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ABSTRACT The effective usage of energy becomes crucial for the successful deployment and operation
of unmanned aerial vehicles (UAVs) in different applications, such as surveillance, transportation, and
communication networks. The increasing demand for UAVs in different industries such as agriculture,
logistics, and emergency response has led to the development of more sophisticated and advanced UAVs.
However, the limited onboard energy resource of UAVs poses a major problem for their long-term operation
and endurance. In addition, artificial intelligence (AI) and machine learning (ML) could allow UAVs to
make more informed and intelligent decisions regarding their operations, resulting in sustainable and more
energy-efficient UAV deployment. This article designs a Hybrid Snake Optimizer-based Route Selection
Approach for Unmanned Aerial Vehicles Communication (HSO-RSAUAVC) technique. The goal of the
HSO-RSAUAVC technique is to explore and select optimal routes for UAV communication. In the presented
HSO-RSAUAVC technique, the SO algorithm is integrated with Bernoulli Chaotic Mapping and Levy
flight (LF) for enhanced performance. In addition, the HSO-RSAUAVC method derives a fitness function
including residual energy (RE), distance, and UAV degree. By incorporating the HSO-RSAUAVC technique,
we can dynamically adapt UAV paths to overcome obstacles, decrease communication interference, and
optimize energy utilization. To validate the performance of the proposed model, a series of simulations
were performed. The comparative result analysis illustrates the better performance of the HSO-RSAUAVC
technique in improving the performance and reliability of UAV communication.

INDEX TERMS Unmanned aerial vehicles, routing, snake optimizer, energy efficiency, fitness function.

I. INTRODUCTION
Recently, with the fast growth of unmanned aerial vehi-
cle (UAV) technology, UAVs have been extensively utilized

The associate editor coordinating the review of this manuscript and

approving it for publication was Cong Pu .

in numerous domains [1]. Various kinds of UAVs can support
people to accomplish some comparatively risky, impossible,
and urgent tasks, like map reconstruction, ocean exploration,
environmental analysis, aerial photography, and material dis-
tribution [2]. However, the existing UAVs are inadequately
intelligent for performing difficult activities, and still major

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 54443

https://orcid.org/0000-0001-7507-5267
https://orcid.org/0009-0004-1982-5851
https://orcid.org/0009-0007-1908-4928
https://orcid.org/0000-0003-0217-0751
https://orcid.org/0000-0002-9858-5160
https://orcid.org/0000-0002-1066-8261
https://orcid.org/0000-0002-7952-0038


H. K. Alkahtani et al.: Design of Hybrid SO Based Route Selection Approach

of them require people’s real-time control [3]. A single
UAV could only execute moderately easy tasks, nonethe-
less, the UAV set could effectively perform several laborious
and complex tasks after acceptable task planning [4]. The
task distribution issue is identical to the combinatorial opti-
mizer decision issue for many UAVs. It is an integration
method developed to satisfy UAV efficiency and limitations.
The objective is to create a UAV that uses the small-
est resources or acquires the maximal advantages with a
shorter overall path [5]. The route planning issue includes
planning a fight route from the initial to the endpoints in
the restrained tasks space and creating the fitness func-
tion (FF) optimum. To resolve the task planning issue, several
research works are carried out in a substantial number of
studies [6]. The common task distribution technique com-
prises distributed methods (for instance, contract net auction
method, decentralizedMarkov decision process, etc.), heuris-
tic techniques (e.g., particle swarm optimization (PSO), Gas,
ant colony approaches (ACOs), clustering methods, artificial
bee colonies (ABC), and so on.) and optimization meth-
ods (for example, Hungarian method, graph theory, and
branch definition algorithm) [7]. The common route plan-
ning approach comprises heuristic algorithms (A∗ algorithm,
Dijkstra algorithm, Floyd algorithm, etc.), intelligent bionic
approaches, and classical algorithms (for example, Voronoi
diagram technique, artificial potential field algorithm, and
so on) [8].
Route planning is a specific column of path planning

with the goal of determining the path from an existing loca-
tion to the target location [9]. The path must be smooth
to align with the aircraft’s flight characteristics [10]. Due
to greater flexibility and mobility, UAVs have been more
employed for performing variable and difficult tasks in the
flight environment like post-disaster rescue and search and
battlefield attack activities [11]. The investigation at home
and foreign primarily highlights the route planning of the
UAV in a fixed static environment [12]. Hence, the capabil-
ity of UAVs to implement real-time maneuvering problem
prevention and obtain dynamic environmental data becomes
particularly significant [13].

