
Received 12 March 2024, accepted 25 March 2024, date of publication 29 March 2024, date of current version 10 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3382994

Channel Pruning Method Based on Decoupling
Feature Scale Distribution in Batch
Normalization Layers
ZIJIE QIU , PENG WEI, MINGWEI YAO, RUI ZHANG, AND YINGCHUN KUANG
College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China

Corresponding author: Yingchun Kuang (475839672@qq.com)

This work was supported in part by the National Science Foundation of China under Grant 61972147, in part by Shanghai University IPv6
Scale Deployment Innovation Integration Demonstration Application and IPv6 Network Support Capability Improvement Project under
Grant 2021-2022-JCSS-01003, and in part by the Based on 5G+AI Data-Driven 020 Integrated Immersive Teaching Platform Project
under Grant 202201026.

ABSTRACT Pruning and compression of models are practical approaches for deploying and applying deep
convolutional neural networks in scenarios with limited memory and computational resources. To mitigate
the impact of pruning on model accuracy and enhance the stability of pruning (defined as the negligible drop
in test accuracy immediately following pruning), an algorithm for reward-penalty decoupling is introduced
in this study to achieve automated sparse training and channel pruning. During sparse training, the influence
of unimportant channels is automatically identified and reduced, thereby preserving the ability of the
important channels for feature recognition. First, by utilizing the gradient information learned through
network backpropagation, the feature scaling factors of the batch normalization layers are combined with
the gradient to determine the importance threshold for the network channels. Subsequently, a two-stage
sparse training algorithm is proposed based on the reward-penalty decoupling strategy, applying different
loss function strategies to the feature scaling factors of ‘‘important’’ and ‘‘unimportant’’ channels during
decoupled sparse training. This approach has been experimentally validated across various tasks, baselines,
and datasets, demonstrating its superiority over the previous state-of-the-art methods. The results indicate
that the effect of pruning on model accuracy is significantly alleviated by the proposed method, and pruned
models require only limited fine-tuning to achieve excellent performance.

INDEX TERMS Neural network, structured pruning, model compression, neural network lightweighting,
automatic pruning, pruning stability.

I. INTRODUCTION
Remarkable success is achieved by a Convolutional Neural
Network (CNN) in the realm of computer vision because of its
deeper andwider architecture. Its applications are widespread
across academia and industry [1], [2], [3], [4], showcasing
prowess, particularly in tasks related to image classification,
detection, and semantic segmentation.

However, as tasks become more complex and demand
higher precision, the computational power and memory
requirements of the models also increase. This challenging

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

deployment on edge devices, such as small unmanned rotor-
crafts and fixed-wing aircraft, is observed. Consequently, the
development of lightweight models has become paramount
for edge devices constrained by computational limitations.
Feasible deployment and effective operation within these
constrained computational environments are ensured by these
models.

Currently, research on model lightweighting primar-
ily involves the following methods: 1. Model pruning;
2. Model parameter quantization [5], [6], [7]; 3. Model
knowledge distillation [8], [9], [10]; 4. Lightweight model
design [11], [12]. Pruning methods achieve compression
by removing redundant and unimportant parameters from

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 48865

https://orcid.org/0009-0007-2461-2641
https://orcid.org/0009-0007-6839-9037
https://orcid.org/0000-0002-3945-4363

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

large models. Quantization methods involve quantizing
high-precision parameters in the model to low precision,
thereby achieving compression. Knowledge distillationmeth-
ods use a large model to guide the training of a smaller
model, reducing computational cost while retaining effective
information from the large model. Lightweight model design
methods reduce the size of feature maps by directly modify-
ing the model architecture, thereby reducing computational
cost. This studymainly focuses onmodel lightweighting from
the perspective of model pruning.

Current network pruning techniques typically follow
three steps [13], [14]: 1) pre-training or sparse training:
training the original network; 2) pruning: unimportant
neuron connections or channels are eliminated; and 3) fine-
tuning: the pruned network is refined through fine-tuning.
Significant accuracy loss after pruning is suffered by most
existing pruning methods, rendering the pruned models
unusable without subsequent fine-tuning. The substantial
decrease in model accuracy after pruning can be attributed
to the fact that determining the importance of neurons or
channel feature maps is the primary focus of most pruning
methods, overlooking the pruning stability [15] (defined as
the negligible drop in test accuracy immediately following
pruning) of the model. A network with poor pruning
stability often fails to achieve accurate pruning, resulting in
suboptimal accuracy performance even after fine-tuning the
model.

To address the challenges mentioned above, this paper
presents a decoupled sparse algorithm based on the distri-
bution of batch normalization layers for channel pruning
in convolutional neural networks(referred to as DSD). The
primary objective is to enhance the quality of sparse
training, ensuring that the model exhibits excellent pruning
stability after sparse training, and guarantees no significant
difference in accuracy performance before and after pruning.
The evaluation metric for determining channel importance
integrates the scaling factors of the batch normalization layer
and gradients. A two-stage reward-penalty decoupled sparse
training algorithm was devised to achieve precise sparse
training. Comparative experiments demonstrated that DSD
outperformed the state-of-the-art methods in classification
and detection tasks. The main contributions of this study are
summarized as follows:

1) The method devises a channel-level importance decou-
pling threshold that combines batch normalization
layer feature scaling factors and gradients. This thresh-
old accurately distinguishes between the important and
unimportant channels.

2) Introducing a two-stage reward-penalty-based decou-
pled sparse training approach. This method consists
of a decoupled sparse phase and decoupled fine-
tuning phase. Different reward or penalty strategies
are applied to channels of varying importance in each
stage, enhancing the pruning stability of the model and
effectively mitigating the issue of the accuracy drop
associated with pruning.

3) The effectiveness and universality of the proposed
method were validated through experiments on bench-
mark models across various renowned classification
and object detection datasets.

II. RELATED WORK
As a technique aimed at achieving a lightweight model, the
focus of model pruning is fundamentally the identification
of the optimal subnetwork. The research conducted by
Denil et al. [16] proposed that significant redundancy exists
in the weight parameters of deep neural networks. It is
suggested that a comparable or even superior performance to
the original network model during training can be achieved
by predicting the remaining weights using only a small
portion. Moreover, the hypothesis proposed by Frankle and
Carbin [17] posits that, within each large-scale network, there
exists a smaller subnetwork. This subnetwork requires no
specific initialization and can achieve a test accuracy similar
to that of the original network over similar training iterations.
This hypothesis is further supported by Zhou et al. [18],
who provided additional evidence for the authenticity and
practicality of this concept.

Pruningmethods are encompassed by twomain categories:
non-structured pruning [19] and structured pruning [44].
Non-structured pruning involves the removal of neural
connections (weights) within a neural network, resulting
in non-structural sparsity. Although high compression rates
are often achieved through non-structured pruning, specific
hardware or library support is required to realize tangible
acceleration. In contrast, all filters are eliminated from
the neural network through structured pruning, utilizing
efficient standard hardware such as the Basic Linear Algebra
Subprograms (BLAS) library to achieve acceleration and
compression [20].
Importance assessment is the primary focus of pruning

studies, as exemplified by unstructured pruning techniques
referenced in [18], [19], [21], and [22]. Typically, these
methods employ weight importance evaluation to determine
weight pruning in models. Pruning operations typically
involve zeroing model weights, thereby influencing the
neural connections and simulating the outcomes of weight
trimming. Although preserving the model accuracy is more
readily facilitated through weight pruning, the resulting
convolutional kernels and feature maps manifest sparsity
interspersed with irregular zeros. Achieving lightweight
model deployment becomes challenging without specific
hardware or software support, owing to the observed
sparseness after pruning.

Hence, a shift in research focus toward more struc-
tured methods for eliminating redundant channels has been
observed, as evidenced in studies such as [23], [24], [25],
[26], [27], [28], [29], [30], [31], and [32]. The distinguishing
factor is found by extending the granularity of the importance
assessment from the level of weights to that of the channels.
Slimming [25] implemented a penalty-based channel pruning
factor technique to induce matrix sparsity, but encountered

48866 VOLUME 12, 2024

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

challenges in precisely detecting redundancy. In the work
of [23], rank evaluation was performed on feature maps
generated by specific channels, discarding those with low
ranks as indicative of redundancy. However, feature map-
pings are approached on a per-channel basis, overlooking the
interrelations between the channels. Investigations into the
approach in [24] include the introduction of trainable masks
related to class label post-channels to achieve redundancy
analysis. Nonetheless, the applicability of this method is
limited to object classification, and lacks generality.

