
t=1

∥x∥2Q

)
= ζ̄

All sates are bounded and convergence the upper bound of
the approximation error.

VI. APPLICATION TO LOWER LIMB PROSTHESES
he lower limb prosthesis we have designed is an active
control prosthesis, as described in [29]. It can be viewed as
a 4-degree-of-freedom (4)-DOF) robot, as shown in Figure 3.
The robot consists of one prismatic joint and three rotational
joints, which correspond to the vertical movement of the hip
and the rotations in the sagittal plane of the femur, knee, and
ankle. The transformer prosthesis is part of the femur, while
the lower part of the limb includes the knee, tibia, ankle, and
foot, and the rest is the residual limb.

FIGURE 3. Active lower limb prostheses.

The active lower limb prosthesis can be represented by (1)
and linearized using (9). For the first link, the matrices A and
B are given by

A =
∂f
∂x

|x=x0=

[
0 1

9.8
l

cos q1 −
1
m

]

B =
∂g
∂x

|x=x0=

[
0
10
ml2

]
(53)
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because for the first DOF, it is a pendulum as

ẋ1 = x2

ẋ2 = −
g
l
sin x2 −

k
m
x2 +

1
ml2

u (54)

Here, g = 9.8 and k = 1. We use the pendulum model (54)
to linearize each link of the prosthesis, as each joint does
not move in a large workspace, and the pendulums can be
assumed to have variable parameters. For example, changes
in the center of mass can be considered as variations in the
length of the pendulum.

The PD control law is given by

τ = kpe+ kd ė, e = qd − q (55)

where e is the tracking error.
The GAN is trained using only data derived from the

pendulum, and therefore, the generation of the truth space
is accomplished through the application of an LQR control
to the pendulum. This is because the pendulum serves as a
simplified model for a more complex system like lower limb
prosthetics. The objective is to verify whether the generator,
trained with a simple pendulum, can adapt to a more complex
system while maintaining a strong relationship in behavior.
Each joint of the robot is viewed as a set of pendulums with
variable parameters, where the movement of a lower link can
be interpreted as a displacement of the center of mass of a
pendulum, which can be further understood as a variable-
length pendulum.

The truth space consists of the KT values that produce the
control by solving the Riccati equation and optimizing (8) for
the following expression:

Q =

[
Q1 0
0 Q2

]
(56)

with

Q1 = 2877.8(ml)2 + 22.765ml − 1.2698 (57)

Q2 = Q1/10 (58)

and R = .1. (57) was obtained through interpolation in such
a way as to ensure a tracking error less than 0.05.

We train the systemwith different parameters: l ∈ [0.2, 2] ,
m ∈ [0.4, 4] , x0 ∈ [1, 6]. There are 700 samples.
Input and output signals were generated by varying the

excitation signal from 1 to 6 for each system, and the control
signals u received by the system were measured. These
control signals were considered as the input signal for training
the GAN. The trajectory tracked by the system, denoted by y,
was saved as the output signal for the training data. To obtain
this output signal, the system was first stabilized with the PD
obtained by LQR, using the parameters described above.

The Generator in Figure 1 has three inputs: the control
signal u of the system, the tracked trajectory y, and a
one-dimensional Gaussian noise vector z. It has two outputs,
Kp and Kd . We used LSTM neural networks and two multi-
layer perceptrons (MLP) to learn them. The approximation

structure consisted of an LSTM with 3 layers, each with
10 nodes, and an MLP with 2 layers, each with 2 nodes. The
inputs to the discriminator were the gains Kp and Kd , as well
as the input-output of the system (u, y). The loss function for
the discriminator was defined as follows:

LD = −E [log(D(kT , u, y))] − E [log(1 − D(G(z, u, y), u, y)]

(59)

while the loss for the generator is defined as

LG = −E [log(D(G(z, u, y), u, y)] (60)

To improve the variability of the generator, a random change
of associations between the truth space and the conditioning
signals is considered. The probability of a random flip is set
to pf = 0.2. The optimization algorithm used in Figure 1 is
Adam. The GAN-PD control is given by:

u = Kg(z, u, y)e (61)

The histograms depicted in Figure 4 show the truth space
and generated space. The Frechet Inception Distance (FDI)
values for Kp and Kd are 31 and 56, respectively. These
values are high, indicating that the variances are significant.
Therefore, there is still room for improvement of the GAN to
obtain a more appropriate generation.