This article designs aHybrid SnakeOptimizer-based Route
Selection Approach for Unmanned Aerial Vehicles Com-
munication (HSO-RSAUAVC) technique. In the presented
HSO-RSAUAVC technique, the SO algorithm is integrated
with Bernoulli Chaotic Mapping and Levy flight (LF) for
enhanced performance. In addition, the HSO-RSAUAVC
technique derives a fitness function (FF) including RE,
distance, and UAV degree. By incorporating the HSO-
RSAUAVC technique, we can dynamically adapt UAV paths
to overcome obstacles, decrease communication interfer-
ence, and optimize energy utilization. A series of experi-
ments were performed to examine the performance of the
HSO-RSAUAVC technique.

• Develop an HSO-RSAUAVC system intended to attain
increased performance in route selection for UAV
communication.

• Combine the SO technique with Bernoulli ChaoticMap-
ping and LF, exploiting the strengths of each to improve
the effectiveness and efficiency of route selection in
UAV communication.

• By integrating Bernoulli Chaotic Mapping and LF into
the SO approach, the HSO-RSAUAVC system proposes
to attain a higher solution with respect to route selection,
and optimizing communication pathways.

• Presents a FF that comprises vital parameters namely
RE, distance, and UAV degree. This holistic FF allows
a widespread estimation of potential routes, assuming
energy limitations, spatial requirements, and network
connectivity.

• Assists dynamic adaptation of UAV paths. This adapt-
ability allows UAVs to navigate around obstacles,
decrease communication interference, and optimize
energy consumption based on real-time conditions.

II. RELATED WORKS
Hilal et al. [14] developed a model called Group Teach-
ing Optimization Algorithm with Deep Learning Enabled
Smart Communication System (GTOADL-SCS) that fol-
lows two phases. Initially, a GTOA-based cluster system is
utilized for organizing and electing Cluster Heads (CHs).
Secondly, a FF includes 3 parameters of input. This model
applied a pre-trained DenseNet_201 extractor along with
gated recurrent unit (GRU) classifiers for classification.
In [15], a real-world Three-Dimensional (3D) route plan-
ner used for UAV operation directed to its destiny via a
hurdle-less route is presented. This presented route plan-
ner consists of a heuristic intelligence of A⋆ model, but
will not be needing frontier nodes for memory storage,
unlike A⋆. This planner depends on associative positions of
recognized objects (hurdles) and decides clash-free routes.
This route planner is less-weighted hence this swift guid-
ing model for real-time needs. Alymani et al. [16] present
a novel technique called Dispersal Foraging Strategy with
Cuckoo Search Optimization-based Path Planning (DFSC-
SOPP). In this work, the optimum route recognition for
data transfer is achieved in UAV networking. Additionally,
the method comprises optimum source distribution while
identifying the network for optimum routes. However, this
DFSCSOmodel can be constructed by combining the concept
of DFS into the CSO model to eliminate the local optima
issues.