In recent studies, model-pruning techniques have been
applied to remote sensing image classification, object detec-
tion, and semantic segmentation models. The research in [33]
introduced a novel frequency-domain-based filter pruning
method, aligned with the human visual system, to deter-
mine filter importance based on relative low-frequency
components across channels. In [34], a data-customized
multi-objective optimization pruning (DMOP) framework
was proposed for pruning in remote sensing scene image
classification. This framework utilizes a multi-objective
evolutionary algorithm (MOEA) to determine the balance
between the CNN pruning ratio and capability. It also incor-
porates a data-customized surrogate mechanism, reducing
the size of input datasets to expedite the pruning evolution
by streamlining the structure of the pruned subnetwork.
Furthermore, [35] proposed a structured detector sparse
pruning strategy that employs channel proportion factors as
representations of weight importance. This method prunes
network channels and employs a teaching assistant distilla-
tion model to recover compressed network performance.

III. METHODS
A. NOTATIONS
Assuming a convolutional neural network architecture with
a set of L convolutional layers, L i represents the ith layer
of the model. The parameters of all convolutional kernels in
the ith layer can be expressed as a set of three-dimensional
filters, defined as KLi =

{
K i
1,K

i
2,K

i
3, ,K

i
ni

}
∈

Rni×ni−1×ki×ki , where K i
j ∈ Rni−1×ki×ki is defined as the jth

filter of the ith layer, ni and ni−1represent the number of filters
in the ith layer and in the i− 1 layer, respectively. The filters
and channels have a one-to-one correspondence, where each
channel corresponds to the output result of the convolution.
ki is the filter size. The complete set of filters for a model can
be defined as Θ =

[
Ki

]
(∀1 ⩽ i ⩽ L).

Each output of a convolutional layer is termed a feature
map, defined as FLi =

{
F i1,F

i
2,F

i
3, ,F

i
ni

}
∈

Rni×b×hi×wi , where the jth feature map(channel) of the
ith layer is represented by F ij ∈ Rb×hi×wi , where b denotes
a mini-batch. hi and wi are the length and width of the feature
map, respectively.

Pruning segregates the channels of the model into
two groups: retained channels(filters), defined as RL ={
KR1

,KR2
,KR3

, ,KR
n1

}
, and pruned channels(filters),

defined as UL =
{
KU1

,KU2
,KU3

, ,KU
n2

}
. Here,

R represents the importance indicator for channels(filters)
and U signifies the insignificance indicator. n1 and n2 denote
the numbers of important and unimportant channels(filters),
respectively. n, n1, and n2 represent the total number of
channels(filters), important channels(filters), and unimpor-
tant channels(filters), respectively, in the entire model. RL ∪
UL = KL , RL ∩ UL = ∅, and n1 + n2 = n are stipulated.

B. BATCH NORMALIZATION
In convolutional neural networks, a common practice is
to include a batch normalization layer [36] after the
convolutional layers to enhance the efficiency of network
training. The parameters of the BN (batch normalization)
layer can be denoted as a set consisting of [τ, β] elements,
where each set correlates with the channels of the feature
maps from the convolutional layer. The parameters of
all BN layers in the ith layer can be represented as
BnLi =

{
Bni1,Bn

i
2,Bn

i
3, ,Bn

i
ni

}
∈ Rni×2, where the

parameters of the jth BN layer in the ith layer are defined
as Bnij ∈ R1×2.

BN involves two steps. First, it normalizes the F ij ,
transforming the parameter distribution in F ij to a normal
distribution with a mean of 0 and variance of 1. This
normalized distribution was then reverted using the learnable
parameters γ and β. This process can be expressed by the
following formula:

ẑ =
F ini − µ
√

σ 2 + ϵ
, zout = τ ẑ+ β. (1)

where σ and µ represent the mean and standard deviation
of the input activation, respectively, and τ and β denote the
channel feature scaling and shifting factors for ẑ.

The normalization process reshaped the feature map into a
standard normal distribution with a mean of 0 and standard
deviation of 1. τ and β restore the expressive capacity of the
model. Each set corresponded one-to-one with convolutional
filters, and the channel scaling factors directly reflected
the restoration capability of the BN layer. Therefore, τ

can be perceived as an indicator of the significance of the
convolutional layer channels. When τ was closer to 0, the
associated channels were less crucial and could be pruned
without significantly affecting the final loss of the model.
Conversely, when τ was further from 0, the corresponding
channels were more critical, warranting retention.

The τ usually formed a normal distribution with a mean of
zero, which did not effectively distinguish between the impor-
tant and unimportant parameters. Through experimentation,
it were observed that when the channel scaling factors τ of the
Batch Normalization (BN) layer conformed to a decoupled
distribution, this distribution accurately distinguished the
redundancy present in the parameters.While ensuring that the
non-redundant parameters remained unaffected, the weights
of the redundant parameters were minimized, ensuring that

VOLUME 12, 2024 48867

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

FIGURE 1. The distribution decoupling diagram of channel importance
based on batch normalization(BN) layers scaling factors was presented in
Figure (scaling factors are taken in absolute values). In the distribution
chart, scaling factors clustered around 0 were categorized as
‘‘unimportant channels,’’ while those far from 0 were identified as
‘‘important channels.’’

these parameters had a minimal impact on the performance of
the model, as depicted in Fig. 1. The VGG model trained on
the CIFAR-10 dataset [37] was employed in the experimental
setup. The sparsed model achieved an accuracy of 93.8%.
Post-pruning the unimportant section on the left (with a
90% parameter pruning rate), the accuracy reached 93.4%.
Evidently, this distribution minimally affected the model’s
accuracy after pruning (i.e., maximizing stability).

The distribution of the BN layer scaling factors, suitable
for pruning operations is shown in Fig. 1. It was suggested
that the distribution adhered to the following guidelines: the
channel scaling value τ of the BN layer was divided into two
parts: U (which would be pruned) converging to zero and
R (retained) moving away from zero.

C. DSD
Based on the analysis in the previous section, a new two-stage
model sparsity pruning method is introduced, as illustrated in
Fig. 2. As shown in the figure, a reward-penalty decoupled
sparse strategy was initially employed for sparse training on
a baseline model. Subsequently, decoupled fine-tuning was
applied to the model after the decoupled sparsity. Finally,
the model underwent pruning and reconstruction using the
‘‘pruning-torch’’ framework [38].

1) SPARSITY PENALTY TERM
A straightforward approach was applied to induce sparsity in
the τ and β of the BN layers, resulting in a sparse model. This
method was based on the sparsity loss function introduced
in [25]. The detailed formulation of the sparsity loss function
is as follows.

Loss =
∑
(x,y)

l (f (x,W) , y)+ λ
∑

g (τ, β) (2)

The definitions of x and y represent the training input
and labels, respectively, whereas W refers to the trainable
weights. The first term denotes the training loss, whereas g (·)

serves as a sparsity penalty for (τ, β), λ is aimed at balancing
the two components.

The L1 loss was adopted as a penalty term, formulated as
follows:

L1 loss (f (x, τ, β) , y) = ||τ, β||1 =
L∑
i

ni∑
j

|τi,j| ∪ |βi,j|.

(3)

| · | is the absolute value. The sparse formula can be
rewritten as follows:

Loss =
∑
(x,y)

l (f (x,W) , y)+ λL1 loss (f (x, τ, β) , y) . (4)

The standard loss function is represented by the first term
in the equation, and the second term denotes the L1 loss
penalty for τ and β.

2) IMPORTANCE DECOUPLING THRESHOLD
In the Slimming method [25], only the sparsity penalty
function g(s) = L1 loss = |s| is utilized for BnL , where no
importance analysis integration is performed to decouple the
sparsity from BnL . Based on the findings from Fig. 1 in the
preceding text, a revision of the sparsity penalty function
g (·) is required by incorporating an important decoupling
mechanism. The inspiration was drawn from [21]. In each
iteration of the training process, the image data were fed
into the model, gradients were computed using chain rule
differentiation, and a metric was subsequently calculated for
each τ . The incorporation of gradients into the feature impor-
tance metric function allows for the consideration of neuron
or channel correlations using a first-order Taylor series,
resulting in a more precise measurement of importance.
τ with concurrently high absolute values in both gradient and
weight, received higher feature importance metrics, thereby
incentivizing τ to shift away from zero. Conversely, τ with
lower absolute values in both the gradient and parameter was
penalized, causing τ to move toward zero. In the training
process, the product of the gradient and parameter was
employed as the feature importance metric. Let T

(
x, y, τi,j

)
represent the metric value for the jth scaling factor in the ith

layer. The detailed formula is as follows:

T
(
x, y, τi,j

)
=

∣∣∣∇τi,j × τi,j

∣∣∣ . (5)

In the above formula, ∇τi,j was defined as a batch of
training iterations’ gradients for τi.j. Each time the model
computed the gradients, a set of metrics represented by
T (x, y, τ) ∈ Tτ was generated. This set of metric values
was arranged in a descending order to obtaining Tτ ↓.
The metric values were then decoupled into important and
unimportant components using a threshold value η. The
threshold is determined by the pruning rateQ, as shown in the
following formula:

n1 = n× (1− Q) (6)

η = n1_th in Tτ ↓ . (7)

48868 VOLUME 12, 2024

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

FIGURE 2. The DSD flow chart initiates with the ‘‘decoupling sparse’’ step, followed by ‘‘Decoupling fine-tuning’’, and concludes with channel
pruning on the refined sparse model.

