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ABSTRACT This research proposes a dam deformation prediction model based on clustering partitioning
and Bidirectional Long Short-Term Memory (BiLSTM) networks to address the limitations of traditional
monitoring models in characterizing the distribution characteristics of deformation zones in concrete gravity
dams. The model takes into account the intrinsic correlations among monitoring points and achieves
more comprehensive deformation monitoring by integrating multiple feature information. Firstly, the
improved K-Shape algorithm, which takes into account the time series features and spatial coordinate
relationships, is used to cluster and partition the spatial measurement points to better capture the spatial
distribution characteristics of the deformation region. Following that, the model hyperparameters undergo
iterative optimization using the ZOA optimization algorithm to enhance overall model performance. Finally,
a ZOA-BiLSTM modelling process incorporating the correlation characteristics of multiple measurement
points is proposed. After validation by engineering examples, the clustering results coincide with the spatial
distribution characteristics of dam deformation. Meanwhile, the prediction model has high accuracy and
robustness, and predicts the dam deformation from the multi-measurement point correlation dimension,
which provides a new and effective method to monitor the overall safety state of the dam.

INDEX TERMS Deformation prediction, spatial clustering, bidirectional long-short term memory
(BiLSTM), zebra optimization algorithm (ZOA).

I. INTRODUCTION

As the core structures of water conservancy projects, the
safety and stability of concrete dams significantly impact the
safety of people’s lives and properties, economic develop-
ment, and the ecological environment in downstream areas
[1], [2]. Therefore, accurately predicting and monitoring
the deformation behavior of concrete dams is particularly
important [3], [4]. However, dam deformation patterns are
shaped by diverse factors such as water pressure, tem-
perature, and time. These elements collectively contribute
to intricate nonlinear characteristics, presenting a technical
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challenge for precise prediction [5], [6], [7] Current models
for predicting dam deformation can be broadly classified
into three categories: statistical, deterministic, and hybrid
models [8], [9]. A predictive model grounded in statistical
principles relies on historical data to infer future deforma-
tion trends by analyzing past dam deformation data. While
this method is simple and intuitive, its prediction accuracy
may be limited when addressing nonlinear and complex dam
deformation problems [10], [11] With the rapid advancement
of computer technology, sophisticated machine algorithms,
including artificial neural networks, support vector machines,
random forests, multilayer feed-forward neural networks,
genetic algorithms, and other advanced techniques, have
increasingly taken a leading role in developing models for
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analyzing and predicting dam deformation. These algorithms
offer robust technical support for further improving dam
safety monitoring and early warning systems [12], [13].
Hipni et al. [14] successfully predicted the daily water
level of a sluice gate through multiple input schemes and
effective utilization of SVM algorithm, successfully pre-
dicted the daily water level of a sluice gate; Wang et al.
[15] introduced a hybrid model, combining backpropagation
with a genetic algorithm (GA-BP) and multiple population
genetic algorithm (MPGA), building upon the BP model.
This integration significantly enhanced both the convergence
speed and prediction accuracy of the dam monitoring model,
Belmokre et al. [16] based on the Random Forest algorithm
proposed a deformation prediction model, which better cap-
tures the deformation pattern in the dam monitoring model
through multiple different inputs. It has been shown that
although the prediction models constructed by machine learn-
ing algorithms perform well in simulating static regression
relationships, with strong generalizability and high-precision
prediction ability, they usually tend to focus on capturing
static input-output relationships and ignore the possible time
dependence within the deformation data of a single mea-
surement point. Considering that dam deformation may be
affected by environmental factors with a lag, ignoring the
time dependence may adversely affect the prediction results
[7], [17]. This research perspective underscores the impor-
tance of a more comprehensive consideration of temporal
dynamics in constructing prediction models. In recent years,
time series algorithms like Convolutional Neural Network
(CNN), Long Short-Term Memory Neural Network (LSTM),
and Gated Recurrent Unit (GRU) in the field of deep learning
have been widely employed to effectively address the limita-
tions of traditional machine learning algorithms in capturing
temporal dependencies [18], [19] The incorporation of time
series algorithms markedly enhances the accuracy of dam
monitoring models. Leveraging the inherent sensitivity of
deep learning models to time series data, they excel in cap-
turing the dynamic effects of environmental factors on dam
deformation. This capability enables more precise prediction
and monitoring. Qu et al. [20] developed deformation predic-
tion models for the health monitoring of concrete dams based
on Rough Set theory (RS) and Long-Short-Term Memory
Network (LSTM). They introduced both single-point and
multi-point models and suggested a novel evaluation system.
This system incorporates quantitative evaluation indices such
as model accuracy, robustness, externality, and generalization
definition.; Yang et al. [21] aimed at trend analysis of the sat-
uration line of tailings dams, used CNN to identify and learn
spatial structures in the time series, and used LSTM cells
to detect long-term dependencies, and developed a reliable
tailings dam prediction model; Li et al. [22] presented seven
contemporary methods for comparison purposes. They addi-
tionally put forth a novel combined model designed to predict
dam displacement time series. This approach further vali-
dated the effectiveness and feasibility of the LSTM model.
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The deformation characteristics of a dam are, in fact,
a manifestation of the overall structural behavior resulting
from the collective work of various dam sections. Previous
data analysis methods have primarily focused on individual
monitoring points, without delving into the mutual influence
of deformations between different parts of the dam. There-
fore, it is essential to further and comprehensively explore
the collaborative deformation effects among different parts of
the dam beyond the deformation prediction model for indi-
vidual points. This allows for a more in-depth examination
of potential connections between monitoring points. Through
this approach, we can achieve spatiotemporal coordinated
analysis of dam deformations and enhance the predictive
accuracy of the model. In the field of data mining, cluster
analysis is a common research method. It divides a dataset
into several subsets with distinct differences based on a
certain similarity [23], [24], [25] Song et al. [26] explored
the correlation coefficients among deformation signals from
various measurement points. They introduced the concepts
of multivariate panel data and K-means clustering theory and
devised an analytical method for identifying outliers in dam
deformation data; Hu and Ma [27] introduced a zonal defor-
mation prediction model tailored for ultra-high arch dams.
This model integrates the hierarchical clustering method with
a panel data model, providing a novel approach for predicting
deformation in specific zones; Chen et al. [28] embedded a
clustering method based on Gaussian mixture model using
the minimum-density-entropy-optimized method to achieve
reliable identification of spatio-temporal divergence of dam
behavior, and established a prediction method based on
spatio-temporal clustering and machine learning.The primary
inspiration for the partitioning in this study is drawn from the
literature [29]. During the review, it was observed that the
parameter results obtained from the optimization of different
measurement points varied significantly, posing challenges
in obtaining consistent input parameters for the entire dam
deformation prediction model. Recognizing the importance
of deformation similarity, a comprehensive analysis of the
correlation among all deformation measurement points of
concrete dams becomes crucial.Simultaneously, the division
of measurement points and the mitigation of interference
caused by differences in deformation patterns among the
points can help unveil potential synergistic effects among
different regions within the dam. Inspired by the classification
of data and time series algorithms, and taking into account the
global search capability of the prediction model, this research
introduces a novel dam deformation prediction model based
on multiple feature information.The model incorporates the
Zeroth-Order Optimization Algorithm (ZOA) and Bidirec-
tional Long Short-Term Memory (BiLSTM) algorithms.
K-Shape, a method for time series clustering, represents
an improved version of the K-Means-based algorithm. The
K-Shape method takes into account the vertical stretching
and horizontal translation of the data by introducing adaptive
alignment and normalization operations of the time series to
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capture the shape information of the sequences more accu-
rately [30], [31] BiLSTM, a variant of the recurrent neural
network, possesses the capability to memorize time-series
data processing, capturing long-term dependencies, a feature
inherent in traditional LSTM networks.BiLSTM, on the other
hand, by introducing a reverse layer in the network, thus
enabling the network to not only process the input sequences
forward, but also in reverse [32], [33], [34].ZOA represents
a category of optimization algorithms distinguished by its
utilization of only zeroth-order information from the objec-
tive function in the optimization process, refraining from
incorporating additional information such as the gradient
or higher-order derivatives. It excels in striking a balance
between local and global search [35], [36] In summary,
this research improved the K-Shape clustering method by
not only considering the similarity of the time series, but
also considering the spatial coordinate characteristics of the
measurement points in the case of the spatial measurement
points of the dam for the clustering partition, followed by the
use of ZOA optimization algorithm for the prediction model
parameter optimization, and finally established the prediction
model of the deformation of concrete dams through BiLSTM,
to achieve a more accurate and effective prediction of the
deformation behavior of the dam.