In [17], a dual-route model for the swarm UAV network
is constructed based on Random Network Coding (RNC).
The initial route model uses the exclusive RNC aspect.
Decoding can be performed on the primary packets as long
as the UAV gathers enough generations. The subsequent
route model additionally enhances the effectiveness in which
every forwarding UAV just required to produce a novel
generation instead of primary packet decoding. Manikan-
dan and Sriramulu [18] suggested a new method known
as Resilient UAV Path Optimization Algorithm (RUPOA)
that gives an optimum route under safety outbreaks like
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Man-in-the-Middle (MITM) and Denial-of-Service (DoS).
For achieving a safe route plan in the UAV, and for mitigat-
ing safety outbreaks, a blockchain-assisted safety outcome
is presented. For safety outbreak prevention, smart agree-
ments are produced in which the equipment is listed with
gasLimit. Wei and Xu [19] suggested a dispersed route
strategy method depending on the dual decomposition UAV
transmission chain. This method enhances the fundamental
ant colony model from the path selector feature, pheromone
update, and rollback policy considering the intrinsic restric-
tions of the ant colony model. For accomplishing the
optimum model achievement, this study examines every ant
colony model parameter deeply and attains the maximum
parameter union.

Waqas et al. [20] introduced a path-finding model to miti-
gate the overhead encountered by reactive route models. This
model not only addresses route overhead but also reduces
energy consumption. To achieve this, the Time to Live (TTL)
is altered to accommodate a huge node number in the search
effort. This model also presented an alternate model for
discrete application needs and associated the accomplish-
ment with the modern expanding ring search (ERS) method.
In [21], proposed a novel Parallel Cooperative Coevolu-
tionary gray Wolf Optimizer (PCCGWO) technique, which
enforces cooperative co-evolutionary perceptions for ensur-
ing an effective divisor of the initial search space into multi-
sub spacing. The decision variable vector decomposition into
various sub-elements is accomplished and multi-swarm are
formed from the primary populace. An effective equivalent
master-slave method is suggested in the presented parameter-
free PCCGWO.

III. THE PROPOSED MODEL
In this article, a novel HSO-RSAUAVCmethod has been rec-
ognized for route selection in UAV communication networks.
The purpose of the HSO-RSAUAVC method is to explore
and select optimal routes for UAV communication. Fig. 1
portrays the entire flow of the HSO-RSAUAVC technique.
The proposed method works through a refined incorporation
of optimization methods to overcome the intrinsic chal-
lenges connected with UAV communication. By integrating
the SO method with Bernoulli Chaotic Mapping and LF,
the approach aims to accomplish greater route selection
performance. The method includes the source of a com-
prehensive FF, such as residual energy, spatial distance,
and UAV degree, enabling a holistic assessment of possible
communication routes. The dynamic adaptation ability of
the algorithm permits UAVs to autonomously modify their
paths in real-time, which allows them to find around obsta-
cles, decreasing communication interference, and optimizing
energy consumption.

A. SYSTEM MODEL
The UAV can be modelled as a graph. All the nodes are
constructed with omnidirectional antennae. Each node has

FIGURE 1. Overall flow of the HSO-RSAUAVC algorithm.

a similar transmission power. Consider that nodes in the
network have the subsequent characteristics:
1. All the nodes have a unique ID.
2. The nodes are considered as particles and move in two-

dimensional space.
3. The nodes work in the half-duplex mode and it can be

transmitting or receiving state.
4. The safe range of the node is a circular region and is less

than its transmission range.
5. The geographic position data of all the nodes are

exchanged with their neighbors.

B. MODELING OF HSO ALGORITHM
Snake optimizer (SO) is an optimization technique stimulated
by the mating behaviors of the snake and constructing corre-
sponding models to resolve it [22]. The mating procedure of
snakes is largely confined by food quantity and temperature.
The population initialization was produced by the standard
distribution with the generation rules discussed as follows:

Si = Smin + randi × (Smax − Smin) (1)

In Eq. (1), Si signifies the location of the population indi-
vidual at the t th time, randi represents the random integer
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within [0, 1] at the t th time, and Smax and Smin symbolize the
maximum and minimum boundaries of the population.

The distribution of amount of individual females andmales
according to gender begins after attaining the initial popula-
tion. Generally, the amount of female and male individuals
are equal. Thus, the number of females andmales is evaluated
as follows:

Nm = Nf =
Nall
2

(2)

In Eq. (2), Nall refers to the overall population size, Nm and
Nf correspondingly show the amount of males and females.