Based on this threshold, importance-based decoupling
sparsity training can be performed on the model, rewarding
the important parts and penalizing the unimportant parts.

3) TWO-STAGE SPARSITY
To further mitigate the impact of pruning on model
accuracy, efforts have been made to enhance the stability
of sparse models for pruning through improved sparse
training strategies. During sparse training, the influence
of unimportant channels was forcefully minimized through
a decoupled penalty, ensuring that their removal did not
adversely affect the performance of the model. Conversely,
important channels were safeguarded through a decoupled
reward, preserving their original impact on the model.
To achieve this, distinct strategies were employed during
various stages of sparse training. Sparse training was divided
into two phases, as shown in Fig. 2. The initial phase,
termed ‘‘the decoupling sparsity stage,’’ incorporated a
rewarding-penalizing mechanism within the sparsity penalty
function based on a threshold. In the subsequent phase,
identified as ‘‘the decoupling fine-tuning stage,’’ the model
was segmented into important and unimportant components
using the threshold, allowing only the significant filters to
undergo parameter updates.

a: DECOUPLING SPARSITY
During the decoupling sparsity stage, the previously obtained
threshold was integrated into the sparse loss function as part
of the rewarding-penalizing phase. This resulted in further
modification of the sparse loss function of the BN layer.

Loss τp = l (f (x,W) , y)+ λL1 loss
(
f
(
x, τi,j

)
, y

)
(8)

Loss τr = l (f (x,W) , y)− λL1 loss
(
f
(
x, τi,j

)
, y

)
(9)

Loss βp = l (f (x,W) , y)+ λL1 loss
(
f
(
x, βi,j

)
, y

)
(10)

Loss τ=
∑
(x,y)

L,ni∑
i,j

{
Loss τp, if T

(
x, y, τi,j

)
⩽η

Loss τr , otherwise
(11)

Loss β=
∑
(x,y)

L,ni∑
i,j

{
Loss βp, if T

(
x, y, τi,j

)
⩽η

l (f (x,W) , y) , otherwise
(12)

In the above equation, Loss τp, Loss τr , and Loss βp
represent the loss functions of τ with the added penalty
regularization term, τ with the added reward regularization
term, and β with the added penalty regularization term,
respectively. Loss τ and Loss β represent decoupled sparse
loss functions for τ and β, respectively. By employing
threshold η, the scaling factors τ and offset factors β of the
BN layer were segmented into important and unimportant
components. The unimportant components were penalized,
whereas the important components were rewarded with the
opposite of the penalty term.

When penalizing the unimportant components of the
model, simultaneous penalization of the scaling value τ and
the offset value β is required. However, when rewarding
the important components of the model, only the scaling
value τ was subjected to a reward, and the offset value
β could not be simultaneously rewarded. This limitation
arises because rewarding the offset value β compromises
the precision of the model’s pruning. Hence, the reward
mechanism does not include offset factors β. Further
elaboration on this is provided in the section detailing ablation
experiments.

Sparsity training was conducted on the model using the
proposed sparsity loss function. After multiple iterations,
a novel distribution emerged that divided the τ distribution
into two segments: important and unimportant. This revised
distribution converged segments deemed unimportant during
network training toward zero while positioning those identi-
fied as important relatively distant from zero. Fig. 1 illustrates
the distribution pattern.

b: DECOUPLING FINE-TURNING PHASE
To enhance the pruning stability of the sparse network,
a decoupled fine-tuning stage was introduced following

VOLUME 12, 2024 48869

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

Algorithm 1 Pseudocode of DSD
1: for τ , β in model do
2: BN_Metrics← |τ × τ_grad | ▷ Computing the metric value for τ .
3: end for
4: t_position← (1− Q)× num_BN ▷ Determining the position of the threshold,where Q ∈ [0, 1]
5: top_bn_values← topk(BN_Metrics, t_position) ▷ Extracting the top t_position largest elements from BN_Metrics.
6: BN_Threshold ← top_bn_values[−1] ▷ Obtaining the decoupling threshold.
7: for epoch in range(epochs) do
8: for τ , β in model do
9: if epoch < Epochs of decoupled sparsity then ▷ Decoupled Sparsity Phase.
10: if BN_Metrics < BN_Threshold then ▷ Determine reward or penalty based on BN_Threshold .
11: l(f (x,W), y)+ λL1 loss(f (x, τ, β), y) ▷ Penalty
12: else
13: l(f (x,W) , y)− λL1 loss(f (x, τ), y) ▷ Reward
14: end if
15: else ▷ Decoupling fine-tuning.
16: if BN_Metrics < BN_Threshold then
17: no_grad (l (f (x, τ, β) , y)) ▷ Disable gradients of τ and β for the current update.
18: else
19: l (f (x,W) , y)
20: end if
21: end if
22: end for
23: end for

the decoupled sparse stage. The decoupled fine-tuning
stage involved refining the parameters near the importance
threshold and eliminating excessive human interventions
imposed during the reward-penalty decoupling phase through
self-training of the network. The formula for this phase is as
follows:

Loss τ=
∑
(x,y)

L,ni∑
i,j

{
l (f (x,W) , y) , if T

(
x, y, τi,j

)
> η

no_grad (l (f (x, τ) , y)) , otherwise

(13)

Loss β=
∑
(x,y)

L,ni∑
i,j

{
l (f (x,W) , y) , if T

(
x, y, τi,j

)
> η

no_grad (l (f (x, β) , y)) , otherwise

(14)

In this formula, no_grad (·) represents a specific operator,
indicating that gradients were not calculated when computing
this function. Penalty and reward terms were no longer
employed during the sparse fine-tuning phase. The gradients
of the unimportant parts were frozen, and only those of the
important parts were updated. This enabled the automatic
correction of biases introduced by human intervention in the
sparsity process, thereby effectively enhancing the stability
of the model for pruning.
After decoupling the fine-tuning, the importance indicator

factors τ were sorted and divided into two parts, n1 and
n2, based on the pruning rate Q. Finally, the pruning
framework [38] was employed to eliminate n2 through
pruning, followed by fine-tuning the pruned model.

D. IMPLEMENTATION OF DSD
DSD was elucidated using a pseudocode representation,
as shown in the pseudocode. 1. In the code, the pruning rate is
denoted by Q. λ is a sparsity parameter that balances loss and
penalty terms. Function topk (·) denotes extracting the top
thresholdPosition elements from the largest values in the list
’Metrics.’ Notably, the operator no_grad (·) is specialized,
indicating that the gradients of τ and β are not computed
when evaluating this function.

1) FEATURE IMPORTANCE THRESHOLD
During training, if the gradient and weight values of a certain
τ were high, their influence on the model was significant;
otherwise, their influence was minimal. Therefore, the
chosen importance metric is the product of the gradient
and parameter [21]. (as delineated in Lines 1 and 3 of
Pseudocode. 1)
Iterating the BN scaling factors within the model yields

the metric set T . They were subsequently sorted, and the
sorting metric set T in descending order, resulted in T ↓.
Utilizing pruning rate Q, an importance threshold η can be
selected from T ↓. Consequently, this threshold decouples
metric values into two categories: essential and non-essential.
(as delineated in Lines 4 and 6 of Pseudocode. 1)

2) DECOUPLED SPARSITY
A two-phase strategy was adopted to enhance the precision
of model pruning. In the first stage, integrated with the
threshold, the L1 loss sparsity function was optimized. Using

48870 VOLUME 12, 2024

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

this threshold, the scaling factors of the BN layer were
partitioned into essential and non-essential components. The
non-essential portion was subjected to heightened penalties,
whereas the essential portion received rewards. (as delineated
in Lines 10 and 14 as indicated in Pseudocode. 1)

When penalizing the non-essential components of the
model, it was necessary to punish τ and β. However, only τ

was rewarded when the essential components were rewarded
and β was not rewarded. This is because rewarding β shifts
the central point of the BN layer parameter distribution away
from 0, thereby affecting the precision of model pruning.