Il. IMPROVED KSHAPE CLUSTERING METHOD
(I-KSHAPE)

A. K-SHAPE CLUSTERING METHOD

The K-Shape algorithm is an innovative method proposed
in 2015 for the clustering problem of time-series data. The
method employs the standard inter-correlation distance as
the basis of measurement and designs a unique strategy for
calculating the center of mass based on the inherent prop-
erties of this distance. In order to comprehensively assess
the performance of K-Shape clustering, this study introduces
two indicators, the contour coefficient and the degree of
distortion, for comprehensive consideration, so as to accu-
rately determine the optimal number of clusters k. Through
this series of rigorous analytical steps, we were able to
draw spatial distribution maps with significant clustering
characteristics, which provides strong technical support and
theoretical reference for the construction of dam deformation
prediction models [30], [31].

Assuming that there are n deformation measurement points
in the concrete dam, the number of clusters is n, T denotes
the time series of measurement points, and the deformation
monitoring dataset is noted as X=(X1X», - - - ,Xx). Firstly,
the K-Shape algorithm’s mutual correlation distance method
(SBD) is used to calculate the difference between x and y
measurement points, that is, the shape information is cap-
tured by calculating the shape matrix of the time-series data,
in which:

—)
VRo(X, )Ry (¥, y)

SBD (¥,y) = 1 — max ( (D
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where, w is the possibility of representing all moves; CC,,(Xy)
is the number of interrelationships; Ry is the dot product
operation; and the SBD value is between [2, 0], the smaller it
is the more similar the timing data are.

Because the center of mass of time-series data is also a
time-varying line, there exists the possibility of misaligned
peaks and troughs, which does not correctly represent the
shape trend. K-Shape determines the center of mass using
two approaches. It primarily transforms the center of mass
calculation into an optimization problem with an objective
function X; that minimizes the sum of squared distances from
the measured values X; of all measurement points to the center
of mass jix. This involves minimizing the sum of squared
distances. It is calculated by the formula:

2
max CC,, (Yl) /72)
il = argmax Z ad
- ﬁ,’ X _
Mk e \/Ro(fl),ﬁ)Ro(mﬁuk)
2
Expand Formula 4 based on linear algebra methods:
- T'M'ﬂ'k
il = argmax ad' - 3)
et
Finally, simplify it using the Rayleigh quotient formula:
xT Mx
RM ,x) = @)
xtx

In the equation, the maximum value of R is equal to the max-
imum eigenvalue of matrix M. At this point, transforming the
search for the centroid is equivalent to seeking the eigenvector
corresponding to the maximum eigenvalue of matrix M.