In SO, food quantity and temperature are dual crucial
causes that define snake mating, and temperature and food
quantity are determined as follows:

Temp = e−t/T (3)

FQ = c1 × e(t−T )/T (4)

From the expression, t shows the existing iteration count,
T specifies the overall amount of iterations, and c1 denotes
the fixed constant of 0.5.

In the exploration stage, if FQ< 0.25, then the snake finds
food by choosing and updating the location randomly.

Smi (t + 1) = Smrand (t) ⊕ c2 × e
−
f mransd
f mi × Si

=

 Smrand (t) + c2 × e
−
f mrand
f mi × Si

Smrand (t) − c2 × e
−
f mrand
f mi × Si

(5)

S fi (t + 1) = S frand (t) ⊕ c2 × e
−
f frand
f fi × Si

=

 S frand (t) + c2 × e
−
frand
f fi × Si

S frand (t) − c2 × e
−
frand
f fi × Si

(6)

where S fi indicates the location of the females at the t th time,
Smi signifies the location of males at the t th time and Smrand
shows the random location of the male snake. f mrand denotes
the fitness of the male snake Smrand , and f mi refers to the
individual fitness of the males at t th time. and S frond indicates
the random location of the female snake. f frand shows the indi-
vidual fitness of t th female snake S frand , c2 denotes a constant
set to 0.05 and ⊕ indicates the sign direction operator.
In the exploration stage, if FQ > 0.25 and Temp > 0.6,

then the snake eats only the food and doesn’t go into the
mating procedure.

Sm,f
i (t + 1)

= Sfood ⊕ c3 × Temp× randi ×
(
Sfood − Sm,f

i (t)
)

=

 Sfood + c3 × Temp× randi ×
(
Sfood − Sm,f

i (t)
)

Sfood − c3 × Temp× randi ×
(
Sfood − Sm,f

i (t)
)

(7)

where c3 shows the fixed constant of 2, Sm,f
i denotes the

individual location of males or females, and Sfood represents
the location of the optimum individual.

If FQ > 0.25 and Temp ≤ 0.6, then the snake enters into
the mating part, and there is an option of competition among
individual females and males since the individual male or
female wants to complete mating with the superior heterosex-
ual. First, the charming individual chooses themating partner,
fighting and mating modes are the two mating parts of SO,
and the fighting mode can be denoted as follows.

Smi (t + 1) = Smi (t) + c3 × e−fbest/fi × randj

×

(
FQ× S fbest − Smi (t)

)
(8)

S fi (t+1) = S fi (t) + c3 × e−f
m
best/fi × randi

× (FQ× Smbest − S fi (t)) (9)

where S fi represents the location of the female snake at ith

generation, f fbest , and f
m
best imply the optimum fitness of the

individual female and male snakes during the fight mode,
Sm
İ
indicates the location of the male snake at ith generation,

S fbest shows the optimum location of the individual female
snake, Smbest means the optimum location of the individual
male snake, and fİ signifies individual fitness. Fig. 2 repre-
sents the flowchart of the SO algorithm.

FIGURE 2. Flowchart of SO algorithm.
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The mating process can be formulated using
Eqs. (10) & (11).

Smi (t+1) = Smi (t) + c3 × e−m
f
i /f

m
i × randi

× (FQ× S fi (t)−S
m
i (t)) (10)

S fi (t+1) = S fi (t) + c3 × e−m
f
i /fl × randi

× (FQ× Smi (t)−S
f
i (t)) (11)

where mmi and mfsi symbolize the fitness of ith individuals
during the mating pattern. Smi and S fi denote the location of
the ith individuals in the male and female snakes.

After finishing the mating, the female snake will lay their
eggs to attain a novel snake and in the original population,
it replaces the worst individual female or male, based on the
gender of novel snakes, correspondingly.