3) DECOUPLED FINE-TUNING
After obtaining the decoupled sparse model, the utilization
of the penalty and reward terms was prohibited. The gradient
of the non-essential components was frozen (set to zero),
and only the gradient of the essential components was
updated. This approach effectively compensated for the accu-
racy degradation caused by sparsification and significantly
improved the precision of the model pruning. (as delineated
in Lines 16 and 20 as indicated in Pseudocode. 1)

IV. EXPERIMENTS
A. EVALUATION METRIC
Tomaintain fairness and facilitate comparability of the exper-
imental results, the detection performance of the proposed
model was evaluated using the established metrics prevalent
in object classification and detection methodologies. These
metrics included accuracy, recall, F1 score and mean average
precision (mAP).

Accuracy was measured to assess the correctness of
the algorithm, whereas recall was used to evaluate the
comprehensiveness of the image recognition outcomes.
The F1 score served as a comprehensive metric for assessing
the detection accuracy of the model, representing the
harmonic mean of precision and recall. These metrics
collectively contributed to a robust and holistic assessment
of the model performance in object detection tasks.

Precision =
TP

TP+ FP
(15)

Recall =
TP

TP+ FN
(16)

F1 =
2 · Precision · Recall
Precision+ Recall

(17)

The formula above defined various terms: True Positive
(TP) was used to denote instances where both the detection
and ground truth values were positive. False Negative (FN)
was used to signify the count of misclassifications where the
detection result was negative while the Ground Truth was
positive. False positive (FP) were used to represent the count
of misclassifications where the detection result was positive,
while the Ground Truth was negative. True Negative (TN)
was utilized to indicate instances where the detection result
and the actual value were negative, reflecting the correct

identification of negative samples.

APi =
∫ 1

0
P(R)dR (18)

mAP =
1
C

C∑
i=1

APi (19)

The Mean Average Precision (mAP) was a pivotal metric
for assessing the performance of object detectors, as defined
in the provided formula. The area under the precision-recall
curve was quantified and averaged across all categories,
offering an overall measure of the model’s efficacy.

The model’s capability to detect partially overlapping tar-
gets at an Intersection over Union(IoU) threshold of 0.5 was
evaluated by (mAP0.5). (mAP0.5:0.95) extended this evalua-
tion by considering IoU thresholds ranging from 0.5 to 0.95.
This comprehensive assessment was accounted for by the
diverse degrees of target overlap, providing a thorough
understanding of the model’s performance under varying
conditions.

FLOPs represent floating-point-operations, indicating
floating-point calculations, essentially representing the
computational load. It is used to measure the complexity of
the algorithms or models. The number of model parameters
that gauge the scale or size of the model is referred to as
‘‘parameters’’. The calculation formula is as follows:(
2× Ci × K 2

− 1
)
=

(
Ci · K 2

)
+

(
Ci · K 2

− 1
)

(20)

FLOPs =
(
2× Ci × K 2

− 1
)
× H ×W × Co

(21)

The input and output channels are represented by Ci and
Co, the convolutional kernel size is denoted by K, and the
dimensions of the output feature map are indicated by H and
W.

B. EXPERIMENTAL TOOLS AND DATASETS
Experiments were conducted on three widely used datasets:
CIFAR-10 [37], COCO [39] and DOTA [40], with the aim of
validating the effectiveness of DSD in the domains of object
classification, object detection and remote sensing imagery.

The CIFAR-10 dataset was utilized for object classification
tasks and comprised ten classes, featuring 50,000 images for
training and 10,000 for validation.

MS COCO, which is short of Microsoft Common Objects
in Context, is regarded as one of the most popular and
authoritative datasets for object detection. It comprises over
100,000 images for object detection, covering 80 categories.
On average, each image contained 7.2 objects and many
small-scale objects.

DOTA is a large-scale public dataset for object detection in
remote sensing images that contains numerous objects with
rotation, high aspect ratios, and densely arranged patterns.
It consists of 2806 aerial images and 188,282 annotated
instances. DOTA V1.5 included a total of 16 classes, such as

VOLUME 12, 2024 48871

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

airplanes (PL), bridges (BR), large vehicles (LV) and ships
(SH), among others.

In the image classification tasks, VGG-16 [41] and
ResNet-56 [42] were utilized on the CIFAR-10 dataset.
YOLOv5m [4] was employed in the COCO dataset for object
detection tasks. In the remote sensing image detection task,
a variant of YOLOv5, known as YOLOv5-obb, was used in
DOTA v1.5, as referenced in [43]. It’s worth noting that all
experiments in this paper underwent pruning operations using
the pruner [38].

C. CONTRAST TEST
First, experiments were conducted on the classification task
using classic VGG-16 and ResNet-56 model architectures
on the CIFAR-10 dataset. The sparsity parameter λ for
VGGNet-16 and ResNet-56 was set to 5 × 10−4, with a
learning rate of 0.01, momentum of 0.9, weight decay of
0.0001 and images input size of 32*32 with a batch size
of 64. The SGD optimizer was used in this study. The
original networks underwent 300 epochs of sparse training,
followed by pruning. After pruning, the models were fine-
tuned for 160 epochs, utilizing the same parameters as
the decoupled sparse stage. In subsequent experiments, all
ResNet architecture networks omitted the channel-matching
layers within the residual blocks. Retaining these layers
ensured that the overall structure of the model remained
unchanged and unaffected by the pruning process.

1) VGG ON CIFAR-10
On VGGNet-16, the feasibility of the proposed DSD for
CIFAR-10 was validated, as shown in Table. 1. The table
shows a comparative analysis between DSD and other
advanced pruning methods, encompassing seven channel
pruning approaches (L1 [44], Slimming [25], GCN [45],
HRank [23], White-Box [24], ACP [29] and ELC [26]).
In Table. 1, the compression outcomes achieved by the DSD
are presented, indicating a 54.84% reduction in FLOPs and a
90.1% reduction in parameters. The most substantial param-
eter reduction was achieved by DSD, while concurrently
attaining optimal precision performance. Notably, the pruned
DSD surpassed the baseline accuracy by 0.76%.

TABLE 1. Results for pruning VGG-16 on CIFAR-10.

The DSD demonstrated slightly higher precision perfor-
mance than the task-specific white-box method; however, its
floating-point operations were 21.56% higher than those of
the white-box method. Compared to ELC, which employs

a similar decoupling approach and merging method, DSD
excelled across all metrics. When compared to methods
utilizing sparse self-training strategies (L1, Slimming,and
GCN), the approach exhibited superior performance in terms
of parameter reduction rate and accuracy. Moreover, the
performance of FLOPs surpassed that of L1 and Slimming,
marginally exceeding that of the GCN. In contrast to
single-shot pruning methods such as ACP, DSD excelled
in accuracy and parameter metrics while trailing slightly
in FLOPs.

2) ResNet-56 ON CIFAR-10
The feasibility of the proposed DSD on the ResNet-56
architecture was evaluated. In Table. 2, three distinct layer
compression outcomes achieved by DSD are presented:
DSD-0.6,which resulted in a 52.87% decrease in Parameters,
ECL-0.65 led to a 66.66% reduction in Parameters, and ECL-
0.7 showed a 71.26% reduction in parameters. Overall, as the
pruning rate increased incrementally, both the parameters
and FLOPs decreased gradually, leading to a corresponding
decrease in model accuracy. This perspective was fur-
ther substantiated in subsequent experiments using remote
sensing imagery. Superior performance within the ResNet
architecture was demonstrated by this method compared
with the VGG architecture,which included only convolutions.
At the pruning rate of 52.87%, the accuracy surpassed
that of the baseline by 0.59%. With a pruning rate of
66.66%, there was a substantial 69.23% reduction in FLOPs
while experiencing only a slight decrease in model accuracy
(-0.34%). At a pruning rate of 71.26%, there was a 76.92%
reduction in the FLOPs, but the model accuracy decreased
by 1.07%.

TABLE 2. Results for pruning RESNET-56 on CIFAR-10.