The optimal cluster number, denoted as k, is comprehen-
sively determined through the elbow method and silhouette
coefficient method. In the elbow method, the relationship
between the sum of squared errors (SSE) and k results in
a graph with an elbow shape. The value of k correspond-
ing to the elbow is considered the optimal cluster number.
SSE represents the clustering error for all samples, reflecting
the effectiveness of the clustering. The silhouette coefficient
method is also employed to assess the quality of clustering,
providing a measure of how well-separated clusters are. The
formula for the sum of squared errors (SSE) for all measure-
ment points is as follows:

k
SSE=2 . 2 o Ip— il )

where, X; is the ith cluster; p is the measurement point in
Xi; i is the center of mass of X;. The larger the value of the
silhouette coefficient S, the better the clustering effectiveness.
The silhouette coefficient for an individual measurement
point i is given by:
b (i) — a(i)

"7 max {a (i) — b(i)}
where, a(i) is the average distance from measurement point i
to other measurement points in the same cluster; b (i) is the

(6)
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average distance from measurement point i to all measure-
ment points in other clusters.

The specific steps of the K-Shape algorithm are as follows:
1) Utilize the SBD and MD formulas to compute the distances
between measurement points x and y; 2) Based on the newly
derived clustering centroids from a comprehensive distance
formula, calculate a more reasonable sequence of clustering
centroids, denoted as C’; 3) For a dataset X containing n mea-
surement points and a target cluster number k, iterate multiple
times until the labels no longer change. In each iteration,
recalculate centroids, eventually obtaining updated sequences
of clustering centroids for k clusters. The assignment of each
sequence to different clusters is determined based on their
distances to the new centroids.

B. IMPROVEMENT SECTION

Although the K-Means algorithm usually requires a
one-dimensional array as input, it does not mean that it cannot
handle high-dimensional data. In practice, one-dimensional
arrays consisting of multiple features are usually used as
input to the K-Means algorithm. In order to capture more
comprehensive time series features and similarities, other
metrics such as Manhattan distance can be added to the SBD
distance method. This new distance calculation method has
better application scenarios. The Manhattan distance formula
and the comprehensive distance formula are respectively:

dim

MD = d;; = thl |xin — x| @)
dij = w1d;j (SBD) + wad;j (MD) ®)

where, x is a point in space, dim denotes the dimension, d; is
the Manhattan distance MD between the ith particle and the
jth point, and w is the weight coefficient.

In the process of clustering analysis, considering the
relationship of spatial location can capture the actual phys-
ical layout more accurately, because the relative positions
between points may be closely related to their clustering
relationship, and the similarity of the time series cannot be
simply considered only. Therefore, in the actual clustering
process, incorporating the Euclidean spatial distance formula
and defining the threshold condition for spatial location can
help to improve the clustering effect. The spatial distance
between each pair of measurement points is first calculated
using the Euclidean formula (9), which will produce a dis-
tance matrix containing the Euclidean distances between all
measurement points. When performing clustering, a spatial
threshold can be set, for example between 20m and 40m. This
threshold will determine which measurement points are con-
sidered to be neighbouring. If the Euclidean distance between
two measurement points is less than the threshold, they are
considered spatially neighbouring points, otherwise they are
considered non-neighbouring. Finally the time series data and
the spatial distance data are combined into a more complete
feature vector that outputs the cluster labels for classification,
implying that the combined features of both the time series
data and the spatial distance data are taken into account for
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the cluster analysis. The Euclidean spatial distance between
two points is given by the formula:

ED = /(e — 3102 + (2 — 1)’ ©)

where x; and y; are the two-dimensional spatial coordinates
of the measurement point.

lll. ZOA-BILSTM DAM PREDICTION MODEL

In order to clearly elaborate the overall framework of the
model, the study starts from the initial input variables and
introduces each input factor of the HST model, followed by
the introduction of the BiILSTM algorithm with powerful time
series processing capability to capture the complex dynamic
changes in the dam deformation data. Finally, to further
improve the prediction accuracy and generalization ability of
the model, the ZOA parameter optimization algorithm is inte-
grated in the model to realize the fine tuning of parameters.

A. HST DAM DEFORMATION STATISTICAL MODEL

The deformation § at any point in a concrete gravity dam
can be decomposed into three primary components based
on its causes. These components include the water pressure
component 8, the temperature component §g, and the aging
component dg,among other factors [37], [38].The formula is
as follows:

8§ =108n +dr + 8 (10)

The water pressure component §y primarily arises from the
upstream water load. According to the principles of material
mechanics and dam engineering theory verification, it typ-
ically demonstrates a linear relationship with the upstream
water depth H, H?, and H?. The temperature component 87
can be approximated by employing a periodic function. This
assumes a linear relationship between temperature displace-
ment and concrete temperature. Harmonic sine functions can
be chosen as factors. The aging component §y provides a
comprehensive representation of both the creep and plastic
deformation of dam concrete, as well as the compressive
deformation of the geological structure of the rock foun-
dation. The typical pattern of aging displacement changes
in a normally operating dam is characterized by an initial
sharp variation followed by a gradual stabilization in the
later stages. The specific calculation formulas for these three
components are:

3 .

Sy = zi:l a;H' (a1
2 . 2mit 2mit

57‘ = zi:l (bl sin % + ¢; cos %) (12)

g =d10 +drInb (13)

Here, H represents the upper reservoir level, and a;, b;, c;,
dy, dy are regression coefficients, ¢ denotes the number of
days from the initial date of dam observation to the current
observation data date, and 6 is ¢/100.
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FIGURE 1. Network model of LSTM.