Smworst = Smin + randj × (Smax − Smin) (12)

S fworst = Smin + randj × (Smax − Smin) (13)

In Eq. (13), Smworst and S
f
worst refers to the worst individuals

amongst individual males and females.
In the presented HSO-RSAUAVC technique, the SO

algorithm is integrated with Bernoulli Chaotic Mapping and
LF for enhanced performance [23]. The solution accurateness
and union rate of the technique were influenced by the quality
of population initialization. Improving the searching ability
of the model was accomplished by the high-quality early pop-
ulation. The sequence of chaotic mapping lacks the features
of orderliness and ergodicity, which enables it to expedite
convergence speed, improve the distribution diversity of the
population, and yield a high-quality early population. The
population initialization made by Bernoulli chaotic mapping
is given in the following expression:

Zdi =

{
Zdi /(1−θ ), 0 < Zdi < 1−θ

(Zdi −1+θ )/λ , 1−θ < Zdi < 1
(14)

In Eq. (14), λ indicates a constant; i denotes the amount of
particles; d shows the dimension; and θ takes the value of 0.5.

Depending on the Bernoulli chaotic sequence, the initial
population can be produced after attaining an initial value of
Bernoulli chaotic mapping using Eq. (17) as follows:

Cd
i = Cd

min + Zdi
(
Cd
max − Cd

min

)
(15)

The application of the random walking characteristics of
LF has found increased use in optimization algorithms, com-
prising the GWO and PSO algorithms that could enhance the
capability of the model to boost algorithmic performance,
escape local optima, and ultimately improve the diversity of
search spaces. Generally, the step size of LF is a uniformly
distributed random value, and its step size can be given as
follows.

s =
µ

|v|
1
β

(16)

In Eq. (16), µ = N
(
0,δ2µ

)
and v = N

(
0,δ2v

)
are uniform

random distribution; β take the value of 1.5 =; and the
formula of δµ and δv are given as follows:

δµ =

0 (1 + β) · sin
(
π ·

β
2

)
β · 0

(
1+β
2

)
· 2

β−1
2


1
β

(17)

δv = 1 (18)

The path of LF satisfies its random walking properties to
guarantee that the model hunts in the wide-ranging space and
employs it to the concentration update; hence, the equation
can be given as follows:

C = Ceq +
(
C − Ceq

)
·F · s · 0.01 +

G
λV

(1 − F) (19)

C. ROUTE SELECTION PROCESS
The HSO-RSAUAVC method derives an FF including RE,
distance, and UAV degree. The derived probable energy func-
tion is dependent upon the provided features.

RE level: The major objective is that the relay node (RN)
to the upcoming hop node is dependent upon the RE of the
later hop node. The RN node elects the future hop RN on the
potential hop node, but it can be superior RE.

Objective1: Maximize

g1 =

m∑
j=l

NextHop (ER (CHj)) (20)

Distance to the base station (BS): Every RN to the next hop
node is dependent upon the distance to upcoming hop nodes
and the distance contained node to sink.

Objective2: Minimize

g2=

m∑
j=l

dis(CHj,NextHop
(
CHj

)
+ dis

(
Nexthop

(
CHj

)
,BS

)
(21)

Node degree: The main drive of every RN to the next hop
node is dependent upon node degree. The RN is pointed out
to the upcoming hop node exploiting a lesser node degree.

Objective3: Minimize

g3 =

m∑
j=l

Node degree of Next Hop (CHj) (22)

It could be the weighted summation method to optimizer
method after the drives are inclined to RN other.

Minimize

Potential energy function = β1 ×
1
g1

+ β2 × g2 + β3 × g3

(23)

In which, 0 <β1, β2, β3< 1 and 0 <g1,g2,g3< 1
Then, the HSO-RSAUAVC approach is to elect the next

hop node exploiting the superior energy function. Next, the
RN transmits the combined data in its member to BS with the
elected optimum path.
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IV. RESULTS AND DISCUSSION
The proposed method was examined in the field with BS, and
UAVs positioned employing the Poisson distribution area of
50× 50 m2. The initial power of IoE-objects can be measured
at 100 J, and for UAVs, it is deliberated that the power is
higher than the requirement of all UAVs. For the accessibility
of the simulations, the initial power of UAVs is 2000 J. Seg-
ments differ between 3m and 5 for every BS. The IoE-objects
in Ue-IoE vary among 100 and 350. With the help of the
conventional technique, the power consumption for a UAV
is 0.5 J. The UAV frequency is in the middle of 5 and 10 m
and the output voltage of the UAV remains 500 m.