On ResNet-56, DSD was compared with eight channel
pruning methods (L1, Hrank, GCN, ACP, TPP, WHC,White-
Box, GAL-0.8,and ELC) and a neuron-based unstructured
pruning method (NISP). In comparison, relatively superior
performance was exhibited by the DSD. For instance,
ResNet-56’s FLOPs were reduced by 55.6% with a slight
increase in accuracy of 0.28% using White-Box. In contrast,
DSD-0.6 lowered the FLOPs by 61.53%, achieving a
0.59% accuracy improvement. Notably, when both models

48872 VOLUME 12, 2024

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

experienced nearly identical parameter decreases (66%),
DSD-0.65 outperformed GAL-0.8 by 1.34% in accuracy
while reducing FLOPs by 9.03%. Moreover, when DSD-
0.7 demonstrated similar accuracy decreases to ACP and
GAL-0.8 (-1.07% vs -1.36%, -1.68%), both the reduction
rates in FLOPs and parameters for DSD-0.7 surpassed those
of ACP and GAL-0.8.

3) YOLOv5 ON COCO
Tests were conducted on the COCO dataset for object
detection tasks, demonstrating the versatility of the DSD in
this domain. YOLOv5 was selected as the test model because
of its established research status and because it, provides a
comprehensive basis for evaluation.

The sparse parameter λ was set to 0.001, with a
learning rate of 0.01, images input size of 640*640, and
batch size of 64. SGD was employed as the optimizer,
and the remaining hyperparameters followed official code
specifications. Initially, the original network was subjected to
60 rounds of sparse training. Subsequently, the sparse-trained
model is pruned. Post-pruning, the model experienced fine-
tuning for 2000 rounds, employing identical parameter
settings as the sparse training phase. During the sparsification
and pruning phases, the convolutional layers preceding the
residual blocks in the backbone and channel-matching layers
(1*1 convolution) within the residual blocks were omitted.
Preserving these layers ensured that the overall structure of
the model remained unchanged and unaffected by the pruning
process. This rule was consistently followed in subsequent
experiments using YOLOv5.

Table. 3 illustrates the pruning outcomes of the DSD on
YOLOv5m. The pruning rate of the DSD on YOLOv5m
was meticulously adjusted to match the parameter count
of YOLOV5s (the official lightweight version). Superior
accuracy loss was exhibited by DSD when parameters were
identical compared to YOLOV5s (-1.96% vs -7.7%), yet
its FLOPs performance was lower than YOLOv5s (26.2M
vs 17M). YOLOv4-Tiny [49] streamlined the YOLOv4
model to 6.5M parameters, slightly fewer than DSD’s 7.3M,
but the model’s accuracy at 61.14% surpassed YOLOv4-
Tiny’s 42.6%. Compared with other pruning methods based
on YOLOv5m (YOLOX-S [50], Eagleye-YOLOv5m [51]
and PAGCP [52]), DSD demonstrated a 14.1% reduction
in parameters with a -1.96% accuracy decrease, show-
casing superior performance in these two aspects. DSD’s
FLOPs measured 26.2, slightly lower than YOLOX-S and

TABLE 3. Results for pruning YOLOV5 on COCO.

Eagleye-YOLOv5m (26.2 vs 26.8) and higher than PAGCP’s
(26.2 vs 23.5).

4) YOLOv5-obb ON DOTA
Rotational object detection tests were conducted on the
remote sensing dataset DOTA, demonstrating the versatility
of DSD in remote sensing detection tasks. YOLOv5-obb [43],
an improved version of the YOLOv5model tailored explicitly
for rotation object detection tasks, was selected as the test
model.

The sparsity parameter λ was set to 0.001, with a learning
rate of 0.01, image input size of 1024*1024, and batch
size of 64. The SGD optimizer was utilized, whereas the
remaining hyperparameters followed the guidelines provided
in the official code. Initially, the model underwent 200 train-
ing rounds on the DOTA dataset, using the resulting model
weights as the baseline. Subsequently, the original network is
subjected to 60 rounds of sparse training and pruning. After
pruning, the model underwent 200 rounds of fine-tuning,
employing the same parameter settings as those used in the
sparse training phase. It is important to note that because
of the high-resolution images in the DOTA dataset, which
might pose challenges for model processing, each image was
segmented into several smaller images, each 1024*1024 in
pixels.

Table.4 presents the pruning results of the DOTA dataset
using the DSD method. Pruning operations were conducted
on the model at various pruning rates to observe their
impact on the DSD training and pruning technique. The
performances of the after pruning and after fine-tuning
were specifically differentiated. The stability of the model
to pruning after sparse training could be observed from
the post-pruning accuracy of the pruned model, whereas
the post-fine-tuning model precision indicated the model’s
performance potential under the current pruning strategy and
rate, highlighting the actual expressive capacity of the pruned
model under these conditions.

Table.4 indicates that directly pruning the model with-
out sparse training significantly undermined the model’s
expressive capacity. However, employing DSD for sparse
training before pruning safeguards the expressive capability
of the pruned model. At a pruning rate of 59.78%, the
precision of the model was only 3% (mAP@.5) lower than
the baseline. After fine-tuning, the precision of the model
was nearly identical to the baseline. As the pruning rate
increased, there was a gradual yet limited decline in the
precision of the pruned model. At a pruning rate of 90.85%,
the precision of the pruned model decreased substantially.
However, after fine-tuning, the precision remained at 69%
(mAP@.5). At a pruning rate of 91.97%, the pruned model
became directly unusable and required fine-tuning to restore
its expressive capacity. After fine-tuning, the precision was
65.3% (mAP@.5), a 3.7% decrease compared to the precision
at the 90.85% pruning rate. This indicates that pruning
YOLOv5-obb using the DSD strategy reached the pruning
limit at a 90% pruning rate. Surprisingly, at a 59.78%

VOLUME 12, 2024 48873

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

TABLE 4. Results for pruning YOLOV5-obb on DOTA. (YOLOV5m-obb [43](baseline) mAP@.5:72.39% mAP@.5:.95:45.97% FLOPs:46.08 Parameters:21.66).

FIGURE 3. The heatmap illustrates the distribution changes of τ in the BN layer across different stages.

pruning rate, the FLOPs measured only 29.54G, which
outperformed the FLOPs performance at pruning rates
of 67.26%. It was speculated that, at a pruning rate of
approximately 60%, a model structure capable of balancing
FLOPs and precision was discovered by DSD.

The changes in the accuracy recovery of the pruned
YOLOv5-obb model using different pruning rates during
the fine-tuning stage are shown in Fig. 4. From the figure,

it can be observed that when the pruning rate is 59.78%,
the accuracy of the pruned model is comparable to that
of the fine-tuned model, achieving satisfactory performance
without fine-tuning. The trend of the accuracy recovery
remained consistent for pruning rates below 90.85%, and
by epoch 60, the accuracy of the pruned model could be
effectively restored to an optimal state. However, when the
pruning rate reached 91.97%, the detrimental effect of model

48874 VOLUME 12, 2024

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

FIGURE 4. The accuracy measurements of network feed-forward at each
epoch during the fine-tuning stage after pruning the model with different
pruning rates.(The left figure (A) corresponds to (mAP@0.5), and the right
figure (B) corresponds to (mAP@0.5:0.95).

pruning on accuracy became more pronounced, requiring
more fine-tuning iterations to recover. It is evident that the
model accuracy peaked after 90 epochs of fine-tuning.

The heatmap in Fig.3 illustrates the change in the BN layer
τ distribution, and further elucidates the operational principle
of pruning. The figure displays heatmaps of BN weights,
showing pruning rates of 56% for BNweights pruned without
using direct sparsity, and 59.78% after employing DSD to
prune the model.

The first image on the left portrays the distribution heatmap
of the BN weights from the pre-trained YOLOv5-obb model.
It was observaed that the distribution of the BN layer τ

in the original model was primarily concentrated between
0.9 and 1.30, relatively far from the origin at 0. This
distribution impeded model pruning because each BN τ

channel significantly affected the model output. The second
and third images on the left depict the distribution of the BN
layer τ after directly pruning and fine-tuning the pre-trained
model. Even after pruning and fine-tuning, the distribution of
BNweights remained predominantly within the 1-1.30 range.
This pruningmethod eliminatesmany necessary components,
severely compromising the expressive capacity of the model.