B. BILSTM MODEL
LSTM neural network strengthens its long-term memory
capability by introducing control units such as forgetting gate
f ﬁ), input gate (iﬁ) and output gate (oi) to maintain and update
the cell state [32]. This novel recurrent network structure
efficiently addresses the challenges of gradient vanishing and
gradient explosion commonly encountered in algorithms like
RNN. Leveraging its ability to capture long-term correlations
in time-series data, the LSTM network attains faster and
more accurate convergence, thereby enhancing the precision
of dam deformation prediction [33], [34]. Figure 2 illustrates
the LSTM network model featuring three gating structures.
Within the conventional LSTM structure, the responsibility
of the forgetting gate lies in determining whether to retain the
cell state from the previous time step and selecting relevant
information based on a given probability. This mechanism
involves processing the hidden layer output from the preced-
ing time step #,_; and the input of the current time step x;.
Subsequently, these two parameters are fed into the sigmoid
activation function o to produce the output of the forgetting
gate f;. frand o are computed as:

Je=oWys - (hi—1,x:) + by) (14)
o) =1/1-e%) (15)

Here, Wy denotes the weight matrix of the forgetting gate,
by represents the bias term, and o is the sigmoid activation
function. The output f; of the forgetting gate regulates the
extent of forgetting information from the state of the unit in
the previous time step. This output takes values in the range
of [1, 0], signifying complete retention when f; = 1 and
complete forgetting when f;= 0.

The main responsibility of the input gate is to sift through
the input information at the current moment to determine
what new information should be included in the unit state.
This process is accomplished by combining the functions of
the sigmoid and tanh layers. the sigmoid layer is respon-
sible for determining the extent to which new information
is included, while the tanh layer is responsible for gener-
ating possible candidates for new information, also known
as a; the outputs of these two layers together determine the
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introduction of new information. The relevant formula is:

ir =o(W;- (h—1,x) + b;) (16)
a; = tanh(W,. - (hy—1, x;) + bc) (17
tanhx = 1—e™¥)/(1+e™) (18)

Here, W; and W, represent the weight matrices for the sig-
moid layer and the tanh layer, respectively. Additionally, b;
and b, are the bias terms corresponding to the sigmoid layer
and the tanh layer, respectively. The symbol \(tanh\) refers
to the hyperbolic tangent function.

The cell status will be updated after the information is
screened by the forget gate and input gate. The new update
formula is:

C =fCio1 +ira (19)

The output gate plays a crucial role in extracting valuable
information from the current cell state to produce a new
hidden layer. This operation initiates by utilizing the sigmoid
function to ascertain the portion of the current cell state
that should be output. Following this, the tanh function is
employed to process the current cell state. Ultimately, the
processed information is utilized to generate the new hidden
layer A;. The relevant formulas are as follows:

hl‘ = OItanth (20)
or =0 (Wy « (he—1, %) + by) 2n

where, W, is the weight matrix of the output gate, and b, is
the bias term.

In summary, the hidden layer output %; and cell state C;
of the LSTM at the current time step are determined by the
hidden layer output &, and cell state C;_ of the previous
time step, in conjunction with the input x, at the current
time step. While LSTM effectively addresses the issues of
gradient vanishing and long-term dependency, it only cap-
tures information from the preceding context of the text and
cannot leverage information from subsequent portions. Since
the semantics of a word are not solely linked to the preceding
information but also closely tied to subsequent informa-
tion, BILSTM (Bidirectional Long Short-Term Memory) is
employed in place of LSTM to incorporate information from
both directions. The BiLSTM model comprises two LSTM
networks stacked in a bidirectional manner, as illustrated in
Figure 3.

As depicted in Fig. 3, within the BiLSTM model, two
LSTM gates operating in opposite directions coexist simul-
taneously at each time step. Here, A, represents the forward

output of the LSTM at time step #; h; represents the reverse
output of the LSTM at time step t; h; signifies the out-
put of the BiLSTM at time step t; and x; denotes the
input at time step . The state computation for each time
step in the BILSTM model is elucidated in equations (28)
and (29). The ultimate output is collectively determined by
the states of the LSTMs in both directions. Therefore, the
use of BILSTM instead of the traditional LSTM network can
make better use of the contextual information of the text, thus
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FIGURE 2. Network model of BiLSTM.

improving the model’s ability to understand the semantics.
By taking into account both the preceding and following
information of the text, the BILSTM model is able to cap-
ture the relationships between words more comprehensively,
allowing the model to achieve better performance on semantic
understanding and related tasks.

hy = LSTM (x;hs—1) (22)
hy = LSTM(x,= ) (23)
h t—1
h = G)tilt + th + b, (24)
t

C. ZOA OPTIMIZATION ALGORITHM

The Zebra Optimization Algorithm (ZOA) is an emerging
optimization algorithm with advantages such as global opti-
mization capability, high efficiency, ease of implementation,
wide applicability, low sensitivity to initial values, and good
scalability. Therefore, it is considered an effective and reli-
able optimization algorithm in practical applications. In the
ZOA optimization algorithm, zebras act as members of the
population and represent potential solutions to the problem.
From a mathematical perspective, the position of each zebra
in the search space (i.e., the problem domain) directly maps
to the values of decision variables. Consequently, vectors can
be employed to represent individual zebras, each belonging
to the Zebra Optimization Algorithm (ZOA), with the vector
elements corresponding to the variable values of the problem.
Likewise, the zebra population can be mathematically char-
acterized using a matrix [35], [36]. It’s crucial to emphasize
that the initial positions of zebras within nZOA population
matrix is represented as:

Xl X1,1 -xl.j X1,m
X= Xl — -xi,l e xi,j e xi,m
Xn Nxm AN o AN AN.m | N sem

(25)

Here, X represents the zebra population, where X; denotes
the ith zebra. x;; represents the value of the jth decision
variable suggested by the ith zebra. N is the number of
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population members (zebras), and m is the number of decision
variables. The objective function’s value can be obtained by
assessing the proposed values of the decision variables for
each zebra. The obtained values of the objective function are
specified as a vector, expressed by the formula:

Fi F X))
F=|F =| FX) (26)
Fy Nx1 F(Xn) Nx1

Here, F' represents the vector of objective function val-
ues, with F; indicating the objective function value of the
ith zebra stripe. Given that both the positions of zebras and
the values of the objective function undergo updates in each
iteration, the identification of the best candidate solution
becomes crucial at each iteration. To achieve this, two natural
behaviors observed in zebras in the wild, namely foraging
and defense strategies against predators, are leveraged to
update members of the Zebra Optimization Algorithm (ZOA)
population. Consequently, in each iteration, ZOA members
undergo updates in two distinct stages.