In this part, the performance outcome of the HSO-
RSAUAVC approach was tested below varying aspects.
Table 1 and Fig. 3 inspect an overall throughput (THRO)
result of the HSO-RSAUAVC system with different
approaches [16]. The outcome shows that the HSO-
RSAUAVC system achieves enhanced performance. With
5% of energy consumption (ECOM), the HSO-RSAUAVC
technique offers higher THRO of 68bytes/s but the TRU-
AVS, UAVeWSN, ORPFANET, ESROSRP, and DFSCSOPP
algorithms obtain decreased ECOM values of 4bytes/s,
10bytes/s, 20bytes/s, 33bytes/s, and 50bytes/s respectively.
Meanwhile, with 100% of ECOM, the HSO-RSAUAVC
approach attains enhanced THRO of 212bytes/s while
the TRUAVS, UAVeWSN, ORPFANET, ESROSRP, and
DFSCSOPP systems obtain decreased ECOM values of
92bytes/s, 115bytes/s, 122bytes/s, 184bytes/s, and 197bytes/s
correspondingly.

TABLE 1. THRO outcome of HSO-RSAUAVC algorithm with other
methodologies under varying ECOM.

FIGURE 3. THRO outcome of HSO-RSAUAVC algorithm under varying
ECOM.

TABLE 2. PDR outcome of HSO-RSAUAVC algorithm with other
methodologies under varying ECOM.

Table 2 and Fig. 4 demonstrate an overall packet deliv-
ery ratio (PDR) outcome of the HSO-RSAUAVC algorithm
with different systems. The outcome values depicted that
the HSO-RSAUAVC approach attains enhanced perfor-
mance. With 5% of ECOM, the HSO-RSAUAVC system
offers a greater PDR of 80.96% whereas the TRUAVS,
UAVeWSN, ORPFANET, ESROSRP, and DFSCSOPP mod-
els obtain decreased ECOM values of 42.98%, 43.42%,
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FIGURE 4. PDR outcome of HSO-RSAUAVC algorithm under varying ECOM.

TABLE 3. AHOPS outcome of HSO-RSAUAVC algorithm with other
methodologies under varying ECOM.

48.53%, 65.59%, and 74.02% correspondingly. In the mean-
time, with 100% of ECOM, the HSO-RSAUAVC technique
offers superior PDR of 98.32% but the TRUAVS, UAVeWSN,
ORPFANET, ESROSRP, and DFSCSOPP approaches obtain
lesser ECOM values of 63.29%, 68.75%, 75.87%, 87.24%,
and 94.76% correspondingly.

Table 3 and Fig. 5 examine the overall average hops
(AHOPS) analysis of the HSO-RSAUAVC approach with
different methods. The simulation outcome exhibited that the
HSO-RSAUAVC approach reaches improved performance.

FIGURE 5. AHOPS outcome of HSO-RSAUAVC algorithm under varying
ECOM.

TABLE 4. Coverage outcome of the HSO-RSAUAVC algorithm with other
methodologies under varying ECOM.

With 5% of ECOM, the HSO-RSAUAVC system attains
maximal AHOPS of 17.75% but the TRUAVS, UAVeWSN,
ORPFANET, ESROSRP, and DFSCSOPP approaches gain
lesser ECOM values of 2.49%, 4.23%, 6.19%, 10.5% and
14.2% respectively. Afterwards, with 100% of ECOM,
the HSO-RSAUAVC algorithm offers improved AHOPS of
98.32% whereas the TRUAVS, UAVeWSN, ORPFANET,
ESROSRP, and DFSCSOPP systems obtain decreased
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FIGURE 6. Coverage outcome of HSO-RSAUAVC algorithm under varying
ECOM.

TABLE 5. Lifetime outcome of HSO-RSAUAVC algorithm with other
methodologies under varying ECOM.