Figure 5 depicts the scores obtained by the generator
and discriminator throughout the training process. It can be
observed that an optimal point has been reached in the two-
player game, where the generator can no longer enhance the
gains it generates and the discriminator can no longer improve
its ability to differentiate between the generated K and the
true K . Furthermore, it is evident that the generator score
remains approximately constant at 0.4, while the discrimina-
tor score hovers around 0.5. This is attributed to the random
parity disruptions between the truth space and the condition-
ing signals that were applied to achieve greater variability.

To validate the good performance of the proposed GAN-
PD, we switched from a plastic to a steel prosthesis. Plastic
prostheses are low-cost and are sufficient for functional
implementation in various applications. Figure 6 shows the
tracking results of the hip, thigh, knee, and ankle. We can
see that GAN-PD is capable of satisfactorily controlling the
prosthesis with plastic elements, maintaining small errors
comparable to PD.

For the steel prosthesis, the densities of the materials
were changed from 920kg/m3 to 7850kg/m3. Figure 7 shows
the tracking results of the steel prosthesis with the same
LSTM-GAN PD control. Clearly, classical PD control fails
to follow the desired trajectory since this controller is a linear
control that can only control the system for which it was
designed and possibly one with slight variations. However,
GAN-PD can stabilize the prosthesis after modifying the
density of the materials without making any modifications to
the controller.

Finally, we compare our GAN-PD with several other
controllers, including classical PD (PD), classical linear
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FIGURE 4. Histogram of gains.

FIGURE 5. Scores of LSTM-GAN training.

control (LQR), PD control with LSTM (PD-LSTM), and
LSTM-based LQR control (L2). The results are summarized
in Table 1. We can see that the PD, LQR, and PD-LSTM

FIGURE 6. Plastic prosthesis.

TABLE 1. Comparison of varying mass pendulum.

controllers have similar performance, with a large error when
the mass changes. Among these three, the PD-LSTM shows
better tracking when the mass corresponds to what was
considered to design the controllers, but it fails to track the
reference for different masses. On the other hand, L2 and
GAN-PD show similar performances, but L2 exhibits oscilla-
tions at the instants of mass change, while GAN-PD is more
stable and maintains a lower tracking error. Furthermore,
it is observed that the error remains bounded according to
the predefined performance in the truth space, i.e., an error
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FIGURE 7. Steel prosthesis.

less than 0.05, as shown in Table 1. It is also observed that
GAN-PD produces the smallest errors in the face of mass
variations, while NARMA-L2 presents an error of less than
0.05 when the mass is 0.5kg and 2.5kg, but not for the mass of
6.5kg, where it presents a greater error of 0.06. These results
demonstrate that the performance of GAN-PD is generally
better than the controllers that were implemented for compar-
ison. Figure 8 illustrates the comparison of the performance.

It is important to note that, in our implementation, even
though the truth space is small and based solely on a particular
nonlinear system, the pendulum, the generated controls are
capable of adapting to a robot with four degrees of freedom,
which not only includes rotational joints, more affine to
the pendulum, but also prismatic joints. A great connection
between the dynamics of both systems is possible, and the
conditioning signals as the input and output of the system are
adequate.

By comparing our work with previous studies on image-
based GANs, we note that having a truth space with a wide

FIGURE 8. Comparison of the controllers.

variety of systems would allow for a control system that
is adaptable to any system. In general, it is necessary to
have a base structure that generates all the space of systems,
making it possible to control any kind of system. This is one
of the most important characteristics of GANs, the ability
to generate, rather than just map like a standard neural
network, and we exploit this property here. Alternatively,
it is possible to define a characteristic that works as a
conditioning signal that identifies any system. We believe
that including inverse convolutional filters that receive the
output and the input would generate that conditioning signal
that identifies the system, since the response of the system is
given as the convolution between the system and the input.
The conditioning scheme can be extended so that the system
is conditioned, for example, by the reference signal and the
error, which could even generate control signals directly
without the need for the base structure of the PD.

VII. CONCLUSION
In this paper, we propose a mechanism for designing optimal
control using GAN and LSTM. Our proposed controller
has numerous advantages over other controllers such as
PID control, neural control, and other robust controllers.
We explore the advantages and applicability of C-GAN,
which allows conditioning signals to adapt to time-varying
systems. We believe that this can be further extended by
considering a database with a greater number of controllers
and different types of controllers. It is possible to establish the
weights of the LQR as conditions or choose between various
controllers. With an additional intelligent system, we can
obtain a scheme that chooses the most suitable control under
certain desired conditions.

Currently, we are working on expanding the controller
database, redefining the GAN architecture, and improving
the conditioning signals. These improvements will result in
a generator that can adapt to a wide range of systems and
achieve better performance.
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