During the foraging stage, updates to the population mem-
bers are performed by simulating zebra foraging behavior.
In ZOA, the population’s most exceptional member is des-
ignated as the zebra pioneer, guiding other members to move
closer to its position within the search space. Consequently,
the mathematical modeling of zebras’ position updates during
the foraging stage can be expressed using equations (16)
and (17).

x_”efW*Pl = x4 r-(PZ' —1-x ) (27)
i,j J J /
oo Xinew,Pl, Finew,Pl < F; (28)
X;, else

Here, Xi”eW’P ! represents the updated state of the ith zebra in

the first stage, "1 is its value in the jth dimension,and

ij
F}' »-P1 i its objective function value, PZ denotes the pioneer

zebra, PZ; is its value in the jth dimension, r is a random
number within the interval [1, 0], and /= round(1 + rand),
where rand is a random number within the interval [1, O].
Therefore, I € [1], [39], and if the parameter I = 2, the
variation in population movement will be larger.

In the defense stage, the defense strategy of zebras against
predator attacks is simulated to update the positions of ZOA
population members in the search space. In the design of
the ZOA algorithm, the probability of a zebra being attacked
by a lion and other predators is assumed to be the same.
When faced with a lion attack, zebras seek to evade the lion
by moving closer, as simulated by Equation (18) denoted as
S1. In the case of attacks from other predators, the zebra
herd converges near the attacked zebra and forms a defensive
structure, as modeled by Equation (18) denoted as S2. During
the update of zebra positions, only new positions with higher
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objective function values are accepted, and the updating con-
dition is expressed in Equation (19).

t
S1:x;; +R-Q2r—1) (1 - ?) x;jPs < 0.5

new.p2 _
l’.]
82 xij+r-(AZ; — I - x),else
(29)
X_new,PZ 7F{zew,PZ <F:
Xi=1"} i - (30)
X;, else
Here, X l."ew’Pz signifies the updated state of the ith zebra in the

second stage, xi"jw’P % denotes its value in the jth dimension,

F i"ew’P 2 is its objective function value, ¢ represents the itera-

tion round, 7" is the maximum iteration count, R is a constant
equal to 0.01, Py is the probability of choosing one of two
randomly generated strategies within the interval [1, 0], AZ
is the state of the zebra being attacked, and AZ; is its value in
the jth dimension.

During each iteration of ZOA, the population members are
updated based on foraging and defense strategies. The con-
tinuous update process of the algorithm population follows
equations (16) to (19) until the entire algorithm execution
is complete. The best candidate solution is continuously
updated and retained throughout the consecutive iterations.
The specific implementation process is illustrated in Figure 1.

FIGURE 3. ZOA Flowchart.

D. IMPLEMENTATION PROCESS

According to the HST dam deformation statistical model,
the initial input variables for the BiLSTM model can be
summarized as nine, namely H, H2, H3, sin %, cos %,

sin %, cos %’ 0, and In 6. In the BiLSTM network, key
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indicators affecting prediction accuracy include parameters
such as learning rate, training epoch, batch size, and the
number of neurons in each layer, which directly determine
the LSTM model’s network structure. Upon obtaining par-
tition results through the K-Shape clustering algorithm and
selecting representative measurement points, the ZOA opti-
mization algorithm is employed to automatically optimize the
five parameters of the LSTM model. Subsequently, based on
the optimization results, the model undergoes training and
prediction. To evaluate the impact of hyperparameter opti-
mization on model performance, a comparative analysis is
conducted with non-optimized BiLSTM and LSTM models.
The proposed ZOA-BiLSTM dam deformation prediction
model framework, based on K-Shape clustering partition,
is depicted in Figure 3, with the specific process outlined as
follows:

1) DATA PREPROCESSING

In order to improve the predictive ability and clustering effect
of the model, it is necessary to clean and preprocess the origi-
nal observational data first, including completing the missing
values, removing the outliers and normalizing the processed
data, in order to unify the benchmarks and distributions of
different features.

2) CLUSTERING PARTITIONING

The improved K-shape clustering algorithm was used to
effectively partition the dam deformation measurement
points, and the cohesive clustering of time series and spatial
relationship was carried out for all the measurement points
based on the distance matrix and the center of mass sequence
of each measurement point to obtain the spatial partitioning
results. After that, the typical measuring points of different
partitions were selected according to the cluster category of
each measuring point.

3) PARAMETER OPTIMIZATION

The deformation time series of typical measuring points are
divided into training set and testing set according to a certain
proportion, and the training set is partially utilized to perform
the hyper-parameter optimization using Egs. (7) to (9) men-
tioned in Section II-B, and ultimately the stopping conditions
are satisfied and the globally optimal parameter combinations
are output to obtain the optimal parameters of the LSTM
structure.

4) MODEL PREDICTION

In order to build the prediction model and verify its accu-
racy, the optimal parameters from the optimisation search are
substituted into the BiLSTM model and an error measure is
agreed upon to verify the prediction accuracy of the BILSTM
model by comparing the predicted values of the test set
with the true values, thus illustrating the model’s monitoring
capability.

The specific realization framework is shown in Figure 4.
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FIGURE 4. ZOA-BiLSTM model prediction process.

E. MODEL EVALUATION INDICATORS

To comprehensively assess the predictive accuracy of the
model, various metrics, including Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and Root
Mean Square Error (RMSE), are commonly utilized. The
specific formulas for calculating these metrics are presented
in Equations (31) to (33).