For comparison, the DSD sparsity strategy was employed
to induce sparsity in the pre-trained model. By accurately
identifying the importance, redundant channels were selected
and normalized through decoupled sparse training, ensuring
that these redundant channels did not significantly affect the
performance of the model. The results after sparsity induction
are depicted in the first plot on the right in Fig. 3, where
DSD effectively normalizes the non-essential BN layer τ to
approximately 0, highlighted in bright red in the 0-0.01 range.
During pruning, the highlighted red BN layer τ and its
corresponding channel components are removed, resulting
in the second image on the right after pruning. Subsequent
fine-tuning partially restored the expressive capacity of the
model, as shown by the distribution of BN layer τ in the third
image on the right.

Fig. 5 compared the detection performance on the DOTA
dataset between the baseline and the pruned model (pruning
rate: 59.78%). The images in the first row of the figure were
represented by labeled anchor boxes, the second row showed
the prediction results of the baseline model, and the third row

displayed the prediction results of the model after pruning
using DSD. From the comparative results in the figure, it was
evident that the lightweightmodel obtained after pruningwith
DSD performed comparably to the baseline in remote sensing
image recognition. Notably, the fourth column (D) presented
numerous small objects (small vehicles) as targets, which
posed a challenge for detection. The results indicated that,
after applying DSD for sparsity induction, the pruned model
exhibited an improved capability in detecting small objects,
potentially surpassing baseline performance.

D. ABLATION EXPERIMENT
1) TWO-STAGE SPARSITY
Ablation experiments are conducted using the proposed
two-stage sparsity strategy. The sparse decoupling stage
is divided into Decoupling Sparse and Decoupling fine-
tuning stages. Compression experiments on ResNet-56 using
CIFAR-10 were performed by employing different sparse
decoupling strategies under the same compression rate
setting (52%).

TABLE 5. Two-stage Sparsity Ablation Experiment Based for RESNET-56
on CIFAR-10.(Pruning rate:52.87%).

The performance of three distinct sparse decoupling
strategies after model pruning is illustrated in Table.5:
First,without employing Decoupling Sparse and Decoupling
fine-tuning, the sparsitymethod alignedwith Slimming’s [25]
approach. Slimming’s sparsity method after pruning resulted
in a 7% accuracy reduction compared to the baseline model,
with the worst accuracy after fine-tuning, leading to a loss of
1.98%. Second,solely applying decoupling sparsity led to a
significant accuracy loss after pruning, declining by 24.36%
compared with the baseline. However, after fine-tuning,
the accuracy surpassed that of Slimming’s method, trailing
the baseline by only 0.04%. Third, employing decoupling
fine-tuning in the sparse decoupling stage resulted in the
pruned model maintaining a relatively good accuracy, with
only a 2.75% decrease. After fine-tuning, the accuracy of the
model surpassed the baseline by 0.59%.

As presented in Table. 6, further experiments were
conducted using Yolov5-obb on the DOTA dataset, which
involves a more challenging detection task with larger and
more complex data. The application of the Slimming method
for model sparsity results in a significant loss of accuracy
in the pruned model, rendering it unusable. Even after fine-
tuning, the accuracy of the model could only be partially
recovered, reaching 66.7%. With the decoupling sparse
strategy, the accuracy of the pruned model was preserved to
a certain extent (48.1%), and post-fine-tuning increased the

VOLUME 12, 2024 48875

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

FIGURE 5. Comparative analysis of detection performance on the DOTA dataset.

TABLE 6. Two-Stage Sparsity Ablation Experiment Based on YOLOV5-obb
on DOTA.(Peuning rate:85%).

accuracy to 68.4%. The best outcome was observed with the
’decoupling sparse and decoupling fine-tuning ’ strategies,
where a high accuracy of 56.7% was maintained by the
pruned model, and post-fine-tuning achieved an accuracy
of 69.5%.

The Slimmingmethod displayed acceptable accuracy post-
pruning, but its performance after fine-tuning was found
to be poor. This was attributed to Slimming’s simplistic
regularization of scaling factors, wherein all scale factors
were forcefully constrained near zero without the decoupling
of essential and non-essential components. Consequently,
essential channels were unavoidably pruned, leading to
the loss of the model’s ability to extract the necessary

features and impact accuracy. However, with the inclusion
of the decoupling sparse method, a noticeable enhancement
in model accuracy was observed. Furthermore, with the
addition of decoupling fine-tuning, there were no significant
differences in the accuracy performance before and after
pruning. Impressive post-fine-tuning accuracy was achieved.

Fig. 6 illustrated the accuracy measurements during each
epoch of the network feedforward in the fine-tuning stage
after pruning the model using various sparsity strategies. It is
evident from the graph that when employing the simplest
‘‘Slimming’’ sparsity strategy, there is a significant loss in
accuracy after pruning (i.e., poor pruning stability). Consid-
erable time was required during fine-tuning to recover model
accuracy, reaching its peak accuracy only after 130 epochs.
In contrast, a decoupled sparsity method was proposed
in the paper that achieved minimal accuracy loss after
pruning (i.e., good pruning stability) and rapidly recovered
accuracy during fine-tuning, reaching peak accuracy within
60 epochs. This indicates that the proposed sparse method
enhances pruning stability by effectively distinguishing
between important and unimportant components, thereby
ensuring the precise removal of non-critical elements during

48876 VOLUME 12, 2024

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

FIGURE 6. Two-stage Sparsity Ablation Experiment Based for Yolov5-obb
on DOTA(Peuning rate:85%). The accuracy measurements of the network
feed-forward during each epoch in the fine-tuning stage after pruning the
model with various sparsity strategies.

pruning. Consequently, good pruning stability minimizes the
accuracy loss in pruned models and significantly reduces the
training cost of fine-tuning.

2) REWARD AND PUNISHMENT STRATEGIES
From the Table. 7, the experiments demonstrated an ablation
study on the impact of batch normalization (BN) layer scaling
factors on the reward-penalty strategy. Experiments con-
ducted on the CIFAR-10 dataset using ResNet-56 indicated
that the strategies with superior performance were NP+EP
(Slimming) and ER+NP. It can be observed that the use of the
ER+NP strategy yields optimal pruning performance, with
no significant accuracy loss in the pruned model. After fine-
tuning, the accuracy of the model was restored to its best
performance.

TABLE 7. The investigation of reward-penalty strategies for scaling
factors(τ).(Resnet-56 on CIFAR-10,pruning rate: 52.97%).

From the Tabel. 8, the experiments conducted with
YOLOv5-obb on the DOTA dataset are particularly repre-
sentative. In the cases of the EP, ER, and NR strategies, the
sparse condition of the model makes pruning impractical,
rendering the pruned models unable to function correctly.
For the NP+EP and NP strategies, a notable accuracy loss
was observed in the pruned models. However, after fine-
tuning, the accuracy of the model was partially recovered,
reaching 66.7% and 68.3%, respectively. The ER+NP
strategy, incorporating importance decoupling, effectively
preserved the accuracy of the pruned model (56.7%), and

TABLE 8. Investigation of reward-penalty strategies for scaling
factors(τ).(Yolov5-obb on DOTA;pruning rate:80%).

after fine-tuning, it exhibited the best performance among all
the strategies, achieving 69.5%.

3) IMPORTANCE EVALUATION INDEX
Further investigation was conducted on the influence of the
feature importance evaluation metrics on pruning quality,
and the experimental results are presented in Table. 9.
The table represented τ as the scaling factors of the
BN layer, ∇τ indicated the gradient value of the scaling
factors τ , and | · | represented its absolute value. In the
experiments, a pruning rate of 65% was maintained by
employing a decoupling sparse strategy that rewarded the
important components while penalizing the unimportant
components. The Decoupling fine-tuning strategy involves
gradient updates for the significant components and freezing
gradients for the insignificant components.

TABLE 9. Importance assessment indicator ablation experiment.
(Resnet-56 on CIFAR-10,pruning rate: 65%).

The Table. 9 demonstrated that using |∇τ × τ | as the
feature importance metric yielded the most favorable out-
comes, with a post-pruning model accuracy of 46.63% and
an accuracy of 94.11% post-fine-tuning. It was conversely,
utilizing |∇τ | and∇τ×τ as feature importance indicators led
to poor outcomes, with post-pruningmodel accuracies of only
11.25% and 16.9%, respectively, and fine-tuning accuracies
of 92.05% and 92.71%. Using |τ | as a metric produced a
decent outcome that was slightly lower than |∇τ × τ |, with
a post-pruning model accuracy of 38.01% and a fine-tuning
accuracy of 93.3%.