ECOM values of 29.37%, 7.71%, 10.5%, 20.6%, 24.9% and
25.8% correspondingly.

Table 4 and Fig. 6 depict an overall coverage (COV)
outcome of the HSO-RSAUAVC algorithm with different
approaches. The outcome exhibited that the HSO-RSAUAVC
approach gains better outcomes. With 5% of ECOM,
the HSO-RSAUAVC algorithm offers a maximum COV
of 99.13% where the TRUAVS, UAVeWSN, ORPFANET,
ESROSRP, and DFSCSOPP approaches obtain minimal
ECOM values of 61.43%, 73.22%, 79.59%, 95.05% and
97.27% correspondingly. Likewise, with 100% of ECOM, the
HSO-RSAUAVC approach achieves a higher COV of 54.67%
but the TRUAVS, UAVeWSN, ORPFANET, ESROSRP,

FIGURE 7. Lifetime outcome of HSO-RSAUAVC algorithm under varying
ECOM.

and DFSCSOPP methods obtain decreased ECOM values of
6.43%, 13.5%, 22.6%, 47.3% and 53.2% correspondingly.

Table 5 and Fig. 7 depict an overall lifetime (LFT)
examination of the HSO-RSAUAVC algorithm with dif-
ferent approaches. The result demonstrated that the
HSO-RSAUAVC system achieves higher performance.
With 5% of ECOM, the HSO-RSAUAVC system obtains
enhanced LFT of 107 rounds but the TRUAVS, UAVeWSN,
ORPFANET, ESROSRP, and DFSCSOPP models obtain
decreased ECOM values of 2, 7, 14, 54, and 83 rounds
correspondingly. Afterwards, with 100% of ECOM, the
HSO-RSAUAVC approach obtains maximal LFT of
210 rounds whereas the TRUAVS, UAVeWSN, ORPFANET,
ESROSRP, and DFSCSOPP system attain lesser ECOM
values of 62, 81, 126, 168, and 189 rounds correspondingly.

These results ensured that the HSO-RSAUAVC technique
accomplishes enhanced performance over other models.

V. CONCLUSION
In this article, a newHSO-RSAUAVC technique has been rec-
ognized for route selection in UAV communication networks.
The purpose of the HSO-RSAUAVC technique is to explore
and select optimal routes for UAV communication. In the
presented HSO-RSAUAVC technique, the SO algorithm
is integrated with Bernoulli Chaotic Mapping and LF for
enhanced performance. In addition, the HSO-RSAUAVC
method derives an FF including RE, distance, and UAV
degree. By incorporating the HSO-RSAUAVC technique,
we can dynamically adapt UAV paths to overcome obsta-
cles, decrease communication interference, and optimize
energy utilization. An experimental evaluation process is per-
formed to examine the performance of the HSO-RSAUAVC
technique. The obtained results demonstrate the signif-
icance of improving the performance and reliability of
UAV communication. In terms of real-time applications, the
HSO-RSAUAVC algorithm is possible in monitoring and
surveillance, disaster response, precision agriculture, and
other mission-critical processes. The method’s capability to
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adjust UAV paths on the fly can offer improved reliability and
efficiency in communication networks, making it competent
for situations where early and accurate data will be crucial.

For future work, research workers will explore the adapt-
ability and scalability of the HSO-RSAUAVC method to
adapt to a huge number of UAVs in collaborative mis-
sions. This could involve analyzing the model’s robustness
in conditions with dynamic environmental circumstances
and changing mission requirements. Moreover, efforts are
directed toward real-time execution and testing of the
HSO-RSAUAVC algorithm in real-time UAV applications.
This comprises incorporation with actual UAV platforms for
measuring its effectiveness in real-time communication set-
tings. Future work aims to explore the integration of emerging
technologies such as 5G and edge computing to enhance
real-time decision-making and optimize energy utilization.
Besides, upcoming work can examine the scalability of the
HSO-RSAUAVC technique for large-scale UAV networks
and investigate its applicability in various operational scenar-
ios, including disaster response and precision agriculture.
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