1
MAEGiS) = — 3" |vi-§| 31

o 100% ~m yied
MAPE(y9) = > i3] (32)
m b il

1 m
RMSEGi§) = - 3 (3i-9)” (33)

where, y; represents the true values of denoised load data;
y denotes the predicted values; and m is the number of data
points to be predicted. MAE reflects the actual situation of
prediction errors, MAPE assesses the model accuracy, RMSE
evaluates the prediction precision. Smaller values for these
three parameters indicate higher model accuracy and better
prediction performance.

IV. CASE STUDY

A. PROJECT OVERVIEW

This study focuses on a roller-compacted concrete gravity
dam with a height of 112m. The dam’s crest elevation is
153.00m, with a width of 6m, and a total installed capacity
of 193.2MW. The design flood level for this reservoir is
151.88m, normal storage level is 150.00m, dead storage level
is 130.00m, and the total reservoir capacity is 717.3 million
cubic meters. The dam consists of 10 dam segments and
the main construction started in September 2007, reaching
completion in November 2011. To monitor the along-river
deformation of the dam, tensile wires were installed at ele-
vations of 153m, 120m, and 88m within the corridors on the
dam crest. Additionally, 8 inclinometer points were buried
at elevations of 153m, 120m, 88m, 60m, and 43m on both
the left and right banks of the dam. In this study, stable
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tensile wire points were selected as objects for clustering. All
tensile wires were partitioned, and typical points were then
selected based on the partition results. Due to some tensile
wires being unable to collect data or producing significantly
abnormal data, the number of valid and available measure-
ment points was reduced to 19. The specific information for
each measurement point is shown in Table 1. Each tensile
wire measurement point has approximately 180 sets of actual
raw data.

TABLE 1. Distribution of measurement points.

dam 2# 3% 4#  A# S#H S# o6 TH  8# 9
height
Dam
section
153(m) EX EX EX EX EX EX EX EX EX EX
1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1- 1-
10 11
120(m) E EX EX EX EX EX
2-2 2-3 2-4 2-5 2-6 2-7
88(m) EX EX EX
3-2 3-3 3-4

B. DATA PREPROCESSING

Due to installation errors or aging issues, some tensile wires
exhibited significantly inaccurate monitoring data, leading to
the preliminary removal of such measurement points, as in
the case of the EX1-1 point near the left bank. Subsequently,
to further effectively eliminate outliers, the remaining points
underwent denoising processes. This time, two algorithms,
Gaussian filtering and Symlet wavelet filtering, were used to
denoise the raw data in an overlapping manner, and through
the complementary effect of the two algorithms, the data
features and noise types were comprehensively processed,
and significant outlier processing effects were obtained. For
missing data in the middle, linear interpolation was employed
for data supplementation, further enhancing the quality and
accuracy of the data. Finally, to eliminate the influence of dif-
ferent dimensions and numerical magnitudes among features,
the data underwent normalization. The denoising results for
the EX2-4 point, compared with the original data, are shown
in Figure 5.

Origin data
—— denoised data

Displacement (mm)

T T T T
2021-02-05 2021-10-14 2022-06-28 2023-02-06

Date (days)

FIGURE 5. De-noising comparison chart.

C. CLUSTER ANALYSIS BASED ON I-KSHAPE
In order to gain a more precise understanding of the dam’s
behavior and variability in different regions, this study
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employs the improved K-Shape clustering algorithm detailed
in Section II-B to refine the partitioning of the dam’s
deformation measurement points. By applying the distance
calculation method described in Egs. (7) to (9), the deforma-
tion differences among the measuring points were quantified
under the same weights. On this basis, the center of mass
of each region was determined and the distances from all
the measurement points to their corresponding centers of
mass were further calculated. After calculating the combined
distances based on SBD and MD, the spatial distance condi-
tions between the measurement points were further verified
through the Euclidean distance formula to confirm whether
the clustering results were in accordance with the actual phys-
ical spatial structure distribution. Through several iterations
of this process, the position of the center of mass was contin-
uously updated and optimized until the center of the clusters
reached a stable state. Eventually, three independent clusters,
i.e., the three deformation regions of the dam, were derived,
as shown in Figure 6(a). Figure 6(b) shows the clustering
results obtained on the basis of the simple SBD distance
measurement method.

EX1-2 EX1-3 EXi-4 EXi6 EXI8 EX1-9 EX1-10 EXI-11

(a)Improved K-Shape Clustering Algorithm Results

EX12 EX1-3 EX14 EX16 EX14 EX1-9 EXI-10 EX1-11

(b)Ordinary K-Shape Clustering Algorithm Results

FIGURE 6. Results of K-Shape clustering partitioning of dam Gauge
points.

As can be seen from Figure 6, the improved cluster-
ing algorithm produces results that are more in line with
the normal spatial and temporal distribution characteristics.
Before the improvement, the EX2-5 measurement point is
in partition III, and the EX2-6 measurement point is in par-
tition II. Although the EX2-5 measurement point has some
similarity with partition III in the time series, the actual
spatial distribution of the left, right, and upper parts are all in
partition III, and the partition results are obviously unreason-
able. Therefore, on this basis, the integrated spatio-temporal
distance metric is introduced, the MD and ED distance for-
mulas are added, and the spatial distance threshold is defined,
which effectively corrects the defects of the clustering results.
By setting the threshold value to 30 m and performing the
clustering analysis based on the improved integrated distance
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formula, it is found that the clustering results of the EX2-5
measurement points are classified as partition II, while the
clustering results of the EX2-6 measurement points are classi-
fied as partition III. This improvement not only enhances the
interpretability of the spatio-temporal distribution of the mea-
surement points, but also further verifies the accuracy of the
clustering results after adding the spatial distance condition.