Further validation was conducted using YOLOv5-obb with
the DOTA dataset.Table. 10 demonstrates that employing
|∇τ × τ | as the feature importance indicator yields the best
results, with a pruning accuracy of 56.7% and a fine-tuned
accuracy of 69.5% for the pruned model. Other importance
assessment strategies failed to accurately evaluate the impor-
tance of the model channels, resulting in a pruning accuracy

VOLUME 12, 2024 48877

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

TABLE 10. Importance assessment indicator ablation experiment.
(Yolov5-obb on DOTA,pruning rate: 80%).

of 0% for the pruned models, and the accuracy recovery of
the fine-turned model was also unsatisfactory. In conclusion,
the incorporation of gradients into the feature importance
evaluation metric function, considering the first-order Taylor
series to assess the relevance of neurons or channels, was
found to provide a more accurate measure of importance.

4) OFFSET FACTORS ABLATION EXPERIMENT
Table. 11 illustrates the ablation study of the sparsity strategy
concerning the offset factor β using ResNet-56 on CIFAR-10.
From the experimental outcomes with ResNet-56 on CIFAR-
10, it was evident that various β strategies significantly
impacted the accuracy of the pruned models. However, after
fine-tuning, the accuracy of the model did not exhibit a
pronounced difference compared to the baseline model. This
suggests a relativelyminor impact of offset factors on pruning
accuracy in small-scale datasets, such as CIFAR-10. The
scaling factor τ served as the importance metric for the
model channels, whereas the offset factor β did not reflect
the channel importance. Varied offset metrics significantly
compromise the pruning accuracy of the model, yet their
impact on the accuracy of pruned models remains limited.
Moreover, owing to the small size of the dataset, the model
can restore itself to a functional state within a limited number
of training iterations.

TABLE 11. The investigation of reward-penalty strategies for Offset
factors(β). (on CIFAR-10,pruning rate: 65%).

To further analyze the impact of various strategies on
model pruning, tests were conducted on a larger-scale remote
sensing dataset, DOTA. The results obtained using the
Yolov5-obb model on the DOTA dataset are presented in
Table. 12. In the large-scale DOTA dataset, β had a more
pronounced effect on model pruning. Except for the NP
strategy, all the other strategies significantly affected the
post-pruning accuracy of the model. Except for the NP
strategy, the operational capacity of the pruned models was
lost, whereas the sparse models obtained using the NP

TABLE 12. The investigation of reward-penalty strategies for Offset
factors(β). (on DOTA,pruning rate: 80%).

strategy retained their operational capability, maintaining an
accuracy of 56.7% (mAP@.5). After fine-tuning, with the
exception of the NR strategy, which failed to restore the
accuracy of the model, the other strategies exhibited accuracy
recovery. Among them, the ‘‘Do nothing’’ and ER strategies
showed relatively poorer accuracy recovery, reaching 64.5%
(mAP@.5) and 66.7% (mAP@.5), respectively. The EP
strategy demonstrated the best recovery accuracy, reaching
69.5% (mAP@.5). Based on the results presented in Table. 11
and the Table. 12, the NP strategy exhibited promising
performance across two different tasks and datasets.

V. DISCUSSION
This paper further addresses three crucial issues in channel
pruning:

1) Channel importance determination
2) The impact of model pruning on model accuracy

performance
3) The pruning stability of sparse models

Feasible solutions are provided for these issues to guide
researchers in further improvements. The method presented
in this study has three advantages.

1) In the importance determination, the scaling factors
(weights) and gradients of the BN layer produced
during model training are directly used, eliminating the
need for additional calculations. This straightforward
approach accurately determines the importance of the
channels and decouples them through a threshold.

2) The proposed reward-penalty sparse algorithm can
normalize ‘‘unimportant channels’’ while protecting
‘‘important channels’’ from the impact of sparse
training.

3) It was demonstrated that models with good pruning
stability can resist the losses caused by pruning.

4) The pruned model can achieve good performance
without the need for fine-tuning. After simple fine-
tuning, the accuracy of the model can be further
improved.

However, the approach presented in this study has certain
limitations. First, the channel importance determination
method based on BN layers only applies to convolutional
neural networkswith BN layers and cannot be easily extended
to popular transformer models. Second, although the PyTorch

48878 VOLUME 12, 2024

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

computing framework supports this method, its applicability
to hardware that does not support PyTorch requires further
validation. These limitations should be addressed in future
research.

The future developments in this field are currently being
explored, which include: 1) structured pruning methods
under the transformer architecture. A recent study [53] has
proposed the addition of a learnable mask component in
transformer models, using binary mask variables and their
saliency scores to automatically determine the importance of
self-attention head modules. This opens up the possibility
of applying the reward-penalty decoupling sparse method
proposed in this research to the transformer architecture;
2) researching more effective methods for addressing loss
function penalties. While significant progress has been made
with existing technologies, the loss function may still be
too simplistic; 3) incorporating additional metrics such
as parameter count and model runtime into the channel
importance determination function can effectively enhance
the pruning model’s generalization requirements across
different scenarios.

VI. CONCLUSION
This study proposes an innovative structured pruning tech-
nique to compress neural networks without compromising
accuracy. By implementing the reward-penalty decoupled
sparse training method on the channels of the convolutional
network during sparse training, the loss of model accuracy
caused by pruning was successfully minimized. This method
demonstrates exceptional efficacy in convolutional networks
and intricate architectures that incorporate residual blocks.
Moreover, it shows commendable generalizability when
applied to object detection models. This method surpasses
several state-of-the-art (SOTA) approaches, including VGG-
16 and ResNet-56 on CIFAR-10 for object classification
tasks and YOLOv5 on the COCO dataset for object detection
tasks. In addition, the noteworthy validation of the DOTA
dataset highlights the effectiveness and applicability of
this method in remote sensing. For instance, at a pruning
rate of 59.78%, the lightweight model derived using DSD
achieved the same accuracy as the baseline model. Even
at an impressive compression rate of 90.85%, the pruning
method yielded a lightweight model with only a marginal
3.39% decrease in accuracy compared to the baseline model.
In future endeavors, it is hoped that this technique can
be extended beyond convolutional architectures to create
new opportunities for lightweight models in emerging high-
performance models.

REFERENCES
[1] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks

for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[3] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[4] G. Jocher, K. Nishimura, T. Mineeva, and R. Vilariño. (2020).
YOLOv5. Accessed: Jan. 10, 2021. [Online]. Available: https://github.
com/ultralytics/yolov5

[5] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
‘‘Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or −1,’’ 2016, arXiv:1602.02830.

[6] R. Sayed, H. Azmi, H. Shawkey, A. H. Khalil, andM. Refky, ‘‘A systematic
literature review on binary neural networks,’’ IEEE Access, vol. 11,
pp. 27546–27578, 2023.

[7] B. Martinez, J. Yang, A. Bulat, and G. Tzimiropoulos, ‘‘Training binary
neural networks with real-to-binary convolutions,’’ in Proc. Int. Conf.
Learn. Represent., 2020, pp. 1–11.

[8] Z. Yang, Z. Li, X. Jiang, Y. Gong, Z. Yuan, D. Zhao, and C. Yuan, ‘‘Focal
and global knowledge distillation for detectors,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 4633–4642.

[9] L. Zhang, C. Bao, and K. Ma, ‘‘Self-distillation: Towards efficient and
compact neural networks,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 8, pp. 4388–4403, Aug. 2022.

[10] B. Zhao, Q. Cui, R. Song, Y. Qiu, and J. Liang, ‘‘Decoupled knowledge
distillation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 11943–11952.

[11] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, ‘‘GhostNet: More
features from cheap operations,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 1577–1586.

[12] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, ‘‘SkipNet:
Learning dynamic routing in convolutional networks,’’ in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 409–424.

[13] G. Ding, S. Zhang, Z. Jia, J. Zhong, and J. Han, ‘‘Where to prune: Using
LSTM to guide data-dependent soft pruning,’’ IEEE Trans. Image Process.,
vol. 30, pp. 293–304, 2021.

[14] Z. Liu, X. Zhang, Z. Shen, Y. Wei, K.-T. Cheng, and J. Sun, ‘‘Joint multi-
dimension pruning via numerical gradient update,’’ IEEE Trans. Image
Process., vol. 30, pp. 8034–8045, 2021.

[15] B. Bartoldson, A. Morcos, A. Barbu, and G. Erlebacher,
‘‘The generalization-stability tradeoff in neural network pruning,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 20852–20864.

[16] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas, ‘‘Predicting
parameters in deep learning,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 26, C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Weinberger, Eds. Curran Associates, 2013, pp. 2148–2156.

[17] J. Frankle and M. Carbin, ‘‘The lottery ticket hypothesis: Finding sparse,
trainable neural networks,’’ 2018, arXiv:1803.03635.