In Figure 6(a), Partition I is near the left bank of the dam,
Partition II measuring points are concentrated in the middle
and upper part of the dam, and Partition III measuring points
are concentrated in the right bank and middle and lower
part of the dam. According to the dam monitoring practice
and engineering experience, in general, the deformation of
the measurement point at the bottom position is usually
relatively small, while the deformation of the measurement
point at the high position is relatively large. This is due to
the uneven water pressure and foundation constraints on the
dam structure, resulting in different stresses on the upper and
lower parts of the dam, which causes the deformation dif-
ference between the measuring points at different locations.
In this example the location of the three survey points at
88m elevation is at the lowest elevation and therefore the
deformation is relatively small and is a zoning type.At the
same time, due to the relatively long length of the right bank
section, and by the influence of the inverted plumb line, the
deformation of the measuring points near the bank slope is
also similar to the deformation of the measuring points at low
elevation is not obvious, and therefore also incorporated into
the same group in the partitioning process. Comparatively
speaking, the upper and middle parts of the dam body are
the main load bearing area, so the deformation in this part
will be more obvious, and is divided into a separate parti-
tion. The left bank measurement points are relatively small
and are also divided into one partition. Comprehensively,
the clustering partitioning results have a certain correlation
with the structural analysis partitioning of concrete dams,
and are more in line with the radial displacement distribution
characteristics of the dam, which proves that the partitioning
results are more reasonable. After clustering, the change rule
of deformation of measurement points in the same partition
has high similarity, which can comprehensively reflect the
regional distribution characteristics of dam deformation in
spatial dimension. Figure 7 shows the clustering results. The
silhouette coefficient is a metric that combines cluster tight-
ness and separation to evaluate the clustering results, and
generally the clusters where the points with the largest silhou-
ette coefficients are located have a higher average tightness
and a better degree of separation. The cluster point with the
highest contour coefficient in Figure 7 is 3.Distortion is the
sum of the squares of the distances from each sample point to
the centroid of the cluster to which it belongs, and generally
according to the elbow rule, the turning point with a larger
slope is considered as the best cluster result. The position of
cluster point 3 in Figure 7 has a larger slope relatively speak-
ing. Based on the observation of the two metrics, cluster point
3 indicates a high degree of tightness and good separation.
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FIGURE 7. Plot of distortion vs. contour coefficient.

D. MODEL PARAMETER OPTIMIZATION

In this research, the optimization of the hyperparameters of
the prediction model is carried out for each of the three
regional measurement points of clustering, and the main
hyperparameters of optimization include the training rate,
the number of training times, the number of batches and the
number of neurons in two layers, which are combined with
the model framework established in the previous paper,
and the ZOA algorithm is initialized, and meanwhile, several
experiments and optimization processes are carried out in
the range of parameter values. The maximum number of
iterations in the ZOA algorithm is 1000, the population size
is 100, the lower and upper bounds of the search space are
from 1 to 100, and the objective function is the MAE function.
In the optimization process, it is obviously found that the opti-
mization results of the same type of region have a very high
degree of similarity, which means that similar regions have
similar data distribution and noise characteristics. On the
other hand, there are some differences in the optimization
results of different regions, implying that the diversity of data
in different geographical locations or environmental condi-
tions may be the main reason for this phenomenon. Table 2
shows the optimization results for each region.

E. CONTRAST ANALYSIS

Since the measuring points in the same region have cer-
tain similarity in the change rule and spatial distribution,
this paper selected the measuring points in the II region
for model hyperparameter optimisation and training, and the
selected measuring points are EX1-4, EX1-8, EX2-3, EX2-4,
and the selected time period is from 7th May 2019 to 25th
September 2023, respectively. After the optimal parameters
were obtained through ZOA algorithm optimization, the BiL.-
STM model was retrained and predicted. Meanwhile, the
research initially established a default BILSTM model featur-
ing 50 neurons in layer 1, 100 neurons in layer 2, 20 training
iterations, a batch size of 10, and a learning rate of 0.002.
This model, along with an equivalent LSTM model using
the same parameters, was then compared to the optimized
BiLSTM model. Through this comparison, the paper allows
for an intuitive observation of the predictions made by both
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FIGURE 8. Forecast result chart.

the optimized and unoptimized models. According to the
selected four monitoring points, training and predictions were
conducted for three models, all using the “Adam” optimizer.
Table 3 presents a comparative analysis of performance indi-
cators for the four points after training. It is observed that
the ZOA-BiLSTM model exhibits decreased EMAE, RMSE,
and MAPE values compared to the other two models. This
suggests that the predictive accuracy of the ZOA-BiLSTM
model surpasses that of the BILSTM and LSTM models. The
ZOA-BiLSTM model has a MAPE ranging from 0.044% to
3%, while the BILSTM model’s MAPE ranges from 0.322%
t0 5.559%. The error improvement in predictive accuracy for
the ZOA-BiLSTM model is between 0.278% and 2.559%,
while the LSTM model’s MAPE ranges from 2.709% to
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TABLE 2. Hyperparameter optimization results.
ZOA+BIiLSTM BiLSTM LST™M

Training set | Test set
I
. il | (. 1 I clustering region Parameters Range
A [ | I M I s
g ) / ““\“ﬂ‘ TN A 111 P “\ \,“!‘,\‘ | i A/ il r{\ Training rate(Ir) 0.001
~ 0wl MY WONITE N T /\j‘\‘\“\“u(\yfd‘: “‘\" ‘\J R
E g ‘, \ W T v i fi‘ I B Epoch 256
Z Ii ‘ I Hidden 1 68
- * Hidden 2 130
L L L L L batch_size 18
2019/5/1 2020/2/1 2020/11/1 2021/8/1 2022/5/1 2023/2/1 =
Date (days) Training rate(lr) 0.001
(a) EX1-4 Epoch 150
™ ZOA+BIiLSTM BIiLSTM LSTM I Hidden—l 92
Training set | Test set Hidden_2 180
= batch_size 15
g i Training rate(Ir) 0.001
g Epoch 220
Z I Hidden_1 68
~
4 Hidden 2 132
L ! . ” ! batch_size 18
2019/5/1 2020/2/1 2020/11/1 2021/8/1 2022/5/1 2023/2/1 —
Date (days)
(b) EX1-8 of EX1-4 measurement points is reduced by 0.302mm and
N ZOABILSM  BILSTM  LsTM 0.688mm compared W.lth the other two models, which indi-
Training set. |JIEREERE cates that the ZOA-BiLSTM model achieves a remarkable
- enhancement in prediction accuracy and its accuracy indexes
£ , are all significantly better than the control model. Through the
E df comparative analysis of the three indicators, it can be seen that
= the proposed prediction model shows satisfactory stability in
“74 | the overall performance, and the BILSTM model optimised

! ! L | L by ZOA strengthens the global optimisation seeking ability

2019/5/1 2020/2/1 2020/11/1Datezo(2(11/as;ls) 2022/5/1 2023/2/1 of the mo del, which makes the pre diction results of the
(c)EX2-3 ZOA-BiLSTM model more reliable.

e e TABLE 3. Comparison of predicted indicators for measuring points.

Training set | Test set
|
‘g . Monitoring RMSE o
EL "u"w‘“ A boint Model MAE(mm) (mmy | MAPE(%)
= A v ZOA- R
é ‘u‘w , — BiLSTM 1.86x10 0.582 0.044
7 ‘ . BiLSTM 3.76x107 0.884 1.826
LSTM 8.08x1073 1.270 2.709
4 1 L ' ' . ZOA-
2019/5/1 2020/2/1  2020/11/1  2021/8/1 2022/5/1 2023/2/1 N 3.16x10* 0.245 3.00
Date (days) EXI1-8 BiLSTM
(d)EX2—4 BiLSTM 1.04x1073 0.423 4.695
LSTM 7.90x1073 0.956 7.523
FIGURE 9. Residual plots of different model. ZOA- 1.10x10° 0.384 3.074
EX2-3 BiLSTM : i )
. BiLSTM 4.79x107 0.545 5.559
LSTM 6.36x1073 0.938 7.942
L : ZOA- 171x10°  0.476 0.110
7.942%, resulting in an error improvement of 2.665% to EX2.4 BiLSTM ) ) )
4.942% in comparison. Considering the overall fitting per- BiLSTM 4-77X10'z 0.881 0.322
formance, especially for the EX1-4 monitoring point, the LST™M 33110 0.949 3.218
ZOA-BiLSTM model shows a superior predictive effect.
Compared to the BILSTM model, the ZOA-BiLSTM model In order to deeply verify the model accuracy, this study
exhibits a 1.782% improvement in MAPE, and in compari- demonstrates the training and prediction results of the three
son with the LSTM model, there is a 2.665% enhancement, models for four measurement points. Figure 8 shows the

showcasing a strong predictive performance. The MAE of fitting results of the training and prediction models, while
EX1-4 measurement points is reduced by 1.9 x 10.3mm Figure 9 presents the corresponding residual plots. From
and 6.22 x 10.3mm compared with the other two models, the figures, it can be observed that the fitting results for
which effectively reduces the prediction error. The RMSE all four observation points are relatively ideal, with the

50720 VOLUME 12, 2024



M. Jiedeerbieke et al.: Gravity Dam Deformation Prediction Model Based on I-KShape and ZOA-BiLSTM

IEEE Access

ZOA-BiLSTM model exhibiting a better fitting degree, and
its residuals are noticeably smaller compared to other models.
In the prediction curves for the EX1-4 and EX1-8 observa-
tion points, the ZOA-BiLSTM model nearly coincides with
the true curves, indicating its effectiveness in predicting the
complex nonlinear variations between short-term dam defor-
mations and influencing factors. This precise understanding
of changing patterns further demonstrates the high efficiency
of the ZOA algorithm in optimizing predictive performance.
Based on this validation, it can be concluded that dam mon-
itoring data analysis using artificial intelligence algorithms
exhibits good predictive performance, making it suitable for
post-monitoring data analysis in dam engineering.

V. CONCLUSION

This research employs the improved K-Shape algorithm for
dam clustering and utilizes three models, namely ZOA-
BiLSTM, BiLSTM, and LSTM, to establish deformation
prediction models for four monitoring points of a gravity
dam. Through comparative analysis of prediction and residual
effects, the following conclusions are drawn:

(1) The improved K-Shape clustering partitioning results
based on SBD, MD and ED distance metrics are in line
with the general deformation law of the dam body and can
reflect the spatial distribution characteristics of the dam body
deformation.

(2) The use of multiple denoising algorithms superimposed
on each other can improve the denoising effect of the mea-
sured data, complementary monitoring of random outliers in
the data at the same time, and further enhance the quality and
reliability of the data.

(3) By employing the ZOA optimization algorithm, opti-
mal hyperparameter combinations for the LSTM model
can be identified, enhancing the predictive performance
and accuracy of the model. This approach aids in a bet-
ter understanding and utilization of information within dam
deformation data, thereby improving the prediction of dam
deformation trends.

(4) The ZOA-BiLSTM model constructed based on the
clustering partitioning results is able to explore the intrinsic
correlation of the measurement points, which is more accu-
rate and reasonable than the BILSTM and LSTM models, and
accurately reflects the overall security state of the dam, which
provides a new technique for predicting the deformation of
the dam with high accuracy. The method is simple and effi-
cient, and can be modified and applied to the prediction and
analysis of other monitoring effects of dams.

It is anticipated that through this approach, the monitor-
ing capabilities for dam safety can be enhanced, thereby
reducing potential risks and ensuring the safety of people’s
lives and property. This, in turn, supports sustained economic
development and safeguards the ecological environment.
Simultaneously, we hope that this research can provide novel
perspectives and methodologies for the monitoring and pre-
diction techniques in concrete dam surveillance.
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