[18] H. Zhou, J. Lan, R. Liu, and J. Yosinski, ‘‘Deconstructing lottery tickets:
Zeros, signs, and the supermask,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 32, H.Wallach, H. Larochelle, A. Beygelzimer, F. d’AlchéBuc, E. Fox,
and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 3597–3607.

[19] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and
connections for efficient neural network,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 28, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 1135–1143.

[20] Y. He and L. Xiao, ‘‘Structured pruning for deep convolutional neural
networks: A survey,’’ 2023, arXiv:2303.00566.

[21] X. Ding, X. Zhou, Y. Guo, J. Han, and J. Liu, ‘‘Global sparse momentum
sgd for pruning very deep neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 6382–6394.

[22] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao,
C.-Y. Lin, and L. S. Davis, ‘‘NISP: Pruning networks using neuron
importance score propagation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 9194–9203.

[23] M. Lin, R. Ji, Y.Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao, ‘‘HRank:
Filter pruning using high-rank feature map,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 1526–1535.

[24] Y. Zhang, M. Lin, C.-W. Lin, J. Chen, Y. Wu, Y. Tian, and R. Ji, ‘‘Carrying
out CNN channel pruning in a white box,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 34, no. 10, pp. 7946–7955, 2023.

[25] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, ‘‘Learning efficient
convolutional networks through network slimming,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2755–2763.

[26] J. Wu, D. Zhu, L. Fang, Y. Deng, and Z. Zhong, ‘‘Efficient layer
compression without pruning,’’ IEEE Trans. Image Process., vol. 32,
pp. 4689–4700, 2023.

[27] T. Wu, C. Song, P. Zeng, and C. Xia, ‘‘Cluster-based structural redundancy
identification for neural network compression,’’ Entropy, vol. 25, no. 1,
p. 9, Dec. 2022.

VOLUME 12, 2024 48879

Z. Qiu et al.: Channel Pruning Method Based on Decoupling Feature Scale Distribution

[28] C. L. Kuo, E. E. Kuruoglu, and W. K. V. Chan, ‘‘Neural network structure
optimization by simulated annealing,’’ Entropy, vol. 24, no. 3, p. 348,
Feb. 2022.

[29] Y. Zhang, Y. Yuan, and Q. Wang, ‘‘ACP: Adaptive channel pruning for
efficient neural networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2022, pp. 4488–4492.

[30] J. Hu, P. Lin, H. Zhang, Z. Lan, W. Chen, K. Xie, S. Chen, H. Wang,
and S. Chang, ‘‘A dynamic pruning method on multiple sparse structures
in deep neural networks,’’ IEEE Access, vol. 11, pp. 38448–38457,
2023.

[31] M. Jeon, T. Kim, C. Lee, and C.-H. Youn, ‘‘A channel pruning optimization
with layer-wise sensitivity in a single-shot manner under computational
constraints,’’ IEEE Access, vol. 11, pp. 7043–7055, 2023.

[32] J. Jeon, J. Kim, J.-K. Kang, S. Moon, and Y. Kim, ‘‘Target capacity
filter pruning method for optimized inference time based on YOLOv5 in
embedded systems,’’ IEEE Access, vol. 10, pp. 70840–70849, 2022.

[33] C. Zhang, C. Li, B. Guo, and N. Liao, ‘‘Neural network compression
via low frequency preference,’’ Remote Sens., vol. 15, no. 12, p. 3144,
Jun. 2023.

[34] Z. Hu,M. Gong, Y. Lu, J. Li, Y. Zhao, andM. Zhang, ‘‘Data customization-
based multiobjective optimization pruning framework for remote sensing
scene classification,’’ IEEE Trans. Geosci. Remote Sens., pp. 1–14, 2023.

[35] C. Deng, D. Jing, Z. Ding, and Y. Han, ‘‘Sparse channel pruning and
assistant distillation for faster aerial object detection,’’ Remote Sens.,
vol. 14, no. 21, p. 5347, Oct. 2022.

[36] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift,’’ in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448–456.

[37] A. Krizhevsky et al., ‘‘Learning multiple layers of features from tiny
images,’’ Univ. Toronto, Tech. Rep., pp. 1–60, 2009.

[38] G. Fang, X. Ma, M. Song, M. Bi Mi, and X. Wang, ‘‘DepGraph: Towards
any structural pruning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2023, pp. 16091–16101.

[39] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’
in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2014,
pp. 740–755.

[40] G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu,
M. Pelillo, and L. Zhang, ‘‘DOTA: A large-scale dataset for object
detection in aerial images,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 3974–3983.

[41] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[42] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[43] Y. Qing, W. Liu, L. Feng, and W. Gao, ‘‘Improved YOLO network for
free-angle remote sensing target detection,’’ Remote Sens., vol. 13, no. 11,
p. 2171, Jun. 2021.

[44] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning
filters for efficient convnets,’’ in Proc. Int. Conf. Learn. Represent., 2017,
pp. 1–13.

[45] D. Jiang, Y. Cao, and Q. Yang, ‘‘On the channel pruning using graph
convolution network for convolutional neural network acceleration,’’ in
Proc. 31st Int. Joint Conf. Artif. Intell., Jul. 2022, pp. 3107–3113.

[46] H.Wang and Y. Fu, ‘‘Trainability preserving neural pruning,’’ inProc. 11th
Int. Conf. Learn. Represent., 2023, pp. 1–21.

[47] S. Chen, W. Sun, and L. Huang, ‘‘WHC: Weighted hybrid criterion for
filter pruning on convolutional neural networks,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2023, pp. 1–5.

[48] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. Doermann,
‘‘Towards optimal structured CNN pruning via generative adversarial
learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2785–2794.

[49] C.-Y. Wang, A. Bochkovskiy, and H. M. Liao, ‘‘Scaled-YOLOv4: Scaling
cross stage partial network,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 13024–13033.

[50] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, ‘‘YOLOX: Exceeding YOLO
series in 2021,’’ 2021, arXiv:2107.08430.

[51] B. Li, B. Wu, J. Su, and G. Wang, ‘‘EagleEye: Fast sub-net evaluation for
efficient neural network pruning,’’ in Proc. ECCV, Glasgow, U.K. Cham,
Switzerland: Springer, 2020, pp. 639–654.

[52] H. Ye, B. Zhang, T. Chen, J. Fan, and B. Wang, ‘‘Performance-aware
approximation of global channel pruning for multitask CNNs,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 45, no. 8, pp. 10267–10284, 2023.

[53] F. Yu, K. Huang, M.Wang, Y. Cheng, W. Chu, and L. Cui, ‘‘Width & depth
pruning for vision transformers,’’ in Proc. AAAI Conf. Artif. Intell., vol. 36,
2022, pp. 3143–3151.

ZIJIE QIU is currently pursuing the master’s
degree with the College of Information and Intelli-
gence, Hunan Agricultural University, Changsha,
China. His research interests include pattern
inspection and model lightweight and their appli-
cations in agriculture.

PENG WEI is currently pursuing the master’s
degree with the College of Information and Intel-
ligence, Hunan Agricultural University, Chang-
sha, China. His research interests include model
pruning, deployment, and their application in
agriculture.

MINGWEI YAO is currently pursuing the mas-
ter’s degree with the College of Information
and Intelligence, Hunan Agricultural University,
Changsha, China. His research interests include
crowd counting and semi-supervised learning.

RUI ZHANG is currently pursuing the master’s
degree with the College of Information and Intel-
ligence, Hunan Agricultural University, Chang-
sha, China. His research interests include semi
supervised object detection and its application in
agriculture.

YINGCHUN KUANG received the Ph.D. degree
in land resources and information technology from
Hunan Agricultural University, in 2012. She is
engaged in teaching and research with Hunan
Agricultural University and serves as a Supervisor
for the master’s students. Her research has been
dedicated to the study of smart agriculture and
intelligent control. She has been involved in a
national major support program and has led or
participated in nearly 20 projects, including the

Hunan Provincial Natural Science Foundation, the Key Projects of the
Provincial Science and Technology Department, and the Key Research
Projects of the Provincial Education Department. She has published
29 articles, with four being indexed in EI and ISTP databases. She has
authored one textbook, coauthored one book, and has applied for and been
granted more than ten national patents and software copyrights. She has
received awards, such as the one Provincial Science and Technology Progress
Award, the two University-Level Science and Technology Progress Awards,
and recognition for teaching achievements and outstanding teaching quality
at the university level.

48880 VOLUME 12, 2024

